EURCPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN ISR-TH-RF/80-26

BEAM DYNAMICS IN A DOUBLE RF SYSTEM

by

A. Hofmamn and S. Myers

Presented at XIth International Conference on High Energy Accelerators
CERN, Geneva, July 7 - 11,1980

Geneva, Switzerland
July 1980



BEAM DYNAMICS IN A DOUBLE RF SYSTEM

A. Hofmann and S. Myers
CERN, Geneva, Switzerland

ABSTRACT

The addition of a higher harmonic RF system to the main system allows
a control of the synchrotron frequency, the spread in synchrotron
frequency ard the bunch length. Adjustment of the higher harmonic
system so as to reduce the slope of the RF wave to zero at the bumch. -
centre leads to a longer bunch and a greatly increased spread in
synchrotron frequency. This increases the Landau camping against
longitudinal coupled bunch instabilities. The motion of single par-
ticles in this highly non linear potential is calculated mumerically
as well as analytically {(by making some approximations). The depen-
dence of the synchrotron frequency on amplitude and the forms of the
synchrotron oscillations and the RF bucket are calculated. Finally
the bunch shape and the distribution of particles in Qg are calcula-
ted for electron bunches.

CALCULATION OF THE RF PARAMETERS

The voltage seen by the beam with a double RF system is (refer to Fig.l) :

V@) = Vo {sineres) + k sinapemy) | (1)
where
Yy = the peak voltage of the fundamental RF
KV, = the peak voltage of the higher harmonic RF
nfgg = the higher harmonic frequency (frE)
bs = the stable phase angle relative to the fundamental RF waveform
¢n = the stable phase angle relative to the. higher harmonic waveform’

The equation of symchrotron motion is :

2
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Vo cos 65 | T

where Vy = the voltage loss per turn due to synchrotron radiation

and Yo = the synchrotron frequency for small amplitude oscillations in a

single RF system with peak voltage Vg and stable phase angle ¢

Integration of equation (Z) gives :
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and ' & refers to the peak value along a given trajectory.

To maximise the bunch length, the first derivative of V(¢)} should vanish. at the centre
=of'the-bunchl’z)-,and in order to .avoid having. a second region of phase stability close by,
the second derivative of V(¢) must also vanish. -These two conditions give :

nkcosng, = T.COS g 3 ntksinn¢, = - sindg L (9




In the general case and for a given
2000-

n the RF parameters {eqn.(1}} are defined

by Vg, ¢s, k, and ¢,. These parameters 000
are evaluated from the following condi-
tions :

= K00

(i) The voltage gain per turn of the

- 20004

synchronous particle 'is equal to
the total loss per turn.

(ii) The momentum acceptance of the RF -
10
bucket must be large enough to pro-
: 4!
vide the required quantum lifetime. KT
and (iii) The two conditions given by ae Mo
eqn. (5) must be satisfied. o
M 151
Fig.l shows the variation of V(¢), P R R .- S S R R L
¢ and the potential function for the
proposed LEPS) machine at 86.11 GeV.
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DISTRIBUTION OF PARTICLES IN RF PHASE

4,5,6),

For any RF waveform, the electron density distribytion is given by
Apy? '
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and hence the instantaneous current distributicn is given by :
€ Vo Y2 (¢9 ¢S)
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where [ﬁp)_J is the rms momentum spread of the bunch (Gaussian) and E is the beam energy.

Figure 2 shows the calculated bunch distributions for a single RF system, a double RE
system in which the conditions of eqn.(5) are fulfilled and for a double RF system in which
the third harmonic voltage is limited to around one half of the value mneeded to provide
zero slope of the RF waveform.

-BISTRIBUTION OF PARTICLES IN Qg

- Associated with each point in phase space ($,4) there is a corresponding value for the
constant of motionH (refer tv eqn.3)). Along a trajectory of constant H the demsity ¢(H) is.
constant. Inside the RF bucket each trajectory has two turning points in its ¢ motion



(9,150,¢) ; where $ = 0). The phase space area A(H) and the periodic time T(H) of a tra-
jectory are given by
" . ¢
- _ - _ d¢
AH) = 2 | ¢ d¢ and TG = 2| &£ (8)

1t 1t
The muber of particles between two neighbouring trajectories is :

AN = Y(H) 2A(H) (9

Numerical evaluation of eqns (8) and (9) gives the distribution of particles as a
function of the synchrotron frequency (1/T). Fig.3 shows the distributions of particles in
Qs for a series of higher harmonic voltages and for the LEP design.
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CALCULATION OF PHASE PLANE TRAJECTORIES AS A FUNCTION OF TIME

The variations of §, ¢ as a function of time are calculated by mmerical solution of
equation (2) with : '
Vr = Vd + VQ + VHM

where d, Q and HM refer to the energy losses due to dipole and quadrupole magnets (synchro-
tron radiation), and due to higher modes in cavities and the vacuum pipe.



At eaéh i.nterval of time, the constant of motion (H) and the area of the trajectory
A(H) associated with the ¢, ¢ value are also evaluated. In this way the damping times of
H, A, ¢ and ¢ are calculated. The effects of variations in the frequency dispersion n is
accomodated by making n as a function of 2 in the equation for Q,. The frequency spectrum
of the phase plane motion is also calculated in order to quantify the higher frequency compo-
nents in the cases of non linear synchrotron motion.

APPROXIMATE ANALYTIC TREATMENT

1t is useful to give approximate analytic expressions for the particle dynamics -in the
double RF-gystem which are valid for small amplitudes (¢ = %)- For the bunch lengthening
mode (5) the RF-wave form (1) and the potential function become

2_ z_
Vo) -V, = Vo RTE cosg 9 3 Y2(enbs) = Dypt costg ¢ .

which gives for the phase plane trajectories or the Hamiltonian (3) :
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The phase oscillation frequency is obtained by integrating {8) :

. B e\t A m n2-1\i »
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where K(1vZ) = 1.85407 is the complete elliptic integral ofamgdulus 1//2Z. The phase oscil-
lation frequency is proportional to the amplitude $ or to (2. o

The phase motion itself can be described by the Jacobian elliptic function ¢n{u) and
the product sn(u) dn{u) which are periodic functions with the period 4K(1/vZ). Chosing t=0

such that ¢ has a minitnm one gets
p e (M0 ) (BUBag) s e e de (5 )
)

Since the phase motion is nonm-linear it contains harmonics of the basic frequency

¢
¢

For clectrons the particle distribution in momentum is Gaussian and the normalised

5 [1.14424 sin (qgt) + 0.15474 sin (304t) + 0.01114 sin (5a5t), -..]

5[0.95501 cos (Sgt) + 0.04305 cos (Sﬂst) + 0.00186 cos- (50251), ]

phase plane distribution (6) becomes : _ ‘ _
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where oA 1s the 1ms bunch 1ength meas'u_red'in ﬁF—phasé angle
i T Rl op/p\?
¢~ TI/4) \n1 Qso

with R ‘ (h neVy _cos¢s)%

Qso = Wpey - 27E

‘and T{1/4) = 3.6256




The instantaneous current (7) as a function of the longitudinal coordinate s is cbtained

by integrating (11) over Z2p/p

) . - 2w s \*
where gg = % 94 is the rms bunch length in meters. The peak current ip is related to the

average current ig of ky bunches.

4w /Im R ig

R i
= = 2.015 2
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The. phase space area (8) of a trajectory with amplitude &, ¢ is7)

A - %‘? K(WVD) 6 & = 3.4961 ¢ &

Using this, the distribution (11) and the relation (10) between phase oscillation fre-
quency and amplitude the particle distribution in Q¢ can be calculated.. For convenience
this frequency is normalised with :

D 3V 1 8% | e 3¥1 %
/T O(1/8) \n%-1) %

to get the distribution :
aN - _ 8K(1v2) 2 1 4 2 )
e T e - = 1,095 & -
da 4‘/_2.“1"(1/4)51 XP(Q'Q) q XP(‘ZQ.)
This distribution agrees well with the computed exact distribution shown in Fig.3. It
has a maximum at q = 1 and a width (FWEM) of g = 0.8Z.

The fact that the Hamiltonian contains ¢ and ¢ with different powers leads to a diffe-
rence in the radiation damping rate for energy and phase excursior) . The equation of motion
including the longitudinal damping rate o,

2 n2+1

¢+2aEcI>+RO z 9* = 0

can be sclved approximately for weak damping (the Hamiltonian changes little durihg one

oscillation) with the result
¢ = exp (—%aet) ;¢°=exp(-§raet)

which is in good agreement with the computed results.

The energy excursion is damped faster and the phase excursion slower than for a linear
RE-system. However, the phase space area A(H) = exp (- 2 o t) is damped with the normal rate,

as expected.g) * * *
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