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The possibility of parity-time (PT ) symmetric periodic potentials is investigated within the context of

optics. Beam dynamics in this new type of optical structures is examined in detail for both one- and two-

dimensional lattice geometries. It is shown that PT periodic structures can exhibit unique characteristics

stemming from the nonorthogonality of the associated Floquet-Bloch modes. Some of these features

include double refraction, power oscillations, and eigenfunction unfolding as well as nonreciprocal

diffraction patterns.
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Over the last few years a new concept has been proposed

in an attempt to extend the framework of quantum me-

chanics into the complex domain. In 1998, Bender et al.

found [1] that it is in fact possible even for non-Hermitian

Hamiltonians to exhibit entirely real eigenvalue spectra as

long as they respect parity-time requirements or PT

symmetry [2–4]. This fascinating result appears to be

counter-intuitive since it implies that all the eigenmodes

of a pseudo-Hermitian Hamiltonian [5] (bound as well as

radiation states) are only associated with real eigenener-

gies. Another intriguing characteristic is related to sponta-

neous PT symmetry-breaking beyond which this class of

systems can undergo an abrupt phase transition [1]. In

particular, above this critical threshold, the system loses

its PT property and as a result some of the eigenvalues

become complex. The notion of PT symmetry is now

extensively considered in diverse areas of physics includ-

ing, for example, quantum field theories [2], non-

Hermitian Anderson models, complex Lie algebras, and

lattice QCD theories just to mention a few [6]. It is worth

mentioning that, even before the PT concept was intro-

duced, wave scattering from complex periodic potentials

has been considered at both the theoretical [7] and experi-

mental front [8].

In general, a Hamiltonian is PT symmetric provided

that all its eigenfunctions are simultaneously eigenfunc-

tions of PT operator [2]. Here the action of the parity

operator P̂ is defined by the relations p̂ ! �p̂, x̂ ! �x̂

while that of the time operator T̂ by p̂ ! �p̂, x̂ ! x̂, i !
�i, where p̂, x̂ denote momentum and position operators,

respectively. In operator form, the normalized Schrödinger

evolution equation (@ � m � 1) is given by i�t � Ĥ�,

where Ĥ � p̂2=2� V�x̂� and p̂ ! �i@=@x [9]. Given that

the T̂ operation corresponds to a time reversal, i.e., T̂ Ĥ �

p̂2=2� V��x�, then one can deduce that Ĥ P̂ T̂ � p̂2=2�

V�x� and P̂ T̂ Ĥ � p̂2=2� V���x�. From the above con-

siderations one finds that a necessary condition for a

Hamiltonian to be PT symmetric is V�x� � V���x�.
This last relation indicates that parity-time symmetry re-

quires that the real part of the complex potential involved

must be an even function of position whereas the imagi-

nary component should be odd.

While the implications of PT symmetry in the above

mentioned fields are still under consideration, as we will

show some of these basic concepts can be realized in

optics. This can be achieved through a judicious design

that involves a combination of optical gain or loss regions

and the process of index guiding. Of particular importance

is to explore the properties of periodic PT symmetric

lattices as this may lead to pseudo-Hermitian synthetic

materials. Quite recently, conventional optical array struc-

tures (based on real potentials) have received considerable

attention and have been examined in several systems in-

cluding semiconductors, glasses, quadratic and photore-

fractive materials, and liquid crystals [10]. Given that

even a single PT cell can exhibit unconventional features,

one may naturally ask what new behavior and properties

could be expected from parity-time symmetric optical

lattices.

In this Letter we investigate optical beam dynamics in

complex PT arrays. The unusual band structure proper-

ties of these periodic systems is systematically examined in

both one- and two-dimensional geometries. We find that

above the phase-transition point, bands can merge forming

loops or closed ovals (attached to a 2D membrane) within

the Brillouin zone and the Floquet-Bloch (FB) modes are

substantially altered. Our analysis indicates that under

wide beam excitation, interesting diffraction patterns

emerge such as ‘‘double refraction’’ and power oscillations

due to eigenfunction unfolding. We show that this dynam-

ics is a direct outcome of mode skewness or nonorthogo-

nality. The nonreciprocal characteristics of these PT ar-

rays are also discussed.

In optics, several classical processes are known to obey a

Schrödinger-like equation. Perhaps the most widely known
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physical effects associated with this evolution equation are

those of spatial diffraction and temporal dispersion [11].

Here we will primarily explore the diffraction dynamics of

optical beams and waves in PT symmetric potentials in

the spatial domain. Along these lines, let us consider a

complex parity-time potential. In this case, the complex

refractive index of the system is described by n � n0 �
nR�x� � inI�x�, where n0 is the background refractive in-

dex, nR�x� is the real index profile of the lattice, and nI�x�
represents the gain or loss periodic distribution of the

structure [in practice n0 � nR;I�x�]. Under these condi-

tions, the electric field envelope U of the beam obeys the

paraxial equation of diffraction: iUz � �2k0n0�
�1Uxx �

k0�nR�x� � inI�x�	U � 0, where z is the propagation dis-

tance, x is the transverse coordinate, and k0 � 2�=�0 with

�0 being the light wavelength. We note that this latter

equation is formally analogous to a Schrödinger equation.

In an array arrangement nR;I�x�D� � nR;I�x�, where D
represents the lattice period. From our previous discussion,

this complex potential is PT symmetric provided that its

real part or refractive index profile is even, i.e., nR�x� �
nR��x�, while the imaginary component nI�x� (that is loss

or gain) is odd. From a physical perspective such PT

symmetric lattices can be realized in the visible and in

the long wavelength regime (0:5 �m< �0 < 1:6 �m) us-

ing a periodic index modulation of the order of �nmax
R 


10�3 with D 
 10–20 �m (similar to those encountered in

real arrays [10] ) provided that the maximum gain or loss

values are approximately g � �� 
 30 cm�1 or �nmax
I 


5� 10�4. Such gain or loss coefficients can be realistically

obtained from quantum well lasers or photorefractive

structures through two-wave mixing [11]. By introducing

the following scaled quantities, � � z=�2k0n0x
2
0�, � �

x=x0, V��� � 2k20n0x
2
0�nR � inI�, (where x0 is an arbitrary

scaling factor) the normalized equation of diffraction can

now be expressed in the form:

 i
@U

@�
�

@2U

@�2
� V���U � 0: (1)

To understand the properties of a periodic PT structure

we must first analyze its corresponding band structure. In

particular, we seek solutions of the form �kn����
exp�i�kn��, where �kn��� is the n-band Floquet-Bloch

mode at Bloch momentum k, and �kn is the associated

eigenvalue or propagation constant. For illustration pur-

poses we assume the periodic PT potential V��� �
A�cos2��� � iV0 sin�2��	, �A � 4� with period D � �x0
for both real and imaginary component [shown schemati-

cally in Fig. 1(a)]. We stress that the requirement V��� �
V����� satisfied by this potential is a necessary but not a

sufficient condition for the eigenvalue spectrum to be real.

By using spectral techniques we numerically identify the

PT threshold (V th
0 ), below which all the propagation

eigenvalues for every band and every Bloch wave number

k are real. Above this PT threshold, an abrupt phase

transition occurs because of spontaneous symmetry break-

ing and as a result the spectrum is partially complex. This

happens in spite of the fact that V��� � V����� is still

satisfied. For the particular potential considered here we

find that V th
0 � 0:5. More specifically, for V0 < 0:5, the

band structure is entirely real while for V0 > 0:5 it be-

comes complex (starting from the lowest bands).

Figure 1(b) depicts the first two bands of this potential

for two cases, i.e., when V0 � 0:2 and 0.5. Note that below

Vth
0 all the forbidden gaps are open whereas at the threshold

Vth
0 � 0:5 some band gaps at the edges of the Brillouin

zone close (no gaps exist at k � �1) as shown in Fig. 1(b).

On the other hand, when V0 exceeds this critical value

these two same bands start to merge together and in doing

so they form oval-like structures with a related complex

spectrum. The real as well as the imaginary parts of such a

double-valued band when V0 � 0:7 are depicted in

Figs. 1(c) and 1(d), respectively. These figures show that

the propagation eigenvalues are entirely real in the double-

valued regions (oval R regions) while along the overlapped

sections (C lines) happen to be complex conjugate. Some

of these aspects associated with the real part of these bands

were also discussed by Bender et al. [12] for pseudo-

Hermitian periodic potentials having zero PT threshold

(purely imaginary potentials with Vth
0 � 0).

Relevant to our previous discussion is the structure

and properties of the corresponding Floquet-Bloch

modes for PT symmetric potentials. Unlike real poten-

tials, the eigenfunctions have no zero nodes at k � �1
(edge of the Brillouin zone) [12]. In addition, at k � �1 in

the complex conjugate part, these functions are shifted

with respect to their potentials. We emphasize that the

above unexpected modal structure is a direct consequence

of the nonorthogonality of the related Floquet-Bloch func-

FIG. 1 (color online). (a) Real part (solid line) and imaginary

component (dotted line) of the PT potential V��� �
4�cos2��� � iV0 sin�2��	; (b) corresponding band structure for

V0 � 0:2 (dotted line) and V0 � 0:5 (solid line). (c), (d) Real and

imaginary part of the double-valued band for V0 � 0:7, respec-

tively, resulting from the merging of the two first bands.
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tions. In particular, the usual orthogonality condition
R
�1
�1��

k0m
����kn���d� � 	nm	�k� k0� (that holds in

real crystals) is no longer applicable in PT symmetric

lattices. This skewness of the modes [13] is an inherent

characteristic of PT symmetric periodic potentials and

has a profound effect on their algebra.

The most interesting aspects associated with PT sym-

metric lattices are revealed during dynamic beam evolu-

tion. Figure 2(a) illustrates the intensity distribution during

propagation when the PT array V��� � A�cos2��� �
iV0 sin�2��	 (with V0 � 0:49, A � 4) is excited by a

wide optical beam at normal incidence. Figure 2(b) on

the other hand shows this same process in the real version

of this lattice (V0 � 0) under the same input conditions.

These two figures indicate that there is a marked difference

between these two regimes. In the PT array the beam

splits in two and double refraction occurs at an angle of


1� after 3 cm of propagation when D � 20 �m, g �
35 cm�1, �nmax

R � 10�3. In order to explain this behavior

we project the input field on an orthogonalized Floquet-

Bloch base of the complex array; e.g., we write U��; �� �
R
1
�1

P
�1
n�1 cn�k�

~�k n��� exp�i�k n��dk, where cn�k� repre-

sent the mode occupancy coefficients in band n and at

Bloch momentum k. This decomposition was accom-

plished by devising a new orthogonal basis suitable for

PT periodic potentials. In this case, the projections are

facilitated by:

 

Z �1

�1

~��
�k0m���� ~�kn���d� � dkn	nm	�k� k0�; (2)

where dkn � f�1g and ~�kn � �kn=�
R
�1
�1 ��

�kn�����

�kn���d�	
1=2. Unlike real lattices, in these pseudo-

Hermitian structures, the inner product is taken by reflect-

ing both the spatial coordinate and the Bloch momentum

itself. Consequently, the modal coefficients can be ob-

tained from cn�k��dk�
R
�1
�1

~��
�kn����G���d�, where

G��� is the input beam profile. Figure 2(c) depicts the

jcn�k�j occupancy (among bands) corresponding to the

input used in Fig. 2(a). This result clearly shows that this

distribution is asymmetric in k space especially in the

second and third band while in the first band it is almost

symmetric. This asymmetry is attributed to the skewness of

the FB modes. Keeping in mind that the beam components

will propagate along the gradient rk���, one can then

explain from Fig. 2(c) why the double refraction process

occurs towards the right. Intuitively this can be understood

given that the PT periodic structure involves gain or loss

dipoles, thus promoting energy flow from left to right.

Another feature associated with Fig. 2(a) is power oscil-

lation. Even though this lattice is operated below the PT

threshold value and hence the entire spectrum is real, what

is conserved here is the quasipower [14], e.g., Q �
R
�1
�1 U��; �� U����; ��d� as opposed to the actual power

itself P �
R
�1
�1 jU��; ��j2d�, which oscillates during

propagation. These power oscillations are due the unfold-

ing of the nonorthogonal FB modes. This unfolding pro-

cess becomes even more pronounced under narrow-beam

excitation conditions where secondary emissions can be

observed during discrete diffraction as shown in Fig. 2(d).

Another direct consequence of this modal ‘‘skewness’’

is nonreciprocity. Figure 3 shows beam propagation in a

PT lattice when excited by a wide beam at �
 angle of

incidence (in this case 2�). Note that the two diffraction

FIG. 2 (color online). Intensity evolution of a broad optical

beam under normal incidence when (a) V0 � 0:49, (b) V0 � 0.

(c) depicts the FB decomposition of the input in (a) for the first

three bands (solid black line—1st, left dashed blue line—2nd,

right dashed red line—3rd), and the inset shows the correspond-

ing band structure. (d) Single channel excitation of this same

lattice when V0 � 0:49.

FIG. 3 (color online). Intensity evolution of wide beams ex-

citing a PT lattice at angle 
 when V0 � 0:45, A � 4 and

(a) 
 � 2�, (b) 
 � �2�.

FIG. 4 (color online). Two-dimensional band structures asso-

ciated with V��; ��, when A � 4 and (a) V0 � 0:45 and

(b) V0 � 0:6.
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patterns are different and hence, light propagating in PT

symmetric arrays can distinguish left from right. This is

another general property of such pseudo-Hermitian optical

systems.

These effects can also be considered in two-dimensional

configurations provided that the optical potential satis-

fies V��; �� � V����;��� in the wave equation iU� �

U�� �U�� � V��; ��U � 0. In the following examples

we consider the complex PT symmetric potential

V��;�� � Afcos2��� � cos2��� � iV0�sin�2�� � sin�2��	g,
with �A � 4�. Numerical analysis reveals that the threshold

in this separable 2D case is again V th
0 � 0:5. The real part

of the band structure corresponding to this potential is

shown in Figs. 4 for two cases, below and above threshold

(V0 � 0:45 and V0 � 0:6). Again below threshold the ei-

genvalue spectrum is real while at V th
0 � 0:5 the two bands

collide at their M points at the edges of the Brillouin zone,

Fig. 4(a). On the other hand, above the phase-transition

point (at V0 � 0:6) the first two bands merge thus forming

a two-dimensional oval double-valued surface (upon

which all the propagation constants are real) attached to

a 2D membrane where the complex conjugate eigenvalues

reside [see Fig. 4(b)]. The double refraction process in such

2D pseudo-Hermitian structures (V0 � 0:45) is shown in

Fig. 5(a) when the system is excited by a normally incident

wide 2D Gaussian beam. As opposed to the familiar 2D

discrete diffraction pattern occurring in real lattices

[Fig. 5(b) with V0 � 0], in the PT case, two significant

secondary lobes are produced only in the first quadrant.

This is of course another manifestation of parity-time

symmetry.

In conclusion, we have demonstrated that PT symmet-

ric periodic potentials can exhibit new behavior in optics.

Beam dynamics in such structures reveal that double re-

fraction, power oscillations, and secondary emissions are

possible. The existence of abrupt phase transitions, as well

as the associated band structure of PT lattices in both one

and two geometries, was also examined in detail. These

issues are of direct relevance to other configurations such

as those associated with coupled and nonlinear PT sys-

tems [15].
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FIG. 5 (color online). Output intensity profiles: (a) for the 2D

PT potential V��; �� with V0 � 0:45 and (b) for the corre-

sponding real lattice V0 � 0.
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