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Polychromatic x-ray beams traveling though material are prone to beam hardening, i.e., the high
energy part of the incident spectrum gets over represented when traveling farther into the material.
This study discusses the concept of a mean attenuation coefficient in a formal way. The total energy
fluence is one-to-one related to the traveled distance in case of a polychromatic beam moving
through a given, inhomogeneous material. On the basis of this one-to-one relation, it is useful to
define a mean attenuation coefficient and study its decrease with depth. Our results are based on a
novel parametrization of the energy dependence of the attenuation coefficient that allows for closed
form evaluation of certain spectral integrals. This approach underpins the ad hoc semianalytical
expressions given in the literature. An analytical model for the average attenuation coefficient is
proposed that uses a simple fit of the attenuation coefficient as a function of the photon energy as
input. It is shown that a simple extension of this model gives a rather good description of beam
hardening for x-rays traveling through water. © 2007 American Association of Physicists in Medi-
cine. �DOI: 10.1118/1.2742501�
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I. INTRODUCTION

High-energy photons are used to penetrate into an object that
is opaque. By studying the attenuation of the incident photon
beams by the material, it is possible to reconstruct the inter-
nal structure of the object. This has many applications. For
instance, in medical practice x rays are used for medical
imaging.1 In the process industry � and x-ray photons are
used to probe into steel vessels or opaque multiphase
flows.2–4 For the latter, the temporal and spatial distribution
of the different phases is an important parameter. In prin-
ciple, a CT scanner can provide the required information.

However, in contrast to medical applications, the multi-
phase flow has small time scales, and the images need to be
made at a relatively high rate, of the order of 100–200 frames
per second. This requires rather strong sources, with serious
consequences for safety. Moreover, the investments become
high. These problems can be partially overcome by using
x-ray sources, such as the medical x-ray machines, instead of
monoenergetic high-energy � sources. A disadvantage of
these x-ray beams is their broad energy spectrum. As a con-
sequence, the elegant reconstruction using a single attenua-
tion coefficient that depends only on the photon energy will
no longer work properly. Instead, the low-energy end of the
spectrum is attenuated most, a phenomenon called beam
hardening. This prevents the easy use of a mean energy from
which an effective attenuation coefficient can be derived.

However, the concept of an effective attenuation is ap-
pealing. Various attempts have been made to define this �see
e.g., Refs. 5 and 6�. Especially in the latter the author con-
sidered the effects of beam hardening in a formal way. Klein-
schmidt quotes Bjärngard and Shackford,7 who stated that a

clear and accepted definition of the attenuation of a broad
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spectrum of x rays is lacking. In his paper, Kleinschmidt
considers this issue and provides a formal definition of the
average attenuation coefficient, ���. In order to find a semi-
analytical expression for the attenuation coefficient as a func-
tion of the penetration depth �x�, several model functions
were tested. These model functions were proposed ad hoc by
Kleinschmidt and are chosen for their simplicity, i.e.,

��� = �0 − �x , �1�

��� =
�0

1 + �x
, �2�

��� =
�0

�1 + �x�2 , �3�

��� = ��Emax� +
�1

1 + �1x + �2x2 . �4�

In this paper, we discuss a theoretical concept for the
averaged attenuation coefficient and its behavior as a conse-
quence of beam hardening. We address the error introduced
and provide in Subsection III A an expansion in terms of the
higher-order variances. Moreover, we present quantitative in-
formation as a function of the spectral width. We restrict the
analysis to beam hardening in homogeneous media. The
more general case of heterogeneous material is, obviously,
much more complicated. Joseph and Ruth8 have discussed a
method to correct beam hardening artifacts found in CT im-
ages attributable to bone and iodine by rescaling the attenu-

ation of different substances to that of water.
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The paper is organized as follows. In Section II, we intro-
duce the problem of beam hardening and introduce the rel-
evant quantities such as fluence and attenuation. In Section
III, we give the formal definition of the mean attenuation
coefficient after passage of the x rays through a homoge-
neous material of thickness x. We will show that the error in
the predicted fluence made by approximating the mean at-
tenuation coefficient by its average over the incoming spec-
trum can be written as an infinite sum of higher-order vari-
ances. It follows that this approximation has an error of
O�x2�. In Section IV, we will derive analytical expressions
for the effective attenuation coefficient by approximating the
attenuation coefficient ��E�. We will show that it is much
more convenient to actually write this in the form E=E���
and use exponential functions as approximations for E���.
Our method is based on a novel transformation of the inte-
gral over the photon energy into an integral over the attenu-
ation coefficient itself. This transformation allows us to com-
pute closed form solutions to various spectral integrals.
Finally, in Section V, we compare the outcome of the ana-
lytical calculations to a completely numerical approach in
which we discretize ��E� and numerically solve the beam-
hardening problem.

II. BEAM HARDENING

A. Monoenergetic radiation

We will follow the formal definitions of Ref. 6 and start
with the attenuation of a monoenergetic beam of photons
with energy E. Consider a narrow, parallel beam of monoen-
ergetic � or x rays incident on a unit area, S, of homogeneous
material of thickness, dx. For an incident beam of intensity
�, the expected change in intensity after passing the material
is given by

d� = − ��E��dx , �5�

where ��E� is the energy-dependent linear attenuation coef-
ficient. This quantity is a material property. The above equa-
tion leads to the well-known Lambert-Beer law for attenua-
tion of high-energy photons:

��x�
�0

= e−�x. �6�

B. Polychromatic radiation

In practice, x-ray sources as used in medical applications
produce photons with a wide energy spectrum, rather than
monoenergetic ones. The photon spectrum can be character-
ized either by the spectrally distributed photon fluence, �E,
or the spectrally distributed energy fluence, �E=E�E. Note
that in case of a homogeneous material of thickness dx, also
the Lambert-Beer law holds for �E:

d�E = − ��E��Edx . �7�

The total photon fluence, �, and the total energy fluence �

are given by
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� =� �EdE , �8�

� =� �EdE =� �EEdE . �9�

Since the attenuation coefficient is a function of E, �
=��E�, the Lambert-Beer law no longer holds, and we have
to replace this by its integral version: The photon intensity
and the total energy fluence change when passing through a
homogeneous piece of material of thickness x as

��x� =� ��E�0e−��E�·xdE , �10�

��x� =� ��E�0e−��E�·xdE . �11�

For most cases where x rays are used, ��E� is a monotoni-
cally decreasing function of E. Consequently, low-energy
photons are attenuated more than high-energy ones and the
original photon-energy spectrum shifts toward the higher end
of the original spectrum.

1. Uniqueness

In this subsection it will be shown that for a polychro-
matic beam, the mapping between the distance traveled
through a given inhomogeneous medium of thickness x and
the radiant energy fluence rate ��x� is one-to-one.

For a narrow polychromatic beam of photons passing
through a material of attenuation coefficient ��E ,x�, the
measured total energy fluence of the beam after traveling a
distance x is given by

��x�meas =� ��E�0e−�0
x��E,x��dx�dE , �12�

with ��E�0 the spectrally distributed energy fluence incident
on the material. Note that any specific energy response of the
detector has not been considered. Imagine now that we want
to be able to uniquely determine x from a measurement
�meas. This will be possible only if the mapping between x
and ��x�meas is one-to-one, or, in other words, if there are no
two values of x that lead to the same ��x�meas. The properties
of the mapping can be studied by considering the derivative
of ��x�meas with respect to x:

d�meas

dx
=

d

dx
� ��E�0e−�0

x��E,x��dx�dE

= −� ��E�0��E,x�e−�0
x��E,x��dx�dE . �13�

Based on physical grounds it is obvious that ��E�0 and
��E ,x� are all nonnegative functions. Hence the derivative
will be negative for all values of x no matter how � is spa-

tially distributed:
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d�meas

dx
� 0, ∀ x . �14�

This proves that ��x�meas is a monotonically decreasing
function of x and that the mapping of �meas to x is one-to-
one, for a given ��x�.

III. AVERAGED ATTENUATION COEFFICIENT

To deal with polychromatic beams an effective energy can
be used. This is the energy of monochromatic photons that
would have the same attenuation. In previous work, the ex-
istence of such an energy is postulated.6 Here we will give a
mathematical treatment for the case in which the total photon
energy is measured by the detectors �see also Ref. 1�. Note
that we assume perfect detectors to simplify the notation.
Any response function of the detector, ��E�, can easily be
incorporated in the equations. For clarity, we have set this
response function equal to 1, independent of the photon
energy.

Consider a slab of material on which a polychromatic
beam with energy distribution ��E�0 is incident. After pass-
ing through a thickness x, the energy has changed from its
initial distribution to �E�x�. Next, we consider the passage of
the beam from x to x+dx. Then the measured energy at
x+dx is

��x + dx�meas =� �E�x�e−��E�dxdE

	� �E�x��1 − ��E�dx�dE

= ��x�meas − 
� �E�x���E�dE�dx , �15�

with ��x�meas���E�x�dE. The second equality becomes ex-
act for dx→0. Using d��x�meas=��x+dx�meas−��x�meas the
above equation can be rewritten in the form of

d��x�meas = − 
� �E�x���E�dE

��x�meas
���x�measdx . �16�

Upon comparing Eq. �16� with Eq. �7� we see that the quan-
tity in brackets is the local measured attenuation coefficient,
at position x. This local coefficient is identical to the attenu-
ation coefficient averaged over the local photon spectrum:

�meas �
� �E�x���E�dE

��x�meas
= �����x�. �17�

Solving Eq. �16� we can formally write

��x�meas

��0�meas
= e−������x�dx. �18�

An effective energy can now be obtained by approximating

the above integral for small x:
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� �����x�dx 	 ����0
x . �19�

From Eq. �19� it is seen that the approximation becomes
exact for vanishing x. Obviously, we now define the effective
energy such that

��Eeff� = ����0
. �20�

Equation �20� provides the effective energy, Eeff based on the
average of ��E� with the incoming energy fluence, ��E�0.
Consequently, it provides the exact effective energy only in
the case of vanishing thickness.

In many practical cases, the exact energy spectrum is not
known, nor is the weighting characteristics of the detector.
Then the effective energy is determined from experiments.9

With the effective energy, the measured energy can now
be approximated as a monochromatic Lambert-Beer law:

��x�meas 	 �̃�x�meas = ��0�mease
−����0

x. �21�

For large values of x the estimate of the effective energy
from Eq. �20� deteriorates, and the approximation becomes
rather poor.

A. Error analysis

The difference between the true total energy fluence and
the approximated one from Eq. �21� is

E = Error = ��x�meas − �̃�x�meas

=� ��E�0e−��E�xdE − ��0�mease
−����0

x. �22�

Both terms on the right-hand side can be expanded in a Tay-
lor series with respect to x, using e−�x=1− ��x /1 ! �
+ ��2x2 /2! �+¯. After expanding the exponent e−��E�x under
the integral of the first term on the right-hand side of Eq.
�22�, we use that the integration runs over E, not over x. So,
x ,x2 , . . . are taken outside the integrals

E = ��0�meas −
x

1!
� ��E�0��E�dE

+
x2

2!
� ��E�0�2�E�dE −

x3

3!
� ��E�0�3�E�dE + ¯

− ��0�meas1 −
����0

x

1!
+

����0

2 x2

2!
−

����0

2 x3

3!
+ ¯ �

=
x2

2!

� ��E�0�2�E�dE −

�� ��E�0��E�dE�2

� ��E�0dE
�

−
x3

3!

� ��E�0�3�E�dE −

�� ��E�0��E�dE�3

�� ��E�0dE�2 � + ¯ .

�23�

From the last equation, we see that the linear term in x
vanishes. Thus working with an effective attenuation coeffi-
cient based on the incoming spectrum is accurate up to order
x2. Further, we see that for a monochromatic beam, i.e.,

��E�0=	�E� the delta function of Dirac, indeed we recover
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the Lambert-Beer law: The error is identical to zero. The
same holds for the case when ��E�	�, i.e., when the at-
tenuation is a very weak function of the energy in the range
of the spectrum.

For simplicity we can rescale such that ���E�0dE=1.
Then the expression in the brackets of Eq. �23� can be inter-
preted as variances:

E = �
n=2



�− x�n

n!
���n��0

− ����0

n � , �24�

with

��n��0
�� ��E�0�n�E�dE

and ����0

n �����E�0��E�dE�n.
A relation between the magnitude of the beam hardening

and the variance of the attenuation coefficient averaged over
the spectrum has also been reported.5

IV. BEAM-HARDENING MODEL

In this section a method will be presented that provides an
analytical approximation for the function �����x�. We con-
centrate on a particular spectrum: a filtered Kramers spec-
trum. It will be shown, that an analytical expression for the
effective attenuation coefficient can be derived for transmis-
sion through a slab of material of finite size x. For this, the
attenuation coefficient, ��E�, needs to be known. We will
investigate two possibilities. A first-order model, relating
��E� as �=c1−c2 ln E or in its inverse form, E=Ae−B�, and
a second-order model, E=A1e−B1�+A2e−B2�. These implicit
forms allow the construction of an analytical solution, which
in the general case is not possible.

As initial spectrum ��E�0 we take the Kramers spectrum,
filtered by some material of thickness L and attenuation co-
efficient ��E�:

��E�0 =
�Emax − E�

C
e−L��E�, �25�

with C a normalization factor with the same dimensions as E
�e.g., in keV�. For simplicity we have set C equal to 1. We
also assume that the detectors have an ideal energy response.

It is convenient to shift the attenuation coefficient with
respect to ��Emax� and define �̃ as

�̃�E� = ��E� − ��Emax� . �26�

We then rewrite the integral �12� �for the homogeneous case�
as

��x�meas = �
0

Emax

��E�0e−��E�xdE

= g�x�e−L��Emax�e−x��Emax�, �27�
with g�x�
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g�x� = �
0

Emax

�Emax − E�e−L���E�−��Emax��e−x���E�−��Emax��dE .

�28�

An analytical integration of the above equation is for
many functions ��E� impossible. This is due to the e��E�

terms in the integral that runs over E. However, if we con-
centrate on E��� rather than ��E� the integration over the
energy E can be easily transformed into an integral over �̃.
This removes the problem of having to integrate e��E� over E.
The boundary values for �̃ are

1. �̃�0�=
,
2. �̃�Emax�=0.

Thus we can write

g�x� = �
0

Emax

�Emax − E�e−�L+x��̃dE

= − �
0




�Emax − E�e−�L+x��̃ dE

d�̃
�d�̃ . �29�

This integral is easily solved when E��� can be approxi-
mated by

•E��� 	 �
i=1

N

�ie
�i�̃

for E���=�i=1
N �ie

�i�̃ boundary conditions 1 and 2 can be
satisfied in a natural way by setting �i�0.

If, alternatively, E��̃� and hence �dE /d�̃� can be written
in the form

•E��� 	 �
i=1

N

�i�̃
�i,

the integral can be solved analytically via a Taylor series
expansion of e−x�̃ in terms of x:

g�x� = �
n=0




�− 1�n xn

n!
�

0

Emax

�Emax − E�e−L�̃�̃ndE

= − �
n=0




�− 1�n xn

n!
�

0

Emax

�Emax − E�e−L�̃�̃n dE

d�̃
�d�̃ .

�30�

The integral over �̃ is easy, as now the combination of an
exponent and a power of �̃ renders the well-known gamma
function: ��z�=�0


e−ttz−1dt. In the next sections both a first-
and second-order model for E��̃� of the exponential form
will be considered.

A. First-order model for E„�…

A simple attempt to describe E��̃� that gives an easy in-

tegration of Eq. �29� is



2886 J. Alles and R. F. Mudde: Beam hardening 2886
E��̃� = Ae−B�̃. �31�

From boundary value 2 it immediately follows that A=Emax,
such that only one free parameter remains. Substitution of
this expression in Eq. �29� yields:

g�x� =
Emax

2 B

B + L + x
−

Emax
2 B

2B + L + x
. �32�

From Eq. �18� it follows that

�����x� =
d

dx
�− ln ��x�meas� . �33�

Combining Eq. �27� with the expression found for g�x�, we
find

�����x� =
d

dx
�− ln�g�x�e−��Emaxx���

= ��Emax� +
1

1 + 1x
+

2

1 + 2x
, �34�

with 1= �B+L�−1, and 2= �2B+L�−1, both having units
cm−1. Note that in the limit of x→
, �����x� reduces to

��Emax�, which is physically correct.

photoelectric effect cross sections �see Ref. 10�:
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B. Second-order model for E„�…

A further refinement, allowing a better fit of ��E� to ex-
perimental data, can be achieved by using

E��̃� = A1e−B1�̃ + A2e−B2�̃. �35�

The same procedure as for the first-order model has to be
followed. We know from boundary value 2 that Emax=A1

+A2. Hence the model has three free parameters. Substitution
of the second-order expression into Eq. �29� we find for g�x�:

g�x� = −
�A1 + A2�A1B1

B1 + L + x
−

�A1 + A2�A2B2

B2 + L + x
+

A1
2B1

2B1 + L + x

+
A1A2�B1 + B2�
B1 + B2 + L + x

+
A2

2B2

2B2 + L + x
. �36�
Finally, we calculated �����x�:
�����x� =
d

dx
�− ln�g�x�e−��Emaxx���

= ��Emax� +

�A1 + A2�A1B1

�B1 + L + x�2 +
�A1 + A2�A2B2

�B2 + L + x�2 −
A1

2B1

�2B1 + L + x�2 −
A1A2�B1 + B2�

�B1 + B2 + L + x�2 −
A2

2B2

�2B2 + L + x�2

�A1 + A2�A1B1

B1 + L + x
+

�A1 + A2�A2B2

B2 + L + x
−

A1
2B1

2B1 + L + x
−

A1A2�B1 + B2�
B1 + B2 + L + x

−
A2

2B2

2B2 + L + x

. �37�
As can be seen, the structure of the above expression is
rather simple: All terms in the numerator are the same as in
the denominator except for the squaring of their individual
denominators. This, however, makes it impossible to further
reduce the expression. Nevertheless, once �A1 ,A2 ,B1 ,B2� are
known from fitting the second-order model to E��� calculat-
ing �����x� is straightforward.

V. DISCUSSION: BEAM HARDENING IN WATER

To asses the quality of the derived beam-hardening mod-
els we consider a test case in which a Kramers spectrum
filtered with 2.5 mm water propagates through water. Both
beam-hardening models are compared with a numerical
curve for the attenuation coefficient based on an accurate fit
of the attenuation coefficient of water, using the expressions
for the Compton �via the Klein-Nishina cross section� and
��E� = �KN��� +
�

E� , �38�

with KN��� the Klein-Nishina cross section11 given by

KN��� = 2�re
2�1 + �

�2 
2�1 + ��
1 + 2�

−
ln�1 + 2��

�
�

+
ln�1 + 2��

2�
−

1 + 3�

�1 + 2��2� , �39�

in which �=E /m0c2, and re=2.818�10−15 m the classical
electron radius. We have fitted this model to the Hubbell data
for water. According to Ref. 10, the constant � in Eq. �38�
should be around 3. From the fit, we obtain for the constants:
�=3.34�1023 cm−3, �=6.19�10−6 cm−1 MeV2.96, and �
=2.96, respectively. In Fig. 1, the fitted analytical expression
for ��E� and the Hubbell data are shown for E ranging from

20 to 150 keV.
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Next, we compute �����x� using the above analytical ex-
pression for ��E�. This involves a number of steps given
below.

1. We have computed ��E� from Eq. �38� by discretizing E
from 1 to 150 keV �step size 0.1 keV�.

2. The Kramers spectrum after passing the water layer of
2.5 mm takes the form of Eq. �25�, ��E�0= �Emax

−E�exp�−��E��L�, with L=2.5 mm water. It is com-
puted with the values of ��E� from step 1.

3. Subsequently, the fluence �E�x�, at position x, is calcu-
lated �E�x�= ��E�0 exp�−��E�x�. Here, x denotes the
thickness of the water layer that the x rays are traveling
through, x varies from 0 to 25 cm; it is discretized in
steps of �=0.01 cm.

4. Next, ��x�meas=���E�0 exp�−��E�x�dE is calculated
using the trapezoidal method for the integral.

5. In the next step, ��E�x���E�dE is obtained using the
trapezium rule.

6. Finally, we can compute �����x�

= ��E�x���E�dE���x�meas according to Eq. �17�.

For the first- and second-order model, exponential fits for
the water attenuation coefficient from the Hubbell tables12

have been made. Note that the Hubbell data closely follow
the analytical expression for ��E�. We have used the Hubbell
data for our first and second models to assess the capability
of the models using a limited set of experimental data for the
attenuation coefficient. The fitting range is from 20 to
150 keV. The fits are shown in Fig. 2. The coefficients are:

• First order: A=Emax=150 keV, B=14.9 cm.
• Second order: A1=109 keV, B1=29.184 cm, A2�Emax

−A1=41 keV, B2=1.11 cm.

It is obvious, that the first-order fit is inadequate to de-
scribe the attenuation coefficient. The second-order fit, how-
ever, can follow the experimental data accurately. The results
of the models and the direct calculation are shown in Fig. 3.

FIG. 1. Fit of the analytical model of Eq. �38� �solid curve� to the Hubbell
table for water ���.
The dashed-dotted curve in Fig. 3 corresponds to the numeri-
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cally obtained local attenuation coefficient �����x�. The
second-order model follows the behavior of the real local
attenuation coefficient quite accurately.

The parametrization proposed by Kleinschmidt �Eq. �4��.
�����x�=��Emax�+ ��1 /1+�1x+�2x2� that resembles our
model closest can also be fitted to the numerical approach for
�����x�. To keep Kleinschmidt’s expression monotonic over
the x range we consider, the parameters ��1 ,�2� are not fully
free. We require the expression proposed by Kleinschmidt to
have its minimum beyond the maximum thickness we inves-
tigate: xmin�25 cm. The fit of Kleinschmidt’s model to the
numerical data is less accurate than our second-order model
�see Fig. 4�, but much better than the first-order model.

Our first-order model can be written in the form

FIG. 2. Comparison of the first �solid curve� and second �dashed curve�
order exponential fit of the attenuation coefficient as a function of photon
energy to the Hubbell data for water.

FIG. 3. Effective attenuation coefficient as a function of the thickness of the
absorbing material. The dashed-dotted curve is the result of the numerical
approach using Eq. �38�. The horizontal, gray line represents the effective
attenuation coefficient based on the incoming spectrum. The black solid
curve is the result of the analytical beam hardening model using the first-
order exponential fit for E���, the dashed curve is for the second-order

exponential fit.
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��� = ��Emax� +
1 + 2 + 212x

1 + �1 + 2�x + 12x2 . �40�

Hence Kleinschmidt’s proposal coincides with our first–
order model only if either 1=0 or 2=0, which is not true.
Reversely, Kleinschmidt’s model can be rewritten as

��� = ��Emax� +
�1

1 + �1x + �2x2

= ��Emax� +
�1

�2�x2 − x1�
 1

x − x1
−

1

x − x2
� , �41�

with �x1 ,x2� the two roots of 1+�1x+�2x2=0. Within the
brackets, the two ratios have opposite signs. Again, this in-
dicates that the ad hoc model of Kleinschmidt does not fol-
low our first-order fit of ��E�.

Unfortunately, we did not manage to simplify the second-
order model �Eq. �37��, such that its structure is that of
Kleinschmidt’s proposal. Hence we cannot link the descrip-
tion of ��E� that is underlying Kleinschmidt’s fit to our sug-
gestion. It is noted here that Kleinschmidt’s original paper is
concerned with high energy photons, whereas here the pho-

FIG. 4. Effective attenuation coefficient as a function of the thickness of the
absorbing material. �a� Comparison of our numerical approach �dashed-
dotted curve� to the second-order model �dashed curve� and the relation
proposed by Kleinschmidt �solid curve�, �����x�=��Emax�+�1 /1+�1x
+�2x2. Fitting parameters: �1=0.2809 cm−1, �1=0.7882 cm−1,
�2=−0.0158 cm−1. �b� Difference ��������num− ���model of the second-
order model �dashed curve� and of Kleinschmidt’s model �solid curve� with
respect to the numerical approach.
ton energy is up to 150 keV.
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For the more realistic case where the filtering material is
different from the material of interest, the thickness of the
filtering material can be specified in an equivalent length of
the material of interest and the entire procedure can be
repeated.

VI. CONCLUDING REMARKS

In this paper we have derived an analytical approximation
of the effective attenuation coefficient that describes the at-
tenuation of a beam of polychromatic x rays traveling
through a homogeneous medium. The theoretical analysis is
rigorous and takes into account the effects of beam harden-
ing, that causes the high energy part of the incident x rays to
be over-represented after traveling a distance through the
medium.

Second, we derived a beam-hardening model that de-
scribes the effective attenuation coefficient as a function of
the distance traveled. The model can be used in a practical
way if the attenuation coefficient is an invertible function of
the energy. We specifically looked at the cases when the
relation between the photon energy and the attenuation coef-
ficient is of an exponential nature: E=Ae−B�, or E=A1e−B1�

+A2e−B2�. For these cases, the dependence of the mean at-
tenuation coefficient on the material thickness x can be ana-
lytically obtained. From the analysis it is clear that models
for the mean attenuation proposed in the literature have an
analytical base. For our first-order model, we have derived a
simple relation between ���� and the distance traveled, x,
that resembles ad hoc models from the literature: ����

=��Emax�+1 / �1+1x�+2 / �1+2x�. A simple recipe is
given for the coefficients. A comparison of the first-order
model with the exact one for water, shows that the model
performs reasonably, but that there is room for improvement.
With a second-order model �E=A1e−B1�+A2e−B2� with three
fitting parameters�, a much better agreement can be obtained.
This model is capable of following quite closely the exact
mean attenuation as a function of the distance traveled. Al-
though the expression of the second-order model is rather
lengthy, it relies on only three parameters and can easily be
implemented into any computer code that analyzes the x-ray
data.
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r.f.mudde@tudelft.nl
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