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ABSTRA CT. The present paper develops a non-linear beam element for analysis of elasto­
plastic frames under large displacements. The finite element formulations are derived by 
using the co-rotational approach and expression of the virtual work. The Gauss quadrature 
is employed for numerically computing the element tangent stiffness matrix and internal force 
vector. A bilinear stress-strain relationship with isotropic hardening is adopted to update 
the stress. The arc-length technique based on the Newton-Raphson iterative method is 
employed to compute the equilibrium paths. A number of numerical examples is employed 
to assess the performance of the developed element. The effects of plastic action on the 
large displacement behavior of the structures as well as the expansion of plastic zones in the 
loading process are discussed. 

1 Introduction 

In the previous work [1, 2], the authors investigated some beam elements for assessing the 

behavior of elastic frames under large displacements. The finite element formulations in 

the work have been developed by using the co-rotational approach, in which an element 

attached coordinate system which continuously rotates and moves during the element 

deformation process was employed. The approach allowed to derive the finite element 

formulations in a local system, and then transfer them to a global one with the aid of 

the transformation matrices . In addition, the stress-strain relationship was assumed to be 

linear, and this assumption enabled to derive the element formulations from the expression 

of strain energy. As consequences , t he explicit forms of the element tangent stiffness matrix 

and internal force vector have been obtained. 

The present work aims to develop a beam element for large displacement analysis of 

elasto-plastic frames by lifting the restriction of linearly elastic assumption in [1, 2], and t he 

behavior of the structural material is now supposed to be elasto-plastic. T he co-rotational 

approach is still adopted herewith, so that the work will mainly focuss on t he derivation 

of formulations in the local system. The extension of the finite element formulat ions from 

the elastic case to the elasto-plastic one is, however, not straightforward and not simple 

either. With the involvement of plasticity, the structure became a dissipate system [3], 

and one could not able to derive the expression of strain energy. As a result, the principle 

of stationary potential energy, a powerful tool for elastic systems, is not able to apply for 

constructing the element formulations . Furthermore, the numerical integration is often 
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needed to compute the tangent stiffness matrix and internal force vector, since these 

quantities are hardly derived in explicit forms for the plastic case. As a consequence, the 

computation of any real structure involving plasticity is very computer time consuming. 

Taking elasto-plastic law of the material behavior into account, the derivation of finite 

element formulations for large displacement analysis of frames is rather a complicated 

task, since both the geometrically and materially nonlinearities should be considered si­

multaneously. The number of related elements found by the authors in the literature is 

quite limited. An early element, a hybrid type, was formulated by Backlund [4], in which 

the element stiffness matrix was formulated from the inversion of a flexibility matrix. In 

[5], Cichon constructed a beam element in the context of total Lagrangian formulation, 

which requires higher-order terms for assessing the new element length. In [6], Hsiao and 

co-workers also employed a 'body-attached' coordinate system for developing element , but 

the method is far from the co-rotational approach initiated by Belytschko et al. [7, 8], 

due to their way of choosing the local coordinates. As a result , the method by Hsiao and 

co-workers lent the local tangent stiffness matrix and internal force vector with the same 

sizes as the global ones . 

z current configuration 

2 

initial configuration 
x 

Fig . 1. Element configurations and kinematics 

In [8], Belytschko et al. presented a co-rotational rod element for dynamic analysis of 

frame structures. In the same context of co-rotational approach in [8], Crisfield formulated 

a beam element based on linear definition of the local strain for instability analysis [9]. 

Both the work discussed in [8 , 9] employed a local coordinate system, which continuously 

moves and rotates with the element during the deformation process as above mentioned. 

As a result , the local formulations are simple, and the size of these formulations is much 

smaller than that of the global one. The material behavior in both the work in [8, 9] is, 

however, assumed linearly elastic. 

The present paper adopted the co-rotational approach discussed in [8 , 9] to develop a 

nonlinear beam element for large displacement analysis of elasto-plastic frames . Thus, the 

main difference with the work in [8 , 9] lies on derivation of the local formulations , which is 

presented below in Section 4. These local formulations, formulating from a bilinear elasto­

plastic behavior, cannot be derived explicitly, and thus require the numerical integrations. 
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The involvement of the plastic deformation makes the element formulations to be complex, 

and the analysis is much more expensive. Besides that , a direct approach for constructing 

the relationship between the local and global nodal displacements, presented in Section 2, 

is also different from the approach discussed in [9], where a geometric method has been 

adopted. 

2 Local and global relationships 

The formulations needed for transferring the local formulations to the global ones in the 

elastic case can be derived with the aid of strain energy expression [1 , 2] , but this approach, 

as discussed above, is not proper for a dissipative system of present consideration of the 

elasto-plastic structure. The formulations, therefore will be derived in this section by using 

expression of the virtual work, instead of the strain energy expression. Fig. 1 shows the 

configurations of a beam element in the initial and current deformed states. The element 

consists of two nodes , and in respective to the global system (x, z), there are three nodal 

degrees of freedom ( d.o.f) at each node: axial and transversal displacements and a rotation. 

The element attached coordinates (x1, z1 ) (also called the local system below) are chosen 

as well as its original is always placed at node 1, and the x1 axis is directed to node 2. 

With this definition, the axial displacement at node 1 and both transversal displacements 

in the local system are vanished. Accordingly, vectors of the element nodal displacements 

in the systems are respectively given by 

d1 = {u en B12}r, 

d = {u1 w1 B1 u2 w2 B2}T, 

(2.1) 

(2.2) 

where and later, the subscript l stands for 'local '; ( ... )T denotes the transpose of a vector 

or a matrix; u is the local axial displacement of node 2. The local d.o.fs are related to the 

global ones by (see Fig. 1) 

where l0 , ln are the initial and current lengths of the element 

v(x2 - x1)2 + (z2 - z1) 2 
l 

V(X2 + U2 - X1 - U1) 2 + (z2 + W2 - Zl - wi) 2 , 

and er is the rigid rotation, which can be computed from geometry consideration as 

sin er = SCo - CSo ==} Br = arcsin( SCo - CSo) l 

with 

e X2 + U2 - X1 - U1 
c = cos = ---- ---

Zn ' 
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where Ba, B are the initial and current inclined angles of the x1 axis. Eq. (2.6) is prevailed 

with Br ::; f 7r / 2 f , but by computing cos Br, the extension to the range of 21T is straightfor­

ward. 

From Eqs . (2.4)-(2.8), the local virtual d .o.fs can be computed as 

c(6u2 - 6u1) + s(6w2 - 6wi) = [-c - s 0 c s 0] 6d , 

be1 - ber = be1 - be, 

be2 - ber = be2 - be, 

(2.9) 

(2 .10) 

(2 .11) 

where bd = { bu1 bw1 be1 bu2 bw2 be2 V is the vector of virtual global d .o.fs . The far 

righthand sides of Eqs . (2.10) and (2 .11) have been written with notice that be0 = 0. By 

differentiating sine, as defined in (2 .8), one can obtain the expression for be as 

be = (bw2 -:-- bw1) - sc(bu2 - bu1) - s2 (bw2 - bw1) . 

cln 

With some calculations, Eq. (2 .12) can be written in the form 

1 
i5e = Zn [s - c 0 -s c OJ. 

From (2.9)-(2.11) and (2 .13) we get 

bd1 = Bbd, 

with the transformation matrix B given by 

l [- cln - sZn 
B = - - s c Zn 

Zn - s c 0 

0 

where c and s are given by Eqs. (2.7) and (2 .8), respectively. 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Having the transformation matrix B derived, we can now relate the local and global 

formulations by equating the virtual work in both the coordinate systems as 

(2.16) 

where f1 = {N1 Mn M12V and f = {N1 Q1 M1 N2 Q2 M2V are the vectors of local 

and global internal forces, respectively. From (2.16), the global internal force vector is 

given by 

(2.17) 

The element tangent stiffness in the global system kt can be obtained from differentiation 

of the global internal force vector f , Eq.(2.17) , as 

(2.18) 
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where Bi, (i = 1.. .3) is the ith column of the matrix BT. From (2.15) one can get 

6B1 = zz:T 6d, 6B2 = 6B3 = (rzT; zrT) 6d, (2.19) 
n 

where r and z denote the vectors with following components 

r = [-c - s 0 c s OJT, 

Z = [s - C 0 - s c OJT. 

(2.20) 

(2.21) 

From Eqs. (2.18)-(2.21) , the expression for the tangent stiffness matrix kt can be written 
as 

T zzT ( rzT + zrT) 
kt = B kt1 B + -z-Nl + z2 (Mn+ M12) , 

(6 x 6) (3x3) n n 
(2.22) 

with kt1 = 8fl/ 8d1 is the local element tangent stiffness matrix. 

A combination of Eqs. (2.17), (2.22) with Eqs. (2.15), (2 .20) and (2.21) completely 

defines the global internal force vector and tangent stiffness matrix through their coun­

terparts, and the remaining work for obtaining the element formulations is to formulate 

the local internal force vector f1 and the tangent stiffness matrix k1, and this work will be 

presented in Section 4 below. 

3 Elasto-plastic law 

A bilinear stress-strain model with isotropic hardening rule for the material as shown 

in Fig. 2.a is adopted in the present work. The model is represented by the so-called 

'elasto-plastic' modulus E, which defined as 

jj; = 80' = { E if IO' I < O'y or unloading 

8E Et if l(J'I 2:: O'y, 
(3 .1) 

where E , Et are the elastic and tangent modulus , respectively; O'y is the current yield 

stress with initial value O'Q, :which can be determined from a simple tensile test. For the 

reverse loading path in Fig. 2.a, the yielding occurs when the stress value reaches O's-the 

stress at unloading point B. The kinematic hardening rule, which takes Bauschinger effect 

into consideration [10], is also widely employed in the field of structural analysis, but the 

present work does not investigate the effects of different hardening rules. 

Suppose yielding has already occurred, then an strain increment de , from point B to 

point C in Fig. 2.b can be regarded as composed of elastic and plastic parts: de= dep+dee· 

The corresponding stress increment dO' can be computed in various ways as (see Fig. 2.b) 

where H is the strain hardening parameter, which related to E and Et by 

H= Et 
1 - (Et/E) 

or Et = E (1 - E ) · 
E+H 
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If E is finite , and Et = 0, then H = 0, and the material is 'elastic-perfectly' plastic [10]. 

If the material makes a transition from elastic to plastic, such as from point A to point 

B in Fig. 2. b, the stress increment is computed by calculating the 'elastic' fraction m as 

m= CTo-ICTAI sothat d [ E (1 )E]d 
I CT Bel - ICT Ai CT= m + - m t c:, (3.4) 

where CT A is the stress at point A; CT B e is the 'elastic' stress at point B , computed by 

assuming the total stress increment is elastic; de: =EB - EA is the total strain increment. 

The absolute values of the stress are needed for the case of compressive stress . 

cr 
CYB 1 ----- ---=-r-" ~ 

loading path 

cr 
cr o 

unloading path 
crlle / dep dee 

I -.- --1>r-+<-

- I I I 

aB t dcr; C 
/ cr o 

reverse loading 

(a) (b) 

Fig. 2. Bilinear elasto-plastic model (a) , and a stress increment (b) 

4 Local formulations 

This section formulates the local internal force vector and tangent stiffness matrix. To this 

end, a definition for local strain should be adopted, and in accordance with the previous 

work in [2], the shallow arch theory is employed herewith 

1 [
10 

[ou1 1 (8w1) 2

] 82w1 
Ex l = Eef + ZP!l = lo Jo OXl + 2 ox1 dx1 - Zl OXf , 

( 4.1) 

where u1 is the local curvature; Eef is the effective strain, as explained in [2], employed 

in order to avoid the locking problems [9, 11]. To express the strain in Eq. (4.1) in terms 

of the nodal displacements defined by Eq. (2 .1) , the usual interpolation schemes, a linear 

function for u1 and the Hermitian polynomials for w1 are adopted as 

~ -
u1 = -u 

lo 

_ { ( e - 1) ( ~ - 1)} T { Bn } 
wi- (e - 1)(~+1) 012 , 

(4.2) 

where~= (2xlfl 0 - 1) , -1:::;: ~:::;: 1, is the natural coordinate, which introduced in regard 

of the later development on numerical integration. Substitute (4.2) into (4.1) and notice 

that 0 ~ 1 = l~ :( one can easily get the expression for the local strain, which is now, for 

the sake of simplicity, denoted by c: 

1 - 1 ( 2 1 2) zz 
c: = lo u + 

15 
Bn - 2 BnB12 + B12 + lo [(1 - 3~)Bn - (1 + 3~)012] . (4.3) 
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The element virtual work in the local system can be written as 

(4.4) 

where Vis the element volume; dV = dAdxz = (la/2)dAd~, with A is the cross-sectional 

area of the beam ; u is written in place of O"x l· From (4.3), the virtual strain bE can be 

easily computed as 

Substitute ( 4.5) into ( 4.4), the local internal forces are obtained as 

Nz = ~ f 1 { udAd~ , 
2 - 1 }A 

la ( 2 1 ) 11 r 1 11 r Mn = 2 
15 

en -
30 

e12 _
1 
J A udAd~ + 2 _

1 
J A zz(l - 300"dAd~, 

M12 = la (~ez2 - ~en) 11 

{ O"dAde - ~ 11 

{ zz(l + 3e)O"dAde. 
2 15 30 -1lA 2 -llA 

(4.5) 

(4.6) 

(4 .7) 

(4.8) 

Having the local internal forces computed, the coefficients for the local tangent stiffness 

matrix ku are obtained from differentiation of fz , with respective to the local d.o.fs. Notic­

ing bO" = E&, with 8E given by Eq. (4.5), we can get 

ku(l , 1) = 2 ~a 1: L EdAd~, (4.9) 

ku(l, 2) = ~ (~en - ~ e12) 11 

{ EdAd~ + ~ 11 
{ z1(1 - 3~)EdAd~, (4.10) 

2 15 30 - ljA 2la - ljA 

ku(l , 3) = ~ (
1

2

5
e12 -

3

1

0 
en) j_

1

1 
L EdAd~ - 2 ~a j_

1

1 Lzz(l+3 ~)EdAde, (4 .11) 

la 11 1 . la ( 2 1 ) 
211 1 -ku(2 , 2) = - O"dAd~ + - - en - - e12 EdAd~ 

15 - 1 A 2 15 30 - 1 A 
(4 .12) 

( 2 1 ) 11 1 - 1 11 1 2 2 -+ - en - - e12 zz( l - 3~)EdAd~ + - l z1 (1 - 3~) EdAd~, 
15 30 - 1 A 2 a - 1 A 
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l 0 fl j l0 
( 2 1 ) 

2 fl j _ kt1(3 , 3) = 
15 

O'dAd~ + - -812 - - On EdAd~ 
- 1 A 2 15 30 -1 A 

(4.14) 

- ( 
1

2

5 
812 -

3

1

0 
Bn) I: i z1 (1 + 3~)EdAd~ + 2 ~ 0 [

1

1 
i z[ (1 + 3()

2 EdAd~, 
and ku ( 2, 1) = ktt ( 1, 2) ; ku ( 3, 1) = ku ( 1, 3) ; ku ( 3, 2) = ku ( 2, 3) . 

Eqs. ( 4.6)-( 4.14) combining with Eqs . (2.17) and (2.22) give the global internal force vector 

and tangent stiffness matrix, and completely define the element formulations. If the elastic 

behavior is assumed, O' = Er=:, the integrations in (4.6)-(4 .14) can be computed explicitly, 

and Eqs.(4.6)-(4.14) are reduced to the following explicit forms 

N = EA (ii 0[1 _ BnB12 0[2) 
I l

0 
+ 15 30 + 15 ' 

lo ( u 0[1 BnB12 Bf2) 2 
Mn = 

30 
EA(4Ba - 812) -l + - - - - + - + - EI(Wa + 012), 

0 15 30 15 l0 

lo ( ) ( ii Bia Ba 812 Bf 2 ) 2 M12 = 
30 

EA -Bn + 4B12 -l + - - - - + - + - EI(Bn + 2B12) 
0 15 30 15 l 0 

and 

1 
ku(l, 1) = lo EA , 

1 
kt1(l , 2) = 

30 
EA(4Bn - 812) , 

1 
ku(l, 3) = 

30 
EA(-Bn + 4B12 ) , 

lo [ 1 2 (ii 0[1 On 812 0[2)] 4 
kt1(2 , 2) = 

30 
EA 

30 
(4Bn - 812) + 4 lo+ 15 - 3Q + 15 +~EI , 

lo [ 1 2 ( ii 0[1 On 812 0[2 ) ] 4 ku(33) = - EA -(-Ba+4B12) +4 -+----+ - +-EI 
' · 30 30 · l0 15 30 15 l0 ' 

(4.15) 

( 4.16) 

(4.17) 

(4 .18) 

(4.19) 

( 4.20) 

(4.21) 

( 4.22) 

k (2 3) =~EA [(4011 - 812)(4012 -Ba) - (ii Br1 - 811812 Bl2)] '}_EI (4.23) 
tl ' 30 30 l

0 
+ 15 30 + 15 + l

0 
' 

kt1(2 , 1) = kt1(l , 2) ; kt1(3 , 1) = kt1(l, 3) ; ku(3, 2) = kt1(2, 3). 

It is noted herewith Eqs. ( 4.15)-( 4.23) are previously derived in [2] for the case of shallow 

arch element . 

5 Computational procedures 

With involvement of the plastic deformation, the integrations in Eqs. (4.6)-(4.14) cannot 

be computed analytically, and the numerical integration should be employed. The Gauss 

. quadrature with four points along the length and seven points through the depth of the 
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element is adopted in the present work. Two Gauss-point quadrature along x 1 axis gives 

exact integration for the elastic case (since the strain energy U = ~ fv Ec:2dV is a second 
2 

order polynomial in e), but four-point Gauss quadrature is employed in order to investi-

gate the plastic expansion along the beam length. The positions and weights for Gauss 

quadrature are given in [12] . 

The obtained element formulations are assembled into the internal force vector and 

tangent stiffness matrix at the structural level in order to construct the equilibrium equa­

tions, which can be written in the forms [8 , 9] 

R(D, >.)=Fin - Fex =Fin - Afex = 0, (5.1) 

where R is the out of balance force vector; Fin and F ex are the vectors of internal and 

external forces, respectively; >. is the load parameter, and fex is the fixed normalized 

external load vector. Eq. (5.1) can be solved by the incremental-iterative strategy based 

on Newton-Raphson method. In order to obtain the complete equilibrium paths, Eq. (5 .1) 

is supplemented by the constrain equation to form the arc-length method as discussed in 

the authors' previous work [2] . 

To compute integrals in Eqs. (4.6)-(4.14) , the values of stress and 'elasto-plastic ' mod­

ulus at the Gauss point should be evaluated, and comparing to the elastic analysis, this 

procedure is an additional part. Because the incremental nature of plastic equations, 

Eqs. (3 .2) and (3.4), in order to compute the new stress from a strain increment, values 

of the strain and stress at the Gauss points should be stored for each equilibrium point. 

Furthermore, since the hardening effect is taken into consideration, values of the yield 

stress are also required to store and update. To illustrate this computational process, a 

computer subroutine written in MATLAB [13] , a Matlab function called eplaSE, is pro­

vided in the Appendix. The function shows how a strain increment is computed from 

the current global nodal d.o.f, and then the stress is updated by using Eqs . (3 .1) , (3 .2) or 

(3.4). The strain hardening is taken into consideration in the function by updating the 

yield stress at Gauss points for each increment. The function is developed in close with 

the discussed theory, but it may not be optimized in the computational context. 

6 Numerical examples 

6.1 Cantilever beam under tip load 

The cantilever beam with geometry and material data shown in Fig. 3 was proposed by 

Kondoh and Atluri in [14] . The original data were given in English units of measurement, 

but for easier imagination, they have been convected to SI units herewith. The beam is 

analyzed by eight equal elements, and the dependence of displacements at the free end on 

the external load P is investigated. 

Fig. 4 shows the computed equilibrium paths of the beam, which are in excellent with 

those obtained in [14]. The expansion of plasticity in the beam is investigated by examining 

the values of stress at the integration points for each increment , and the zones with plastic 

points in the beam at various load levels are shown in Fig. 5. From Fig. 5, one can see 

that the plastic zone in the tensile region is slightly larger than the corresponding zone in 
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t he compressive region. This result is physically reasonable, since t he neut ral axis of t he 

beam is in tension , and the strain, defined by Eq. (4.3) , is a combination of t he posit ive 

membrane st rain and the bending strain. T he computed values of stress and strain at t he 

t hree sampling points (Gauss points) in Fig. 5, given in Table. I , furt her confirm this fact . 

b = 0.254 cm 

h = 1.270 cm 

E = 2. 1 x 10 6 kgf/cm 2 

E t = 7 x 10 4 kgf/cm 2 

cr
0
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0) 

:a 
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3 6 9 12 
L = 12.7 cm Displacements at free end (cm) 

Fig. 3. Cantilever beam under t ip load: geom­

etry and material data (ref. [14]) 

Fig. 4. Cantilever beam: applied load versus 

displacements at free end 
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Fig. 5. Cantilever beam: posit ion of sampling points and plastic zones 
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p = 24.3020 kgf 

p = 38.3439 kgf 

p = 43.3312 kgf 

p = 55 .8928 kgf 



Table 1. Cantilever beam: values of stress and st~ain at 

three sampling points in Fig. 5 

p OA EA crs EB ere EC 

(kgf) (103 kgf/cm2) 10- 3 (103 kgf/cm2) 10- 3 (103 kgf/cm2
) 10- 3 

24.3020 2.1425 1.4737 -2 .1416 -1.4612 0.0132 0.0063 

32.1975 2.7480 10.0860 -2.7431 -10.0157 0.0741 0.0352 

38.3439 3.3114 18.0993 -3.3032 -17.9819 0.1239 0.0587 

43.3212 3.7144 23.8312 -3.7031 -23.6709 0.1690 0.0801 

55.8928 4.5429 35.6157 -4.5232 -35 .3345 0.2965 0.1406 

6. 2 Asymmetric frame 

The asymmetric frame in Fig. 6 was firstly studied by Cichon in [5], and then by Hsiao 

and co-workers in [6]. The analysis is performed herewith by using ten equal elements, 

five for each beam. The applied load versus displacements at the loading point is shown 

in Fig. 7, where for the purpose of comparison, the curves computed by Cichon are also 

displayed. 

L 

p 

24cm 96 cm 

L= 120cm 

A = 6 crn2 

! =2 crn4 

z,w 

~ 
E = 7.2 x 10 5 kgflcm2 

Et= 0.1 E 

· cro = !Ox 103 kgflcm2 

Fig. 6. Asymmetric frame under concentrate 

load: geometry and material data (ref. [5]) 
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-1 
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-1.
5
0 20 40 60 80 100 

Dispcacements at loaded point (cm) 

u 

120 

Fig. 7. Asymmetric frame: applied load ver­

sus displacements at loaded point 

As seen from Fig. 7, the load-displacement curves obtained in the present study are 

quite agrement with those reported by Cichon using the total Lagrangian approach, up 

to the lateral displacement of above 60cm, at least . The work in [5], and in [6] either, 

did not show the displacement beyond 60 cm. The large displacement behavior of the 

frame obtained by the elasto-plastic analysis is clearly different from that obtained by 

the elastic analysis . As seen from Fig. 7, by assuming the linearly elastic behavior , we 

have considerably overestimated the limit load of the structure. From the numerical 

investigation in this example, we can conclude that the effects of plasticity in some practical 

cases is important and it should be taken into account in the large displacement analysis 

of frame structures. 
The authors have also employed some higher-order Gauss quadrature in analyzing this 

example, but the obtained results show very little difference. It is noted that both Cichon 
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and Hsiao and co-workers employed Lobatto rule [9], four points along the element length 

and five points through the depth, in computing their internal forces and tangent stiffness 

matrix. The Lobatto rule has points on the beam surface which may sooner predict 

the plasticity, but by increasing the number of integration through the beam depth, the 

authors see almost no difference in the numerical results. 

6.3 Elasto-plastic buckling of Euler beam 

The elasto-plastic buckling of the simply supported beam subjected to axial forces , which 

often called Euler beam in the literature, is investigated in this example. The beam with 

length of 100 cm, and a quare cross-section of (5 cm x 5 cm) , is made of the same material 

as the asymmetric frame in Fig. 6. To compute the secondary buckling paths, a small 

transversal load, 1P with 'Y = 0.001 , is introduced as a perturbation load. A mesh of eight 

equal developed elements is employed in the analysis. 

Fig. 8 shows the equilibrium paths obtained by elastic and elasto-plastic analyses, where 
7r2EJ 

Pe = - ----V is the Euler load. As noted from the figure that the behavior of the beam 

in the post-buckling region obtained by the elastic analysis is very different from that 

obtained by the elasto-plastic analysis. For the case of elastic analysis, the computed path 

shows the stable state in the post-buckling region, which is in agrement with the theory 

of the 'elastica ' beam [15 , 16] . The path obtained by the elasto-plastic analysis, however 

becomes unstable beyond point Po (see Fig. 8), where the material at the outer layers of 

the beam makes a transition from elastic to plastic. 

By computing the equilibrium paths with a range of tangent modulus Et of 0 to 0. 7 E 

as illustrated in Fig. 9, we can conclude that the position of the 'transition point ' Po in 

the present example is not depended on the value of Et, but on cro - the initial yield stress . 

The paths displayed in Fig. 9 also show that t he tangent modulus, that is the hardening 

parameter H defined in Eq. (3.3) , affects the post-buckling strength, measured in term of 

P / Pe . A higher hardening parameter is , the more post-buckling strength observers, and 

this result is physically reasonable. 

1.5 

I 
Po 

0.5 

ii 

0 

elastic 

elasto- plastic 

ti 
L=lOO cm 

0.1 
-w!L 

Et=O.lE 

x,u 

0.2 0.3 

Fig. 8. Euler beam: equilibrium paths ob­

tained by elastic and elasto-plastic analyses 
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Fig. 10 shows t he plastic points and their covered zones in the beam corresponding to 

the points P1, P2, and P3 in Fig. 8. In moving from point Pi to point P3 , the plastic zones 

gradually expand towards t he beam neutral axis from the outer layers, and to the two 

beam ends from the middle. In contrast to t he cantilever beam in Sub-section 6.1, the 

plastic zone in compression in the present example is slightly larger than t he corresponding 

zone in tension, and this fact is resulted from t he negative membrane strain defined by t he 

first two parts of Eq. ( 4.3) . The computed values of stress and strain at the three sampling 

points in Fig. 10 also further confirm this result. 

element number 

.. --~ 
2 I 1 I 4 •1 B ~ 5 I :§ 7 

4Q 1 ?ko cm I •I C ---- " I I 
~ -- - 1- - _ .,.11 A ________::::!"" samplin points 
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---- . . . . . . . . . . . . . . . ------

,!, · ~ ---..1 • • • •!• • • •l.L-- ~ I I 
com~ress10n - I I I I I I 

• plastic
1

point 
t nsion I ~ I - .- .1.-.-----L I 

- ~ · - . . . . . . . . .. -·--

Fig. 10. Euler beam: position of sampling points and plastic zones 

p = 33.0598 

(10 3 kgf) 

p = 20.9420 

(103 kgf) 

p = 16.6144 

(J0 3 kgf) 

It is necessary to note that , in moving from point Po to point P3 , we are not in the 

unloading process as mentioned in Sec.3 and illustrated in Fig. 2.a, even the applied load 

P (in absolute value) is in descent. The absolute values of both stress and strain, as given 

in Table 2, are increased, and t he material is fl.owed plastically. That means we are still 

in the loading process. The decrease in the external load may be explained by the lower 

effective area of t he cross-section, which is resulted from expansion of the plastic zones as 

suggested by Fung and Tong in [3] , in which t he plastic behavior of a bar under tensile 

test has been investigated. 

Table 2. Euler beam: values of stress and strain at 

three sampling points in Fig. 10 

-P O"A EA O"B EB O"C cc 
(103 kgf) (103 kgf/ cm2

) 10- 3 (103 kgf/ cm2
) 10- 3 

(10
3 kgf/cm2

) 10-3 

33.0598 10.4561 20.2246 -10.8615 -25.8542 -2 .0267 -2 .8148 

20.9420 13.4701 62.0848 -14.0446 -70.0633 -2. 8723 -3 .9893 

16.6144 15.6498 92.3580 -16.0989 -98.5957 -2 .2456 -3.1189 
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7 Conclusions 

A non-linear beam element for in-plane analysis of elasto-plastic frames under large dis­

placements has been formulated in this paper. The element , taking the axial displacements 

into account , has been formulated by using the co-rotational approach and expression of 

the virtual work. The Gauss quadrature has been employed in computing the local in­

ternal force vector and the tangent stiffness matrix. The structural material has been 

assumed to be bilinear with isotropic hardening rule, and this law has been employed to 

update the stress and yield stress at the Gauss points . 

The investigation from the numerical examples has shown a good performance of the 

developed element . It has also shown that, by lifting the linearly elastic assumption, the 

behavior of the frames under large displacements has been clearly changed. In particular 

cases, such as the structure in Sub-section 6.2 , the limit load might be considerably over­

estimated by ignoring the plastic deformation. In the instability analysis , as shown by the 

example in Sub-section 6.3, with the involvement of plasticity, the nature of post-buckling 

behavior of the structure might completely be different. The investigation of plastic ex­

pansion has contributed to the understanding the behavior of the elasto-plastic frames 

under large displacements. 
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Appendix. This Appendix lists the MATLAB commands for computing values of the 

new strain and stress, and updating the yield stress at Gauss points of the element . To 

this end, a natural coordinate, ( = ~ zz, is introduced, so that with zz E [ - ~, ~] ---+ ( E 

[-1 , 1], where h is the beam thickness. Besides the geometry and material parameters , 

the following input data should be included: d-the vector of nodal displacements, defined 

in Eq. (2.2); nGX, nGZ-the number of Gauss points along xz and zz axes, respectively; 

epsO, sigO , sigYO-the vectors of strains, stresses and yield stresses at the Gauss points 

of the element . The function calls other function, namely ptwt2 (nGX, nGZ) , in which the 

positions and weights for Gauss quadrature are listed [12] . The explanations, including 

the citations of developed formulations are provided for the sake of easily understanding. 

[eps,sig,sigY] = eplaSE(xl,x2,zl,z2,b,h,E,Et,d,nGX,nGZ,epsO,sigO,sigYO); 
u1=d(1,1); w1=d(2,1); r1=d(3,1); 

u2=d(4,1) ; w2=d(5,1); r2=d(6,1); 

Lx=x2-x1; Lz=z2-z1; 
Lo=sqrt(Lx-2+Lz-2); 

Ln=sqrt((Lx+u2-u1) -2+(Lz+w2-w1)-2); 

% below rigid rotation 

% initial length 

% current length 

s=((w2-w1)*(x2-x1)-(u2-u1)*(z2-z1))/(Lo*Ln); % sin(tr), eq.(2.6) 

c=((x2-x1+u2-u1)*(x2-x1)+(z2-z1+w2-w1)*(z2-z1))/(Lo*Ln) ; % cos(tr) 

if ((s>=O & c>=O) I (s<=O & c>=O)) 

tr=asin(s); 

elseif (s>=O & c<=O) 

tr=acos(c) ; 
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else 

tr=-acos(c); 

end 

u=Ln-Lo; rl1=r1-tr; rl2=r2-tr ; 

[point2,weight2]=ptwt2(nGX,nGZ); 

nG=nGX*nGZ; 

eps=zeros(nG,1); sig=zeros(nG,1); sigY=zeros(nG,1); 

epsM = u/Lo + (r11-2-0.5*rl1*rl2+rl2-2)/15; 

% below loop over Gauss points 

for inX=1:nGX 

end 

xi=point2(inX,1); 

for inZ=1: nGZ 

ze=point2(inZ,2); 

ipG = nGZ*(inX-1)+inZ; 

epsG=epsO(ipG,1); 

sigG=sigO(ipG,1); 

sigYG=sigYO(ipG,1); 

kappa= h*ze*((1-3*xi)*rl1-(1+3*xi)*rl2)/Lo/2; 

epsN epsM+kappa; 

deps epsN-epsG; 

dsig E*deps; 

sigE sigG + dsig; 

% below yielding check and elasto-plastic stress 

fY = abs(sigG) - sigYG ; 

if (fY==O) 

dsig = Et*deps ; 

elseif (fY<O & abs(sigE) > sigYG) 

m = (sigYG-abs(sigG))/(abs(dsig)); 

dsig m*deps*E + (1.-m)*deps*Et; 

else 

dsig E*deps ; 

end 

eps(ipG,1) = epsN; 

sig(ipG,1) = sigG + dsig ; 

% below account for hardening 

if abs(sig(ipG,1)) > sigYG; 

sigY(ipG,1) abs(sig(ipG,1 ) ); 

else 

end 

end 

sigY(ipG,1) sigYO(ipG,1); 
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PHAN TU DAM CHO PHAN TICH CHUYEN VI LON 

CUA KHUNG DAN-DEO . 

Bai bao xay di,mg phan tit dam phi tuyen cho phan tfch khung dan-deo ch!u chuyen v! l&n. 

Cong thli'c phan tit dm;rc thiet l~p nha phmmg phap h~ t<;>a d9 dong hanh va bieu thli'c cong ao. 
Ma tr~n d9 cli'ng va vec-ta n9i h.rc phan tit dm;rc tinh nha phep cau phtrang Gauss. Ung suat t~i 
cac diem cau phmmg dm;rc c~p nh~t tren ca s& gia thiet quan h~ li'ng suat-bien d~ng tu.in theo 

quy lu~t luang tuyen tinh v&i lu~t tai ben dling hu&ng. Duang can bang ci'i.a ket cau duqc xay 

di,mg tren ca s& thu~t toan d9 dai cung va phuang phap l ~ p Newton-Raphson. Doi xit ci'i.a phan 

tit dm;rc danh gia qua cac vf dl,l. Ket qua so cho phep dua ra m9t so nh~n xet ve anh hu&ng ci'i.a 

chay deo den doi xit ciia ket cau CO chuyen Vl lan va S\f lan truyen vung deo trong qua trinh chat 

tai . 
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