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Abstract—Beam instabilities cover a wide range of effects in 
particle accelerators and they have been the subject of intense 
research for several decades. As the machines performance was 
pushed new mechanisms were revealed and nowadays the 
challenge consists in studying the interplays between all this 
intricate phenomena, as it is very often not possible to treat the 
different effects separately. The aim of this paper is to review the 
main mechanisms, discussing in particular the recent 
developments of beam instability theories and simulations. 

Index Terms—Beam coupling impedance, wake field, coherent 
instability, Landau damping, chromaticity, transverse 
damper/feedback, octupoles, stability diagram, electron cloud, 
beam-beam, space charge. 

I. INTRODUCTION 
S the beam intensity increases, the beam can no longer 

be considered as a collection of non-interacting single 
particles: in addition to the “single-particle phenomena”, 
“collective effects” become significant [1,2]. At low intensity 
a beam of charged particles moves around an accelerator 
under the Lorentz force produced by the “external” 
electromagnetic fields (from the guiding and focusing 
magnets, RF cavities, etc.). However, the charged particles 
also interact with themselves (leading to space charge effects) 
and with their environment, inducing charges and currents in 
the surrounding structures, which create electromagnetic fields 
called wake fields. In the ultra-relativistic limit, causality 
dictates that there can be no electromagnetic field in front of 
the beam, which explains the term “wake”. It is often useful to 
examine the frequency content of the wake field (a time 
domain quantity) by performing a Fourier transformation on it. 
This leads to the concept of impedance (a frequency domain 
quantity), which is a complex function of frequency. The 
charged particles can also interact with other charged particles 
present in the accelerator (leading to two-stream effects, and 
in particular to electron cloud effects in positron/hadron 
machines) and with the counter-rotating beam in a collider 
(leading to beam-beam effects). As the beam intensity 
increases, all these “perturbations” should be properly 
quantified and the motion of the charged particles will 
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eventually still be governed by the Lorentz force but using the 
total electromagnetic fields, which are the sum of the external 
and perturbation fields. Note that in some cases a perturbative 
treatment is not sufficient and the problem has to be solved 
self consistently. These perturbations can lead to both 
incoherent (i.e. of a single particle) and coherent (i.e. of the 
centre of mass) effects, in the longitudinal and in one or both 
transverse directions, leading to beam quality degradation or 
even partial or total beam losses. Fortunately, stabilizing 
mechanisms exist, such as Landau damping, electronic 
feedback systems and linear coupling between the transverse 
planes (as in the case of a transverse coherent instability, one 
plane is usually more critical than the other). 

The first collective effect is space charge. In fact, two space 
charge effects are distinguished: the direct space charge and 
the indirect (or image) one [1-5 and references therein]. The 
direct space charge comes from the interaction between the 
particles of a single beam, without interaction with the 
surrounding vacuum chamber. Consider two particles with the 
same charge (for instance protons) in vacuum. They will feel 
two forces: the Coulomb repulsion (as they have the same 
charge) and the magnetic attraction (as they represent currents 
moving in the same direction, leading to an azimuthal 
magnetic field). Let’s assume that a particle (1) is moving with 
some speed (smaller than the speed of light) with respect to 
the laboratory frame. In its rest frame, the particle produces 
only an electrostatic field, which can be computed, and 
applying the relativistic transformation of the electromagnetic 
fields between the rest and laboratory frames, the magnetic 
contribution can be obtained. Note that there is no magnetic 
contribution in the longitudinal plane, which means that the 
longitudinal Lorentz force is equal to the elementary charge 
times the longitudinal electric field. The transverse (horizontal 
and vertical) Lorentz force on a second particle (2), moving 
with a different speed with respect to the laboratory frame, is 
written 

Fx,y = e Ex,y

1− β1 β2( ) , if 2 moves in same direction as 1 

1+ β1 β2( ) , if 2 moves in oppo. direction as 1
,          (1) 

where e is the elementary charge, E the electric field and β the 
relativistic velocity factor. The first case corresponds to the 
space charge case where both particles move in the same 
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direction, while the second corresponds to the beam-beam 
case (in a collider) where the particles move in opposite 
direction. In both cases, the first term comes from the electric 
field while the second comes from the magnetic one. The main 
difference between the two regimes is that for the space 
charge case there is a partial compensation of the two forces, 
while for the beam-beam case the two forces add. The space 
charge force is maximum at low energy and vanishes at high 
energy, while the beam-beam force is maximum at high 
energy. Considering a bunch of particles (in the space charge 
regime, and e.g. Gaussian in the three dirrections), it can be 
seen that the space charge forces are highly nonlinear and that 
the radial force is proportional to the longitudinal density 
while the longitudinal one is proportional to the derivative of 
the longitudinal density. The transverse space charge force is 
linear for small amplitudes and always defocusing, leading to 
negative betatron tune shifts and a global tune spread (plotted 
in the tune diagram it is called a tune footprint), as all the 
particles do not have the same tune shift (the maximum space 
charge tune shift is obtained for the small amplitudes). The 
transverse betatron and longitudinal synchrotron linearized 
incoherent space charge tune shifts are given by (with the 
assumptions made before, assuming also a round beam for 
simplicity)  

ΔQt
Lin = −

Nb rp
4π βγ 2 εtn B

,

   (2) 
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where Nb is the number of protons in the bunch, rp the 
classical proton radius, εtn the transverse normalized rms 
emittance, γ the relativistic mass factor, B the bunching factor 
(equal to 1 in the case of a debunched beam), R the average 
machine radius, ε0 the permittivity of vacuum, Etotal the total 
particles’ energy, σs the rms longitudinal bunch size, Qs0 the 
unperturbed (low-intensity) synchrotron tune, b the 
surrounding beam pipe radius, σt the rms transverse bunch 
size, and η the slip factor (describing the distance to the 
transition energy), given by (with αp the momentum 
compaction factor ) 

η =α p −
1
γ 2

=
1
γ tr
2 −

1
γ 2
.  (3) 

The direct space charge alone cannot drive the beam unstable 
but as will be seen later its effect on beam instabilities can be 
important and this is still a subject of intense research. 
Contrary to the transverse case, the longitudinal space charge 
is defocusing (which reduces the bucket height and increases 
the bunch length) below transition and focusing (which 
increases the bucket height and reduces the bunch length) 
above. Therefore, there is an intensity-dependent step in the 
equilibrium bunch length at transition, which leads to a 

longitudinal mismatch and subsequent quadrupolar 
oscillations. If these bunch shape oscillations are not damped 
they will eventually result in filamentation and longitudinal 
emittance blow-up. Crossing transition (or working close to 
transition) makes the beam very sensitive to beam instabilities 
as will be discussed later, and this is why transition is usually 
avoided in the new accelerator designs. 

The second space charge effect is the indirect space charge. 
In the case of a beam off-axis in a perfectly conducting 
circular beam pipe, a coherent (or dipolar, i.e. of the centre of 
mass) force arises, which can be found by using the method of 
the images (to satisfy the boundary condition on a perfect 
conductor, i.e. of a vanishing tangential electrical field). The 
electric field is always assumed to be non-penetrating. 
However, for the magnetic field, the situation is more 
complicated as it may or may not penetrate the vacuum 
chamber: the high-frequency components, called “ac” will not 
penetrate, while the low-frequency ones, called “dc” will 
penetrate and form images on the magnet pole faces (if there 
are some; otherwise they will go to infinity and will not act 
back on the beam). This leads to transverse forces, which are 
linear (for small displacement in the beam pipe) with the 
transverse displacements of the centre of mass and with a 
coefficient, which is similar to the transverse incoherent term. 
The same analysis can be performed for instance in the case of 
two infinite (horizontal) parallel plates. Compared to the 
circular case, the coherent force is smaller by π2/24 in the 
horizontal plane and π2/12 in the vertical one. Furthermore, in 
the case of asymmetric chambers, there is a second incoherent 
(or quadrupolar, as it is linear with the particle position) term 
with opposite sign in both planes. The coefficients are linked 
to the Laslett coefficients usually used in the literature [6], and 
they are the same as the ones obtained by Yokoya [7] in the 
case of a resistive beam pipe under some assumptions (see the 
section on impedance below). General formulae exist for the 
real tune shifts of coasting or bunched beams in pipes with 
different geometries, considering both the ac and dc magnetic 
parts and can be found for instance in Refs. [4,5]. The 
important point here is that the indirect space charge alone 
cannot drive the beam unstable as it leads only to real tune 
shifts. To drive a beam unstable one needs something, which 
can lead to an “imaginary tune shift” as we are looking for 
coherent motions proportional to  

                        

e jωc t = e j ωR + jωi( ) t = e jωR t e
t
τ ,  (4) 

where j is the imaginary unit, t the time, ωc the coherent 
betatron (angular) frequency and τ the beam instability rise-
time. This is the case with impedances, which appear if the 
surrounding beam pipe is not perfectly conducting and 
smooth. If the wall of the beam pipe is perfectly conducting 
and smooth, as it was the case discussed above, a ring of 
negative charges (for positive charges travelling inside) is 
formed on the walls of the beam pipe where the electric field 
ends, and these induced charges travel at the same pace with 
the particles, creating the so-called image (or induced) current, 
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which leads to real tune shifts as discussed before. But, if the 
wall of the beam pipe is not perfectly conducting or contains 
discontinuities, the movement of the induced charges will be 
slowed down, thus leaving electromagnetic fields (which are 
proportional to the beam intensity) mainly behind. The latter 
will create complex tune shifts leading to beam instabilities. 

This paper is structured as follows: Section II reviews the 
recent progress in the beam-coupling impedance 
computations, simulations and (bench-) measurements while 
Section III discusses the beam instability theories and 
simulations. In Section IV, comparisons between theory, 
simulations and beam-based measurements are analysed for 
two CERN accelerators. The recent developments in beam 
instabilities are then discussed in Section V where several 
important mechanisms have been included in the analysis, 
such as (i) transverse damper, (ii) space charge, (iii) beam-
beam and (iv) electron cloud. Section VI concludes this paper. 

II. BEAM-COUPLING IMPEDANCE

What needs to be computed are the wake fields at a distance 
z behind a source particle and their effects on the test or 
witness particles that compose the beam. The computation of 
these wake fields is quite involved and two fundamental 
approximations are generally introduced: (i) the rigid-beam 
approximation (the beam traverses a piece of equipment 
rigidly, i.e. the wake field perturbation does not affect the 
motion of the beam during the traversal of the impedance. The 
distance of the test particle behind some source particle does 
not change) and (ii) the impulse approximation (as the test 
particle moves at a fixed velocity through a piece of 
equipment, the important quantity is the impulse, i.e. the 
integrated force, and not the force itself). Starting from the 
four Maxwell equations for a particle in the beam and taking 
the rotational of the impulse, it can be shown that for a 
constant β (which does not need to be 1) 

!
∇ × Δ

!p x, y, z( ) = 0,         
(5) 

which is known as Panofsky-Wenzel theorem. This relation is 
very general, as no boundary conditions have been imposed. 
Only the two fundamental approximations have been made. 
Another important relation can be obtained when β is equal to 
1 (taking the divergence of the impulse), which is 

                                     

!
∇⊥ . Δ

!p⊥ = 0.           (6) 

Considering the case of a cylindrically symmetric chamber 
(using the cylindrical coordinates r, θ, z) and as a source 
charge density (which can be decomposed in terms of 
multipole moments) a macro-particle of charge Q = Nb e 
moving along the pipe (in the s-direction) with an offset r = a 
in the θ direction and with velocity υ = β c (with c the speed 
of light), the whole solution can be written, for β = 1 (with q 
the charge of the test particle and L the length of the structure) 

υΔps r,θ , z( ) = Fs ds
0

L

∫ = − q Q am r m cosmθ $Wm z( ),  

υΔpr r,θ , z( ) = Fr ds
0

L

∫ = − q Q am mr m−1 cosmθ Wm z( ),

υΔpθ r,θ , z( ) = Fθ ds
0

L

∫ = q Q am mr m−1 sinmθ Wm z( ). (7)

The function Wm is called the transverse (⊥) wake function 
and its derivative is called the longitudinal (//) wake function 
of azimuthal mode m. They describe the shock response 
(Green function) of the vacuum chamber environment to a 

€

δ –
function beam which carries an mth moment. The integrals (on 
the left) are called wake potentials (these are the convolutions 
of the wake functions with the beam distribution; here it is just 
a point charge). The Fourier transform of the wake function is 
called the impedance. The idea of representing the accelerator 
environment by an impedance was introduced by Sessler and 
Vaccaro [8]. As the conductivity, permittivity and 
permeability of a material depend in general on frequency, it is 
usually better (or easier) to treat the problem in the frequency 
domain, i.e. compute the impedance instead of the wake 
function. It is also easier to treat the case β ≠ 1. Then, an 
inverse Fourier transform is applied to obtain the wake 
function in the time domain. Two important properties of 
impedances can be derived. The first is a consequence of the 
fact that the wake function is real, which leads to 

Zm
// ω( )!" #$

*
= Zm

// −ω( ),    − Zm
⊥ ω( )#$ %&

*
= Zm

⊥ −ω( ),    (8) 

where * stands for the complex conjugate and ω = 2 π f. The 
second is a consequence of Panofsky-Wenzel theorem (with 
the wave number k = ω / υ) 

Zm
// ω( ) = k Zm

⊥ ω( ).  (9) 

Another interesting property of the impedances is the 
directional symmetry (Lorentz reciprocity theorem): the same 
impedance is obtained from both sides if the entrance and exit 
are the same. In the case of a cavity, an equivalent RLC circuit 
can be used (with three parameters which are the longitudinal 
shunt impedance Rsh, the capacity and the inductance). In a 
real cavity, these three parameters cannot be separated easily 
and some other related parameters are used, which can be 
measured directly such as the resonance frequency fr, the 
quality factor Q and the damping rate. When the quality factor 
is equal to 1, the resonator impedance is called “broad-band”, 
and this model was extensively used in the past in many 
analytical computations. Finally, all the transverse impedances 
(dipolar or driving and quadrupolar or detuning) should be 
weighted by the betatron function at the location of the 
impedances, as this is what matters for the beam dynamics. 

The situation is more involved in the case of non axi-
symmetric structures (due in particular to the presence of the 
quadrupolar wake field, already discussed before) and for β ≠ 
1, as in this case some electromagnetic fields also appear in 
front of the source particle. In the case of axi-symmetric 
structures, a current density with some azimuthal Fourier 
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component creates electromagnetic fields with the same 
azimuthal Fourier component. In the case of non axi-
symmetric structures, a generalized notion of impedances was 
introduced by Tsutsui [9], where a current density with some 
azimuthal Fourier component may create an electromagnetic 
field with various different azimuthal Fourier components. If 
the source particle 1 and test particle 2 have the same charge, 
and in the ultra-relativistic case, the transverse wake potentials 
can be written (taking into account only the linear terms with 
respect to the source and test particles and neglecting the 
coupling terms) [10] 

Fx ds
0

L

∫ = −q2 x1Wx
driving z( ) − x2 W detuning z( )#$ %&,

Fy ds
0

L

∫ = −q2 y1Wy
driving z( ) + y2 W detuning z( )#$ %&,                (10) 

where the driving term is used here instead of dipolar and 
detuning instead of quadrupolar (or incoherent). In the 
frequency domain, Eq. (10) leads to the following generalized 
impedances 

Zx Ω[ ] = x1 Zx
driving − x2 Z

detuning ,

Zy Ω[ ] = y1 Zy
driving + y2 Z

detuning .      (11) 

Note that in the case β ≠ 1, another quadrupolar term is found 
[11] (see later). From Eqs. (10) and (11), the procedure to 
simulate or measure the driving and detuning contributions 
can be deduced. In the time domain, using some time-domain 
electromagnetic codes like for instance CST Particle Studio 
[12], the driving and detuning contributions can be 
disentangled. A first simulation with x2 = 0 gives the driving 
part while a second one with x1 = 0 provides the detuning part. 
It should be noted that if the simulation is done with x2 = x1, 
only the sum of the driving and detuning parts is obtained. The 
situation is more involved in the frequency domain, which is 
used for instance for impedance measurements on a bench 
[13]. Two measurement techniques can be used to disentangle 
the transverse driving and detuning impedances, which are 
both important for the beam dynamics (this can also be 
simulated with codes like Ansoft-HFSS [14]). The first uses 
two wires excited in opposite phase (to simulate a dipole), 
which yields the transverse driving impedance only. The 
second consists in measuring the longitudinal impedance, as a 
function of frequency, for different transverse offsets using a 
single displaced wire. The sum of the transverse driving and 
detuning impedances is then deduced applying the Panofsky-
Wenzel theorem in the case of top/bottom and left/right 
symmetry [15]. Subtracting finally the transverse driving 
impedance from the sum of the transverse driving and 
detuning impedances obtained from the one-wire 
measurement yields the detuning impedance only. If there is 
no top/bottom or left/right symmetry the situation is more 
involved [16].  

A. The New Regime Of The CERN LHC Collimators 
Both longitudinal and transverse resistive-wall impedances 

were already calculated forty years ago by Laslett, Neil and 

Sessler [17]. However, a new physical regime was revealed by 
the LHC collimators (used to collimate the circulating beams 
and protect the machine from unwanted particle losses in cold 
areas). A small aperture paired with a large wall thickness asks 
for a different physical picture of the transverse resistive-wall 
effect from the classical one. The first unstable betatron line in 
the LHC is around 8 kHz (due to the very low revolution 
frequency f0 = 11.245 kHz), where the skin depth for graphite 
(whose measured isotropic DC resistivity was ~ 10 µΩm) is 
1.8 cm. It is smaller than the collimator thickness of 2.5 cm. 
Hence one could think that the resistive thick-wall formula 
would be about right. In fact it is not. The resistive impedance 
is about two orders of magnitude lower at this frequency, 
which was a very good news for the LHC. A number of papers 
have been published on this subject in the last few years using 
the field matching technique starting from the Maxwell 
equations and assuming a circular geometry [18-22]. Recently, 
new results have been also obtained for flat chambers, 
extending the (constant) Yokoya factors to frequency and 
material dependent ones [23] (see later), as was already found 
with some simplified kicker impedance models [24,25]. Note 
that the material resistivity may vary with the magnetic field 
through the magneto-resistance and the surface impedance can 
also increase due to the anomalous skin effect [26 and 
references therein].  

Considering the simplest case (the general case will be 
discussed in the next sections) of an infinitely long smooth 
cylindrical collimator (even if in the LHC the many 
collimators used are composed of two parallel plates of finite 
length) with one layer extending up to infinity, a simple 
approximate formula can be derived for the “wall impedance” 
(and not the “resistive-wall impedance”) in the interesting 
frequency range which lies between few kHz and few GHz for 
any “relatively” good conductor with real permeability and the 
permittivity of vacuum. It can be written as (up to a certain 
frequency which depends on β), for instance in the horizontal 
plane, [27] 

Zx
Wall f( ) = j L Z0

2π b2 β γ 2
+ β

j L Z0
π b2

×
1

1− x2
µr

×
#K1 x2( )

K1 x2( )

, (12)

with 

x2 = 1+ j( ) b
δ
, δ =

2
µ0 µr σω

, (13) 

where Z0 is the vacuum impedance, δ the skin depth, µ0 the 
permeability of vacuum, µr the relative permeability, σ  = 1 / ρ 
the electric conductivity and K is the modified Bessel 
function. Equation (12) can be simplified even further in the 
two limiting cases using the following equations 

!K1 x2( )
K1 x2( )

=
−
1
x2

if x2 <<1

−1 if x2 >>1
. (14) 
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When | x2 | >> 1, the “classical thick-wall formula” is 
recovered (up to a certain frequency which depends on β) 

Zx
Wall f( ) = j L Z0

2π b2 β γ 2
+ 1+ j( ) β L Z0 µr δ

2 π b3
, (15) 

where the first term describes the coherent part of the space 
charge impedance (from electric and ac magnetic images) and 
the second term is the classical thick-wall formula for the 
resistive-wall impedance. 
When | x2 | << 1, i.e. at very low frequency, the transverse wall 
impedance approaches a constant inductive value given by 
(assuming here µr = 1) 

Zx
Wall f → 0( ) = j L Z0

2π β b2
, (16) 

as only electric images contribute (there are no ac magnetic 
images when f approaches 0). Note that the (broad) maximum 
of the real part of the transverse impedance is reached when 
Re [x2] ≈ 1, i.e. δ ≈ b, which means (see Fig. 1) 

fmax,Re ≈
ρ
b2
×
1

π µ0
. (17) 

In summary, even if the skin depth, at a certain frequency, is 
smaller than the wall thickness, this does not mean that we are 
in the classical thick-wall regime. Indeed, another parameter 
needs to be taken into account, which is the beam pipe radius. 
The latter needs also to be much larger than the skin depth to 
be in the classical thick-wall regime. Equation (17) reveals 
simply why the low-frequency regime becomes important for 
the LHC collimators, as the beam pipe radius can be as small 
as ~ 1 mm (instead of few cm usually) and the resistivity of 
graphite is much higher than the resistivity of stainless steel or 
copper. Figure 1 shows the case with b = 2 mm, ρ = 10 µΩm, 
L = 1, µr = 1 and β = 1. It clearly reveals the two regimes 
discussed above. Furthermore, it shows that a coating (see also 
below) with a good conductor (usually copper), which helps in 
the classical thick-wall regime, does not help in the low-
frequency regime as it forces the induced currents to remain 
close to the beam. 

Fig. 1.  Transverse (driving) impedance of a cylindrical LHC collimator (even 
if in reality the LHC collimators are composed of two parallel plates), with b 
= 2 mm, ρ = 10 µΩm, L = 1, µr = 1 and β = 1. The real part is in red while the 
imaginary part is in green (note that in the classical thick-wall regime, the real 
and imaginary parts are equal). The dashed curves correspond to the case with 
a copper coating of 5 µm. 

B. Two-Dimensional Models For The Computation Of The 
Resistive-Wall Impedance 

Two-dimensional analytical computations of beam coupling 
impedances have been developed for more than forty years, as 
discussed before and simple formulas exist and can be applied 
in many cases. However, some machine elements, e.g. the 
vacuum pipe, can typically exhibit a thin coating that cannot 
be assumed to be infinitely thick, in particular when 
considering very long-ranged wake fields that one needs to 
compute in order to perform beam dynamics simulations in the 
multi-bunch regime. To go beyond these limitations a general 
multi-layer theory is considered here. For an axisymmetric 
two dimensional geometry, analytical calculations have been 
existing since a long time: one can mention the general 
formalism of B. Zotter [18,28-31], the one of A. Burov and V. 
Lebedev [32] which is simpler but slightly less general, and 
more recently some matrix formalisms using potentials [33-
36]. For other simple but non-axisymmetric two-dimensional 
geometries (elliptic, rectangular, or flat and infinitely large), 
the usual approach is to deduce the impedance from the 
axisymmetric case multiplied by some constant form factors 
[37] depending on the geometry, often called Yokoya [7] or 
Laslett [6] factors. However, recently it has been shown that 
this approach to compute the beam coupling impedances of a 
flat chamber fails in the case of non metallic materials such as 
ferrite [38]. Indeed, the hypotheses on which the form factors 
theories rely break down for general non conductive materials 
and/or over certain frequency range: in Ref. [6] one is 
concerned only about perfectly conductive materials in the 
static case, whereas in Refs. [7,37] one assumes that the beam 
is ultrarelativistic and that the chamber material is conductive 
with a skin depth much smaller than both the chamber 
thickness and its half gap. Since the skin depth is a 
monotonically decreasing function of frequency, the latter 
assumption implies a lower bound in frequency. Other more 
general approaches exist, in single-layer [39,42], two-layer 
[43] or even multi-layer [44] cases. In both the axisymmetric 
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and flat cases, we will here go beyond the low frequency 
assumption made in Refs. [32,44], namely that in the 
frequency domain of interest the wave number is much 
smaller than the inverse of the minimum transverse dimension 
of the pipe or flat chamber surrounding the beam. A more 
general theory is typically needed in future linear colliders 
where one might well need to go beyond this low frequency 
approximation since the bunches will be very short [45,46], 
while the knowledge of the low frequency behaviour will also 
be needed, in particular if e.g. several bunches are circulating 
in a damping ring. We present here complete general 
multilayer formalisms in frequency domain, in longitudinal 
and transverse, in both the axisymmetric and flat two-
dimensional infinitely long cases. Both theories presented are 
valid with any number of layers, any beam velocity and any 
frequency, and give all nonlinear terms in the resulting 
impedances. Each layer can be made of any resistive, 
dielectric or magnetic material, assuming only its linearity, 
isotropy, homogeneity and the validity of Ohm’s law when it 
is conductive (thus neglecting the magnetoresistance and the 
anomalous skin effect). The formalism described here is 
largely based on B. Zotter’s formalism and the complete 
description of the theory we outline here can be found in Ref. 
[47]. 

The main steps of the computation (using field matching) 
are the following: (i) we write the wave equations for the 
longitudinal components of the electromagnetic fields and 
solve them in each homogeneous layer (the solutions of the 
wave equations in each layer are linear combinations of 
modified Bessel functions); (ii) the transverse components are 
then found by application of Maxwell equations; (iii) 
expressing the boundary conditions, it can be shown that the 
integration constants of one layer are related to those from the 
adjacent layer through a simple matrix multiplication matrix 
(which is 4 × 4); (iv) the final solution of the problem is then 
found by computing the matrix relating the constants in the 
first layer to those in the last one, which is obtained from a 
multiplication of all the matrices found by matching the fields 
at each layer boundary. Expressing finally the boundary 
conditions for r and after a simple inversion of the 4 × 4 
matrix one gets the complete set of integration constants and 
solves entirely the electromagnetic problem. The expressions 
found give the general nonlinear and multimode wall 
impedance, i.e. that includes all azimuthal modes m. We note 
here that, contrary to usual ultrarelativistic results (see e.g. 
Ref. [10]), we obtained non zero quadrupolar impedances 
even in the case of an axisymmetric chamber. This comes 
from the m = 0  mode, so from the fact that we considered 
together all azimuthal modes instead of treating separately the 
m = 0  and m = 1  modes and identifying the transverse 
impedances to those exclusively coming from the m = 1 
mode, as is usually done. 

In the case of a flat chamber, as it is typically the case for 
the LHC collimators, the approach is very similar to the one 
adopted for the cylindrical chamber. The solutions of the wave 
equations in each layer are found here as linear combinations 
of complex exponentials. Instead of summing all azimuthal 

modes as in the cylindrical case, we have here instead to 
integrate back over the wave number to get the final solution 
of the problem in frequency domain. The integrals cannot be 
performed analytically but can be rearranged such that we get 
a form similar to what we found in the axisymmetric case. 
Note that the horizontal impedance has no constant term due 
to the left-right symmetry but the vertical impedance has a 
non-zero constant term due to the absence of top-bottom 
symmetry. Concerning the dipolar and quadrupolar terms, we 
note that the horizontal quadrupolar impedance is equal to 
minus the horizontal dipolar impedance, which is a direct 
consequence of the continuous translation invariance along the 
horizontal axis. However, contrary to ultrarelativistic results, 
the horizontal quadrupolar impedance is not equal to minus 
the vertical quadrupolar impedance, due to the quadrupolar 
term already found for the impedance in an axisymmetric 
structure. Few examples of application are shown in Figs. 2-4. 
In Fig. 2 we show the dipolar wall impedance in the case of a 
graphite round collimator, with one layer or three layers. The 
difference between the two is mainly due to the copper coating 
in the three layers case, and this difference decreases at low 
frequencies because the fields penetrate deep inside the 
collimator wall. In Fig. 3 we have plotted the vertical dipolar 
impedance of a copper coated graphite flat collimator, 
comparing our results to Tsutsui’s model [48] on a rectangular 
geometry, putting the plates perpendicular to the jaws 25 cm 
apart in order to get closer to the case of an infinitely large 
chamber. The agreement between the two approaches is very 
good. Finally, the form factors (i.e. the ratios between the 
linear terms in the flat chamber transverse impedance 
components and the dipolar impedance of an axisymmetric 
chamber with radius equal to the half gap of the flat chamber) 
are plotted in Fig. 4 for the case of the LHC injection 
protection collimator (TDI) made of titanium-coated hBN 
blocks. These form factors are a frequency and material 
dependent generalization of the constant Yokoya factors [7]. 
With respect to the Yokoya factors, some differences in the 
transverse form factors appear around MHz frequencies and 
for frequencies above ~ 1 GHz (in particular for the resonant 
peaks between ~ 1 GHz and ~ 100 GHz), while in longitudinal 
the form factor calculated from this theory is on most of the 
frequency range significantly different from the Yokoya 
factor. This can be explained by the fact that the hypotheses 
on which the Yokoya factors theory relies do not apply here, 
since one of the layers is highly resistive. 
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Fig. 2.  Dipolar impedance (per unit length) of a round collimator: b = 2 mm, 
γ = 479.6, σDC (Cu) = 5.9 107 S/m, τAC (Cu) = 27 fs (relaxation time for the 
Drude model), σDC (graphite) = 105 S/m, τAC (graphite) = 0.8 ps, σDC (steel) = 
106 S/m, τAC (steel) = 0. 

Fig. 3. Vertical dipolar impedance (per unit length) for a three-layer copper 
coated graphite flat collimator (parameters in Fig. 2). In Tsutsui’s model, the 
third layer is replaced by a perfect conductor, and the plates perpendicular to 
the large flat jaws are 25 cm apart. 

Fig. 4.  Form factors between the flat and cylindrical geometries, for the 
impedances of the titanium-coated hBN block of the LHC injection protection 
collimator (TDI). Length of a hBN collimator of length: 2.8 m; γ = 479.6; half 
gap: 4 mm; each jaw is made of three layers: a 3 µm thick titanium coating 
(with resistivity 0.43 µΩm), a 54 mm thick hBN ceramic (dielectric constant 
4, resistivity 4 1012 Ωm) and an infinitely thick stainless steel layer (resistivity 
0.72 µΩm). 

C. Impedance Effect Due To The Finite Length 
For the LHC collimators, whose length (~ 1 m) is much 

longer than the half gap (few mm), the previous 2D 
computation was expected to be a good approximation (i.e. 
what is important is to compute the impedance per unit length 
and then we multiply by the length of the structure) but this 
had to be checked. Furthermore, there were some ideas to 
build shorter collimators and there are some equipment which 
are segmented such as kickers. 

The problem of evaluating the impedance of finite length 
devices has been approached in the past mainly by means of 
the field matching technique making use of careful 
approximations where the cavity-like structure was 
approximated as a thin insert [49,53]. This technique is based 
on imposing the continuity of electric and magnetic fields at 
the boundaries between the finite length device and the access 
beam pipes. While the magnetic continuity can be easily 
imposed, this is not the case for the electric continuity. A 
different approach to the problem based on the mode matching 
technique is presented here. In order to take into account the 
finite length of the structure, we decompose the fields in the 
device into a set of orthonormal modes. We obtain a complete 
set of equations using the magnetic field matching and the 
nonuniform convergence of the electric field on the beam pipe 
access boundaries. As a case of study, we describe the method 
application to an azimuthally uniform structure of finite 
length: a cylindrical cavity loaded with a toroidal insert of 
lossy dielectric, connected to a cylindrical beam pipe. Then we 
present benchmarks done with the IW2D code [47], CST 
Particle Studio [12] and other existing analytical formulas and 
codes, pointing out the effect of finite length on the impedance 
of thin inserts, collimators and small beam pipe protrusions. 
Interesting observations concerning the impedance at 
frequencies close to the beam pipe cut-off frequency can also 
be explained. 

Structures like the toroidal insert of lossy dielectric 
discussed above are common in particle accelerators. 
Opportunely varying the longitudinal and radial dimensions, 
or the insert material parameters, the structure could represent 
a beam pipe, a small discontinuity, a flange connecting two 
beam pipes, a loaded cavity, or even a collimator. 

We introduce here the three relevant frequency parameters 
fc, fco and fskin. The parameter fc is the frequency limit at which 
a metal with a given conductivity σ can be treated as a good 
conductor, i.e when σ  > ω ε0, and is defined as 

fc =
σ

2 π ε0
. (18) 

We define fco as the beam pipe cut-off frequency (which 
depends on the impedance under study): for the longitudinal 
impedance, for example, only TM modes are excited and we 
define 

fco
TM =α0,1

c
b
, (19) 
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where α0,1 ≈ 2.4048 is the eigenvalue corresponding to the 
TM01  propagating mode. The parameter fskin is the frequency 
at which the skin depth equals the insert thickness t. It is 
important to notice that we can define a fskin only in the 
hypothesis of good conductor, i.e. σ  > ω ε0 or f  <  fc. Several 
cases have been benchmarked. Two cases are discussed 
below. 

1) Impedance Of A Thin Insert
The beam pipe of accelerator machines is frequently 

interrupted and connected by means of thin inserts. Due to the 
large number of beam pipe transitions in circular accelerator 
machines, the contribution to the total machine impedance of 
these discontinuities can be important. The structure discussed 
before can model a thin insert when L << t. The mode 
matching model to the calculation of the longitudinal 
impedance of thin inserts as well as comparisons with the SCT 
theory [52] are shown in Fig. 5. In the SCT model the PEC 
boundary layer around the insert is not present and the field 
can propagate in free space. Moreover, following the 
approximation of short insert length in the SCT theory, the 
longitudinal field variation along z has been neglected (these 
approximations have been recently removed within an 
extension of the SCT model [53]). Therefore, the frequency 
regime in which the two models are expected to agree is above 
fskin (which is the case as can be seen from Fig. 5). Below fskin, 
the two models start to diverge: with mode matching the 
transverse field approaches the cavity's boundary and is 
reflected; in SCT it is radiated to the external vacuum region. 
From fskin, the two models start to converge to the same 
impedance value. However, one may notice (looking at the 
difference between the two approaches) that the mode 
matching impedance slightly oscillates around the SCT's one 
before converging to the same curve. The discrepancy 
between the two models can be understood considering that 
around fskin the skin depth is comparable with the insert 
thickness. This implies that the backward wave slightly 
interferes with the outgoing wave producing a modest 
standing wave pattern in the insert, therefore affecting the 
impedance. With increasing frequency, the backward wave 
amplitude becomes smaller and smaller and this pattern 
vanishes. The discrepancy at high frequency has to be 
compared with the impedance absolute value, which becomes 
larger and larger. 

Fig. 5.  Comparison between mode matching and SCT model for the 
longitudinal impedance of short inserts. Mode matching parameters: b = 5 cm, 
t = 1 cm, L = 0.1 cm and β = 1. 

2) Impedance Of A Collimator
Figure 6 shows the ratio between the transverse dipolar 

impedance calculated with the mode matching and the IW2D 
code for varying length. When L < b, the transverse low 
frequency impedance in the finite length assumption becomes 
higher up to a factor 2 with respect to the infinite length one, 
as shown for the imaginary part. This effect, due to the 
contribution of the fields at the edge of the structure, can be 
considered not of particular concern being apparent only for 
short inserts at very low frequencies (10 - 100 Hz). No 
evidence of this effect has been instead observed in the 
longitudinal impedance, probably due to the small effect of the 
edges on the longitudinal electric field on axis. Within the 
hypothesis of our model we can therefore conclude that there 
is no significant impedance reduction by segmenting the LHC 
collimators. 

Fig. 6.  Ratio between the finite length impedance (mode matching) and the 
infinite length one (IW2D). Mode matching parameters: b = 5 cm, t = 25 cm, 
σc = 106 S/m, β = 1. 

D. Impedance Simulations 
Analytical wake field computations are possible only for 

very simple geometries, thus in practice one has to rely on 
numerical techniques. Although the term beam coupling 
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impedance was introduced first in the frequency domain by 
Vaccaro [54,8] in 1966, first numerical wake field 
computations were performed in the time domain by Balakin 
et al.  [55] in 1978, and Weiland [56] in 1980. For highly 
relativistic bunches, due to causality, wake fields can catch up 
with trailing particles only after traveling a certain distance, 
the so-called catch-up distance [57]. This motivates computing 
wakes in linacs by using a mesh that moves together with the 
bunch. The moving mesh technique was introduced by Bane 
and Weiland in 1983 [58]. Nowadays many methods are 
available for beam coupling impedance computation: Time 
Domain (TD) method and Frequency Domain (FD) method, 
which splits in two main groups, the eigenmode methods and 
methods based on beam excitation in FD. The three methods 
are discussed below and an example of simulation with CST 
[12] is shown in Fig. 7. 

Fig. 7.  Example wake function computed with CST Particle Studio® [12]. 

1) Time Domain (TD)
Most common TD methods are based on Finite Differences 

Time Domain (FDTD, Yee 1966 [59]) and Finite Integration 
Technique (FIT, Weiland 1977 [60]) where the leapfrog 
algorithm is applied for time stepping. More specialized 
techniques are the boundary element method (TD-BEM) [61-
63], the finite volume method (FVTD) [64], Discontinuous 
Galerkin Finite Element (DG-FEM), and implicit methods. 
Due to the minimal duration-bandwidth-product, the excitation 
is usually done by a Gaussian bunch, which rigidly moves 
through the structure. The duration and bandwidth of the 
excitation are 

T = σ s

υ 2
, B = υ

σ s 2
, (20) 

resulting in minimal TB = ½. The choice of the bunch length 
σs in a simulation does not necessarily depend on the real 
bunch length, but rather on the frequency of interest. The 
maximum frequency at which a reasonable excitation 
amplitude is present, is roughly 2 σf, i.e. the spectrum is 
mainly located at σf = υ / (2 π σs), the so-called frequency 
associated with the bunch length. Shorter bunches increase the 
maximum frequency, but they decrease the frequency 
resolution, which is a particular problem at low frequency. 
The frequency resolution depends on the total number of 
points employed for the Discrete Fourier Transform (DFT),  

Δf = 1
Nt Δt

. (21) 

The total integrated wake length is Lwake = υ Nt Δt. Bunch 
length and wake length are the two important parameters for 
TD impedance computation. The choice of finite length puts a 
window-function on the real wake potential. If it is chosen too 
small, i.e. when the window closes before the wake has 
decayed, the impedance will show the Gibbs phenomenon. 
This can be smoothed by choosing other than rectangular 
window functions, but one should note that this does not 
improve the frequency resolution.  

The semi-discrete Maxwell Grid Equations (MGE) can be 
written in FIT notation. Discretizing the time by central 
difference quotients on a staggered grid leads to the so-called 
leapfrog scheme. Applying this scheme to a plane wave in a 
single Cartesian (staircase) cell leads to the grid dispersion 
relation (see e.g. [65]) reproducing the continuous dispersion 
relation when all the space and time steps tend to zero. The 
criterion for the time step Δt is also referred to as the Courant-
Friedrichs-Lewy (CFL) criterion [66]. 

Finite mesh size will always result in different propagation 
velocities dependent on the propagation direction, which can 
cause unphysical effects such as numerical Cherenkov 
radiation [67] and positive longitudinal wake functions at the 
head of a bunch. In order to reduce this dispersion several 
techniques are available (see [68]). There are techniques that 
have no dispersion in beam propagation direction at all, e.g. 
Gjonaj et al. implemented longitudinal-transverse 
splittings [69] and Zagorodnov implemented a TE-TM wave 
splitting scheme [67]. Furthermore, one should mention that 
conformal techniques have improved the modeling accuracy 
significantly and feature second order convergence, see 
e.g. [70]. Overviews of codes are available in [71] or [72]. 

The Panofsky-Wenzel theorem [73], as already discussed 
above, is fundamental in impedance and wake field 
computation. When boundary conditions are available, the 
longitudinal wake potential can be solved from the Laplace 
equation, and the transverse can be subsequently obtained 
from the longitudinal one [74]. For rotationally symmetric 
structures, it is sufficient to integrate the wake at an arbitrary 
radial coordinate, as the radial dependence is known a priori. 
This radial coordinate can be chosen right at the perfectly 
conducting beam pipe surface, reducing the integration to the 
cavity gap length [75]. In rotational symmetric structures it is 
also possible to choose a curved contour, the Napoly 
integral [76,77]. A combined contour-integration and Laplace-
equation method is presented by Henke and Bruns [78]. An 
approach to avoid lengthy wake integration for evanescent 
waveguide modes in the beam pipe after a cavity is presented 
by Dong et al. [79].  Finally generalized methods for arbitrary 
structures are presented by Zagorodnov [80]. 

Space charge fields have to be taken into account for the 
calculation of wake fields and impedances in the non-
ultrarelativistic case. This is particularly a challenge at the 
boundary where the beam enters and exits the computational 
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domain. Pretending the beam enters and exits in an infinitely 
long, smooth, and perfectly conducting pipe, the space charge 
fields (source fields) in this pipe have to be calculated, and can 
subsequently be imprinted on the boundary. A consistent way 
to compute and imprint the source fields by means of 
numerical Lorentz-transformation is presented by Balk et 
al. [81,82]. 

2) Eigenmode
The longitudinal impedance of a resonant structure can be 

written in terms of eigenmodes (for the transverse impedance 
the same approach can be performed with dipole modes). The 
eigenmodes are solutions of MGE [83]. If the structure is 
lossless, the above matrix can be rewritten as symmetric and 
positive semi-definite, i.e. the eigenvalues are real and non-
negative. In such systems only the eigenfrequency and the 
eigenmode can be determined, the Rsh and Q have to be 
determined from the wall losses by a perturbation approach. 
When strong losses are present, the eigenvalues become 
complex and Rsh and Q can be extracted from the imaginary 
part. However, the MGE become nonlinear as the conductivity 
enters the permittivity with a factor ω. eigenvalue 
computations are usually applied for beam coupling 
impedance computations only when Q is very high and high 
accuracy is required. Ackermann et al. [84] developed a solver 
for such structures, which is also capable of computing modes 
above the beam pipe cut-off, i.e. modes with energy leaking 
out of the cavity. Apart from high Q systems, recent 
developments also include eigenvalue computations for 
dispersively lossy tensorial materials utilized in tunable ferrite 
cavities [85]. 

3) Frequency Domain (FD)
At low frequencies, the CFL criterion already poses a strong 

requirement on the time step. Due to the uncertainty principle, 
lower frequencies require computing longer wakes. As the 
time step is fixed by structure properties via the CFL criterion, 
this leads to the necessity to compute very many time steps, 
i.e. massive oversampling. In order to circumvent this, FD-
methods can be used to compute the beam coupling 
impedance directly via electromagnetic fields in FD, 
interpreting the longitudinal and transverse impedances as 
functionals of the electric field solution of Maxwell’s 
equations in FD with the monopolar and dipolar excitation 
current densities given by a charged disc which is allowed to 
perform linearized dipole oscillations. Note that also the 
spectral density of the charge has to be taken into account, 
especially in the choice of appropriate beam entry and exit 
boundary conditions. Infinite beam pipe boundary conditions 
were implemented by van Rienen [86], Balk [81] and 
Doliwa [87], Floquet (quasi-periodic) boundary conditions by 
Niedermayer [88]. Approximations to neglect the charge 
completely result in quasi-stationary models and are discussed 
in [89,90]. Solutions can be obtained by the FIT, where 
Doliwa [87,91] implemented a special low frequency 
stabilization technique based on Neumann series expansion of 
the divergence corrected (Helmholtz decomposition) system 

matrix. The coefficients of this expansion are obtained by fix-
point iteration through the four Maxwell equations, therefore 
the scheme has been named "Maxwell iteration". When the 
length of the computational domain with Floquet boundary 
conditions is reduced to zero (practically one cell), one obtains 
a 2D scheme. This system has been treated with FIT [88], with 
FEM [92], and also with the Boundary Element Method 
(BEM) [93]. The FEM approach [92] applies nodal elements 
on the longitudinal and edge elements on the transverse field 
components. Since the edge elements of lowest order are not 
suited to represent the divergence of a vector field, a 
Helmholtz decomposition needs to be performed and the static 
fields are obtained from the gradient of a potential subject to 
the complex Poisson equation. Such a FEM scheme is very 
flexible due to the unstructured mesh, i.e. it can model 
different dispersively lossy materials, surface impedance 
boundary conditions, and arbitrary beam shape and velocity, 
which is particularly useful for low energy, space charge 
dominated synchrotrons.  

In summary, TD simulations using FIT or FDTD are 
suitable at medium and high frequency, and particularly in 
perfectly conducting structures. Explicit time stepping 
methods, such as leapfrog, are extremely efficient, as they 
require only a matrix-vector multiplication at each time step. 
Grid dispersion is a severe issue in those methods but has 
recently been improved by novel schemes. The infinite wake 
integration can be simplified by modifying the contour using 
the Panofsky-Wenzel theorem. TD methods are 
disadvantageous for low frequencies and low velocity of the 
beam. Also dispersively lossy material is difficult to treat in 
TD. In those rather exotic cases, FD methods prevail. When 
high quality factor structures are under investigation and high 
accuracy is required, eigenmode computations should be used. 

E. Building The Impedance Model Of A Real Machine 
 Assessing the intensity limitations of a synchrotron is an 
essential step to predict its performance. While some 
impedance related limitations can be considered to be 
localized to a piece of hardware (e.g. equipment heating due to 
beam coupling impedance or electron cloud), the impedance 
contributions to beam instabilities cannot be considered 
individually and have to be aggregated for the whole machine. 
For this reason, impedance models have been built for many 
existing machines, upgrades and projects. Impedance models 
are usually started at the very early stage of machine design to 
assess if impedance related instabilities could be a limitation 
and should drive fundamental parameters of the accelerator. 
Therefore, impedance models in various forms and levels of 
complexity were developed over the years depending on the 
needs and knowledge at the time of implementation: for 
example for the CERN ISR [94], PS [95-97], PSB [98], SPS 
[99-102], LEP [103], LEP2 [104] LHC [104,105], RHIC [106] 
at Brookhaven National Lab, TeVatron [107] at Fermi 
National Lab, HERA [108] at DESY, KEKB [109], as well as 
many light sources: NSLS-II [110], PETRA [111] 
SOLEIL [112], ALBA [113], to name only a few. 
 In fact the complexity of an impedance model can range 
from a single number to an elaborated tool, which is able to 
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recompute complex impedance contributions as a function of 
frequency and their related thresholds with slight changes of 
machine configuration (e.g. energy and gaps of moving 
devices). Ideally, one would aim for computing the 
longitudinal, as well as transverse driving and detuning 
contributions for obtaining all resistive wall, broadband and 
narrow band contributions over a frequency range that would 
span from the first potentially unstable frequency to the 
maximum frequency that can be excited by the various bunch 
modes. In practice, depending on the further use of the model 
– e.g. interpolation in frequency or time domain for theoretical 
formula or macroparticle simulations; single bunch or multi 
bunch studies – the frequency range and/or wake length can be 
drastically reduced.   

1) Procedures To Build An Impedance Model
 The procedure to build longitudinal and transverse 
impedance models are represented in Fig. 8. 

Fig. 8.  A procedure to build a longitudinal (top) and transverse (bottom) 
impedance model. 

The first step is to identify the main impedance contributors 
for the accelerator. These generally include the geometric and 
resistive contributions from the vacuum chambers, kickers, 
collimators, instrumentation, RF cavities, pumping ports and 
detectors. Once identified, these impedance contributions can 
be assessed using various tools. Analytical computations are 
the method of choice for simple geometries (see before). 
Geometric contributions of various basic accelerator 
geometries, bellows, tapers, step transitions can also be found 
[114], as well as for instance elliptical tapered transitions 
[115]. For more complicated geometries, the recent progress 
of simulation codes allows to compute the impedance of 
increasingly detailed geometries. The main electromagnetic 
codes currently used are ABCI [116], ACE3P [117], Ansys 
HFSS [14], CST Studio (MAFIA) [12], ECHO2D [118], 
GdfidL [119]. Bench measurements can also be performed on 
prototypes or final devices ready for installation using wires 
(1-wire and 2-wire-measurement techniques), probes and coils 
[120]. These measurements are efficient to benchmark the 
models used for computations, but cannot always be used 
directly for the impedance model due to the perturbation of the 
measuring device. The impedance contributions can then be 
summed to obtain a global impedance model for the whole 
machine. As seen in Fig. 8, it is important to note that the 
transverse impedance contributions have to be weighted by the 
ratio of the respective β-functions at the location of the 
element to the chosen reference for the β-function later used 
for beam dynamics computations when the impedance 
contributions are lumped at one single location. Typically the 
average β-function - either computed from the smooth 
approximation or from the actual average of the β-function 
around the ring - is chosen for this purpose. Beam observables 
may then be computed either by using analytical Vlasov 
solvers or macroparticle simulations (see later). These 
simulated observables should then be compared to beam 
observables measured in the machine (synchrotron and 
betatron tune shifts with intensity, longitudinal and transverse 
instability thresholds as a function of e.g. bunch length and 
longitudinal emittance for the longitudinal plane, chromaticity, 
amplitude detuning and damper gain for the transverse plane). 
This is clearly an iterative process where the impedance model 
should be refined to try and make the predicted observables 
agree with the measured observables. Unfortunately, this 
procedure is rendered difficult by several hurdles that come up 
at every level. 

2) Sample Of Current Challenges To Build An Accurate
Impedance Model 

a) Is the model representative of reality?
 One of the major difficulties encountered when building an 
impedance model is the lack of knowledge of what the 
machine is actually made of. When dealing with accelerators 
that were built decades ago, drawings may be hard to find and 
outdated. In addition, electromagnetic properties of some 
special materials are usually neither specified nor measured by 
the manufacturer and could be impossible to obtain if the 
manufacturer stopped its activity. It is also important to note 
that even if an up-to-date drawing of the geometry is available, 
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non-conformities, damage and ageing may have altered the 
initial design and can represent a large source of errors. If 
some individual large contributors to the machine impedance 
can be quickly identified by their features (large resistivity, 
large magnetic losses, cavity-like structure, small aperture, 
steps), the integrated effect of many small contributions is 
more difficult to evaluate with accuracy: the error on the 
estimate is multiplied by the number of elements. 

b) Limitations of the simulation codes
 Limitations in the details that can be modelled often – if not 
always – require drastic simplifications for analytical 
estimates or 3D simulations, and the relevance of this cascade 
of simplifications cannot always be checked. This is in 
particular why a benchmark of computations with bench 
measurements is a crucial step for validating the assessment 
the impedance of an element. The limitation in the maximum 
number of mesh cells by the available memory and/or 
computing time also limits the maximum simulated frequency. 
This represents a severe limitation for 3D wakefield codes as 
the minimum exciting bunch length directly drives the needed 
smallest mesh cell size. Wake potentials with small exciting 
bunch lengths are needed for beam dynamics codes that slice 
the bunch into dozens of small slices. Ideally, a convergence 
should be found for the whole chain down to the beam 
dynamics, but it does not always work. However, a recipe was 
recently proposed to find the optimum bunch length for 
electromagnetic simulations [121]. It is also important to note 
the following major limitations of impedance codes: 

• Many codes or features do not work efficiently when β
< 1; 

• Many analytical formulae are only valid in a limited
range of frequencies and for simple geometries; 

• The connection to complex external circuits with long
cables is not easy to account for with 3D models; 

• The difficulty to separate the dipolar and quadrupolar
impedances with the eigenmode solver in non-
symmetric structures; 

• Despite recent significant effort in the treatment of
dispersive materials in both wakefield and eigenmode 
solvers, modelling these materials is still suffering from 
large errors; 

• Accounting for coatings and anisotropic materials in
3D simulation codes is not straightforward and leads to 
large errors; 

• The current 3D simulation tools are not efficient for
very short bunch length that excites frequencies well 
above the cut-off of the connecting pipes. This is due to 
the fact that the absorbing boundaries cannot be made 
perfectly absorbing. Besides, the commercial 
eigenmode solvers cannot work reliably with this type 
of boundaries and are therefore not recommended for 
use beyond the cut-off of the respective modes. 
Solutions are in development to cope with this 
problem [122]. 

c) Challenges in aggregating the impedance
contributions

For a given machine, several contributions may come from 

various analytical or simulation codes (even for one single 
element which requires eigenmode simulations to obtain the 
resonant modes and wake field simulations to obtain the 
contribution over the full frequency range with a lower 
accuracy in the region of these modes). Results can therefore 
be in wake functions, wake potentials, impedances or 
eigenmode tables, which makes it difficult to get a global 
impedance for all purposes that would also be compact. The 
proposed strategy in this case is to keep the initial data for all 
contributions in a database, and to adapt their post-processing 
to the final goal: 

• If the beam dynamics tool -, which will use the
impedance - requires a single bunch wake as input, then 
a small bunch with a short wake length can be chosen 
(as in [101] for instance); 

• If the beam dynamics tool requires a broadband
impedance as input, then a long bunch with a long 
wake length can be used; 

• If the beam dynamics tool requires both low and high
frequency content, then a non-equidistant FFT to 
transform impedance into wake can help [105] to 
reduce the number of sampling points, and both short 
bunch and long wake length are needed, which may be 
beyond the limits of the simulation capabilities of the 
code.  

Interpolation is required to sum contributions. If many 
resonances are present in the model, the number of points in 
the wake or in the impedance can be very large (of the order of 
105 sampling frequencies for the LHC impedance model). 
Besides, impedance contributions have been added as 
broadband resonator contributions assuming that the global 
frequency would be the cut-off frequency of the main vacuum 
chamber (for instance in [123]). When this may be argued for 
the case of a machine with many sharp steps and bellows for 
which the single impedance contributions could amount to a 
broadband behaviour, it is more difficult to accept this 
simplification for machines which have been heavily 
optimised with respect to impedance, and therefore all 
contributions should be accounted for individually with their 
own cut-off. Finally the knowledge of the β-function at all 
devices is needed to obtain an accurate transverse impedance 
model. If the β-functions are well known for a running 
machine, the planned locations and/or beta functions of a 
device for a new project may not be clearly defined until a 
very late stage of design. 

3) Beam-Induced RF Heating
Beam-induced RF heating has been observed in many 

places, as for instance recently in several CERN LHC 
components during the 2011 and 2012 runs when the 
bunch/beam intensity was increased and/or the bunch length 
reduced [124,125]. This caused beam dumps and delays for 
beam operation (and thus less integrated luminosity) as well as 
considerable damages for some equipment. This is why the 
rms bunch length was increased to ~ 9 cm in 2011 and ~ 10 
cm in 2012, whereas the nominal value is 7.5 cm. The RF 
heating of some equipment is therefore worrisome for the 
future operation and it is closely followed up [126]. 
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Therefore, in practice the elements of the vacuum chamber 
should be designed to minimise the self-generated (secondary) 
electromagnetic fields. For example, chambers with different 
cross-sections should be connected with tapered transitions; 
non necessary cavities should be avoided; bellows should 
preferably be separated from the beam by shielding; plates 
should be grounded or terminated to avoid reflections; poorly 
conductive materials should be coated with a thin layer of very 
good conductor (such as copper) when possible, etc. However, 
the issue with the diagnostics structures is that they are 
designed to couple to the beam. The beam-induced RF heating 
comes from the real part of the longitudinal impedance and the 
bunch length (and sometimes longitudinal profile) is the main 
parameter (once the bunch intensity and number of bunches 
have been fixed): usually, the longer the bunch, the better.  

Consider the case of M equi-spaced equi-populated 
bunches, which should be a good approximation when the 
LHC machine is full. In this case, the general formula for the 
beam power loss (due to the interaction with the longitudinal 
impedance) can be written [125] 

 

€

Ploss = M Ib
2 Zloss ,        (22) 

with 

€

Zloss = 2 M Re Zl p M ω0( )[ ] × PowerSpectrum p M ω0[ ]
p= 0

∞

∑ ,
 (23) 

where Ib = Nb e f0 is the bunch current and PowerSpectrum 
stands for the beam power spectrum. Different longitudinal 
profiles are considered in Fig. 9 (top) and their corresponding 
beam spectra are shown in Fig. 9 (bottom). A comparison 
between the different longitudinal beam power spectra of 
several machines is shown in Fig. 10 (assuming a longitudinal 
profile with n = 3, see Fig. 9), revealing the frequency ranges 
of interest for the different machines. Whereas the LHC is 
interested in the frequency range of few GHz, the other 
machines discussed (synchrotron light sources) are interested 
in few tens of GHz. 

Fig.  9.  (Top) Family of (finite) distributions, keeping the same half width at 
half height, depending on a parameter n, and converging to a Gaussian 
distribution when n goes to infinity. (Bottom) Corresponding beam power 
spectra. 

Fig.  10.  Comparison between the different longitudinal beam power spectra 
of several machines, revealing the different frequency ranges of interest. 

The power loss is always proportional to the square of the 
number of particles per bunch but depending on the shape of 
the impedance, it can be linear with the number of bunches 
(when the bunches are independent, i.e. for a sufficiently 
short-range wake field – or broad-band impedance – which 
does not couple the consecutive bunches) or proportional to 
the square of the number of bunches (when the bunches are 
not independent, i.e. for a sufficiently long-range wake field – 
or narrow-band impedance – which couples the consecutive 
bunches). These two extreme cases are discussed below. 

In the case of a broad-band impedance, consider for 
instance the case of the resistive-wall impedance, and, as a 
numerical example, the particular case of the LHC beam 
screen (neglecting the holes, whose contribution has been 
estimated to be small in the past, and the longitudinal weld). 
Assuming a Gaussian longitudinal profile (other similar 
distributions would give more or less the same result in this 
case), the power loss (per unit of length) is given by 
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where C = 26658.883 m is the average LHC radius, Γ the 
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Euler gamma function, b the beam screen half height 
(assumed to be 18.4 mm), ρ the resistivity (assumed to be 7.7 
10-10 Ωm for copper at 20 K and 7 TeV) and σt the rms bunch 
length (expressed in unit of time). Assuming the nominal LHC 
beam parameters (M = 2808, Nb = 1.15 1011 p/b and σt = 0.25 
ns), Eq. (24) yields ~ 100 mW/m. 
 Consider now the case of a narrow resonance, describing a 
trapped mode due to the geometry. It is described by 3 
parameters: (i) the resonance frequency, assumed to be here fr 
= 1 GHz; (ii) a shunt impedance, assumed to be here Rsh = 10 
Ω; and (iii) a quality factor Q. In the case of a sharp resonance 
impedance (i.e. when Q >> fr / ( 2 fb ) where fb is the bunch 
frequency), the power loss is given by the simple formula 
(which is valid when Q >> 1 and Δ << 1) 

Ploss = R I
2 × F×G (25) 

with 

F =10
PdB fr( )
10 , G =

Δ2

Δ2 + sin2 π fr
fb

"

#
$

%

&
'

, Δ =
π fr
2Q fb

, (26) 

where R = 2 Rsh, i.e. using the Linac convention (Linac 
Ohms), I = M Ib is the total beam current and PdB ( fr ) is the 
beam power spectrum in dB at the resonance frequency fr read 
from a power spectrum (computed or measured). The factor F 
describes the frequency dependence of the power loss, which 
depends on (i) the longitudinal bunch length, (ii) the 
longitudinal profile and (iii) the resonance frequency. It 
converges to 1 at zero (low) frequency (where it is the worst 
case) and it is between 0 and 1 for any frequency. For a 
Gaussian bunch, the factor F is given by Exp[ - ( 2 π fr σt ) 2 ]. 
The factor G describes the off-resonance effect [127]: if the 
resonance falls exactly on an harmonic of the bunch frequency 
(i.e. on resonance), it is equal to 1, otherwise it is between 0 
and 1. Assuming a total beam current of 1 A (the nominal 
LHC value is 0.58 A) and considering the theoretical 
longitudinal bunch spectrum of Fig. 11 (upper) for an rms 
bunch length of 9 cm (similar to the LHC case in 2011), a 
sharp resonance Rsh = 5 kΩ (usual typical values are between 
few hundreds and few tens of thousands Ohms) at 1.4 GHz 
(i.e. on resonance) would therefore generate a power loss of 1 
W. However, this result is very sensitive to the bunch length. 
It can be seen for instance from Fig. 11 (lower), that dividing 
the bunch length by 2, i.e. going from 9 cm rms to 4.5 cm, 
would increase the power loss by a factor ~ 2000, i.e. going 
from 1 W to 2 kW! It is true that the power loss rapidly 
decreases with the frequency offset for high-Q resonances, as 
can be seen from Eq. (26), and therefore this could be a useful 
knob, but the problem is that in practice this offset is usually 
not known with sufficient precision and in the presence of 
many resonances this trick might not be possible. 

Fig.  11.  Theoretical (see Fig. 9 with n = 3) longitudinal bunch spectrum (left) 
for the case of a LHC bunch in 2011 (9 cm rms bunch length) and power loss 
increase for the case of a bunch two times shorter (4.5 cm rms) assuming the 
same shape. 

 The usual solutions to avoid beam-induced RF heating are 
the following, depending on the situation:  

• Increase the distance between the beam and the
equipment. 

• Coat with a good conductor if the heating is
predominantly due to resistive losses and not 
geometric losses. 

• Close large volumes (which could lead to resonances
at low frequency) and add a smooth transition. This is 
why beam screens and RF fingers are installed. 

• Put some ferrite with high Curie temperature and
good vacuum properties (close to the maximum of 
the magnetic field of the mode and not seen directly 
by the beam) or other damping materials. Adding a 
material with losses (the type of ferrite should be 
optimized depending on the mode frequency), the 
width of the resonance will increase (the impedance 
will become broader) and the (maximum) impedance 
will decrease by the same amount. The power loss 
will therefore be (much) smaller. However, the ferrite 
will then have to absorb the remaining power. Even if 
much smaller, the heating of the ferrite can still be a 
problem if the temperature reached is above the Curie 
point, or is above the maximum temperature allowed 
by the device. To cool the ferrite one should try and 
improve the thermal conduction from the ferrite as 
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most of the time only radiation is used (given the 
general brittleness of the ferrite it is difficult to apply 
a big contact force). 

• Improve the subsequent heat transfer:
o Convection: there is none in vacuum.
o Radiation: usually, the temperature is

already quite high for the radiation to be
efficient. One should therefore try and
improve the emissivities of surrounding
materials.

o Conduction: good contacts and thermal
conductivity are needed.

o Active cooling: the LHC strategy (for
instance) was to water cool all the near beam
equipment.

• Try and design an All Modes Damper (AMD) if
possible, to remove the heat as much as possible to an
external load outside vacuum, where it can be more
easily cooled away. This can also work together with
a damping ferrite.

• Increase the bunch length. The longitudinal
distribution can also play a very important role for
some devices, and it should be kept under tight
control.

• Install temperature monitoring on critical devices to
avoid possible damages.

Following some issues with RF fingers on some LHC 
equipment in 2011 (as observed also before in other 
machines), a task force was set up during 2012 to review the 
design of all the components of the LHC equipped with RF 
fingers. The lessons learnt and the mitigation measures for the 
CERN LHC equipment with RF Fingers were reported in Ref. 
[128]. It is worth mentioning that for all the cases studied, no 
problem with impedance was revealed for conforming RF 
fingers. But the top priority for the future should be to try and 
reach robust mechanical designs to keep the contacts of all the 
RF fingers and to do a very careful installation (92 non-
conformities were revealed in 2012 after an X-ray campaign). 

Finally, in the presence of two counter-rotating beams as in 
the LHC collider, a general formula for the power loss at a 
location s around the accelerator has been recently computed. 
An integration over the beam screen length is needed to 
compute to total power loss in the beam screen (in W) and 
deduce an average power loss per unit length. This new 
formula involves the longitudinal impedances of both orders 0 
and 1, the transverse offsets from the geometrical centre and 
the relative delay between the two beams. This new formula 
has been applied to the case of the current LHC and future 
HL-LHC triplets [129] and the resulting power was found to 
be very close to two times the power computed with one 
beam, i.e. there ws no significant interplay between the two 
beams. 

4) Outlook
 Many accelerators run now at the limit of stability and their 
impedance model need to be as precise as possible to be able 
to predict accurately their performance reach. For this reason, 

it is now fundamental to obtain all relevant wake or 
impedance contributions as a function of frequency and 
disentangle e.g. the driving, detuning and coupled terms 
contributions. In view of the many challenges that are 
experienced in all phases of building an impedance model, 
impedance related observables should be compared as much 
as possible with both bench measurements and beam-based 
measurements. 

III. BEAM INSTABILITY THEORIES AND SIMULATIONS

A. Sacherer’s and Laclare’s approaches 
 Two approaches are usually used to deal with collective 
instabilities. One starts from the single-particle equation while 
the other solves the Vlasov equation, which is nothing else but 
an expression for the Liouville conservation of phase-space 
density seen by a stationary observer. In the second approach, 
the motion of the beam is described by a superposition of 
modes, rather than a collection of individual particles. The 
detailed methods of analysis in the two approaches are 
different, the particle representation is usually conveniently 
treated in the time domain, while in the mode representation 
the frequency domain is more convenient, but in principle they 
necessarily give the same final results. The advantage of the 
mode representation is that it offers a formalism that can be 
used systematically to treat the instability problem. 
 The first formalism was used by Courant and Sessler to 
describe the transverse coupled-bunch instabilities [130]. In 
most accelerators, the RF acceleration mechanism generates 
an azimuthal non-uniformity of the particle density and 
consequently the work of Laslett, Neil and Sessler for 
continuous beams [17] is not applicable in the case of bunched 
beams. Courant and Sessler studied the case of rigid (point-
like) bunches, i.e. bunches oscillating as rigid units, and they 
showed that the transverse electromagnetic coupling of 
bunches of particles with each other can lead (due to the 
imperfectly conducting vacuum chamber walls) to a coherent 
instability. The physical basis of the instability is that in a 
resistive vacuum tank, fields due to a particle decay only very 
slowly in time after the particle has left (this leads to a long-
range interaction). The decay can be so slow that when a 
bunch returns after one (or more) revolutions it is subject to its 
own residual wake field which, depending upon its phase 
relative to the wake field, can lead to damped or anti-damped 
transverse motion. For M equi-populated equi-spaced bunches, 
M coupled-bunch mode numbers exist (n = 0,1,…,M-1), 
characterized by the integer number of waves of the coherent 
motion around the ring. Therefore the coupled-bunch mode 
number resembles the azimuthal mode number for coasting 
beams, except that for coasting beams there is an infinite 
number of modes. The bunch-to-bunch phase shift Δφ is 
related to the coupled-bunch mode number n by 
Δφ = 2 π n / M.  
 Pellegrini [131] and, independently, Sands [132,133] then 
showed that short-range wake fields (i.e. fields that provide an 
interaction between the particles of a bunch but have a 
negligible effect on subsequent passages of the bunch or of 
other bunches in the beam) together with the internal 
circulation of the particles in a bunch can cause internal 
coherent modes within the bunch to become unstable. The 
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important point here is that the betatron phase advance per 
unit of time (or betatron frequency) of a particle depends on its 
instantaneous momentum deviation (from the ideal 
momentum) in first order through the chromaticity and the slip 
factor. Considering a non-zero chromaticity couples the 
betatron and synchrotron motions, since the betatron 
frequency varies around a synchrotron orbit. The betatron 
phase varies linearly along the bunch (from the head) and 
attains its maximum value at the tail. The total betatron phase 
shift between head and tail is the physical origin of the head 
tail instability. The head and the tail of the bunch oscillate 
therefore with a phase difference, which reduces to rigid-
bunch oscillations only in the limit of zero chromaticity. A 
new (within-bunch) mode number m = …,-1,0,1,… also called 
head-tail mode number, was introduced. This mode describes 
the number of betatron wavelengths (with sign) per 
synchrotron period. 
 The work of Courant and Sessler, or Pellegrini and Sands, 
was done for particular impedances and oscillation modes. 
Using the Vlasov formalism, Sacherer unified the two 
previous approaches, introducing a third mode number 
q = …,-1,0,1,…, called radial mode number, which comes 
from the distribution of synchrotron oscillation amplitudes 
[134,135]. The advantage of this formalism is that it is valid 
for generic impedances and any high order head-tail modes. 
This approach starts from a distribution of particles (split into 
two different parts, a stationary distribution and a 
perturbation), on which Liouville theorem is applied. After 
linearization of the Vlasov equation, one ends up with 
Sacherer’s integral equation or Laclare’s eigenvalue problem 
to be solved [135]. Because there are two degrees of freedom 
(phase and amplitude), the general solution is a twofold 
infinity of coherent modes of oscillation (m , q = …,-1,0,1,…). 
At sufficiently low intensity, only the most coherent mode 
(largest value for the coherent tune shift) is generally 
considered, leading to the classical Sacherer’s formulae in 
both transverse and longitudinal planes. Note that contrary to 
the space charge case, these tune shifts are now complex, the 
imaginary part being linked to the instability growth rate. For 
protons a parabolic density distribution is generally assumed 
and the corresponding oscillation modes are sinusoidal. For 
electrons, the distribution is usually Gaussian, and the 
oscillation modes are described in this case by Hermite 
polynomials. In reality, the oscillation modes depend both on 
the distribution function and the impedance, and can only be 
found numerically by solving the (infinite) eigenvalue 
problem. However, the mode frequencies are usually not very 
sensitive to the accuracy of the eigenfunctions. Similar results 
are obtained for the longitudinal plane. 
 The most fundamental longitudinal instability encountered 
in circular accelerators is called the Robinson instability. The 
(Radio-Frequency) RF frequency accelerating cavities in a 
circular accelerator are tuned so that the resonant frequency of 
the fundamental mode is very close to an integral multiple of 
the revolution frequency of the beam. This necessarily means 
that the wake field excited by the beam in the cavities contains 
a major frequency component near a multiple of the revolution 
frequency. The exact value of the resonant frequency relative 
to the multiple of the revolution frequency is of critical 
importance for the stability of the beam. Above the transition 

energy, the beam will be unstable if the resonant frequency is 
slightly above it and stable if slightly below. This is the 
opposite below transition. This instability mechanism was first 
analyzed by Robinson [136]. Physically, the Robinson 
instability comes from the fact that the revolution frequency of 
an off-momentum beam is not given by the on-momentum 
revolution frequency, but by a quantity slightly different, 
depending on both the slip factor and the energy deviation. 
Let’s assume in the following that the Robinson criterion is 
met. A bunch is longitudinally stable if the longitudinal profile 
observed at a wall-current monitor is constant turn after turn 
and it is unstable if the longitudinal profile is not constant turn 
after turn. In the case of instability, the way the longitudinal 
profile oscillates gives some information about the type of 
instabilities. This was studied in detail by Laclare [135], who 
explained theoretically such pictures of “longitudinal (single-
bunch) instability” starting from the single-particle 
longitudinal signal at a pick-up electrode (assuming infinite 
bandwidth). Applying the Vlasov equation, linearizing it, and 
studying the effect of the impedance on the unperturbed 
distribution leads to the potential-well effect: a new fixed 
point is reached, with a new synchronous phase, a new 
effective voltage, a new synchrotron frequency, a new bunch 
length and a new momentum spread, which all depend on 
intensity. Studying a perturbation on top of the new stationary 
distribution, one ends up at low intensity, i.e. considering 
independently the modes m (which is valid up to a certain 
intensity), with an eigenvalue system to solve. The procedure 
to obtain first order exact solutions, with realistic modes and a 
general interaction, thus consists of finding the eigenvalues 
and eigenvectors of an infinite complex matrix. The result is 
an infinite number of modes of oscillation. To each mode, one 
can associate a coherent frequency shift (which is the qth 
eigenvalue), a coherent spectrum (which is the qth 
eigenvector) and a perturbation distribution. For numerical 
reasons, the matrix needs to be truncated, and thus only a 
finite frequency domain is explored. For the case of the 
parabolic amplitude distribution and a constant inductive 
impedance (which leads to real tune shifts only and therefore 
no instability), the signal at the pick-up electrode shown for 
several superimposed turns is depicted on Fig. 12. In the case 
of a complex impedance, the real part will lead in addition to a 
growing amplitude with an associated instability rise-time. It 
can be seen from Fig. 12 that there are q nodes on these 
“standing-wave” patterns. 

Fig.  12.  Longitudinal signal Smq at the pick-up electrode for three different 
modes shown for several superimposed turns (the red line corresponds to one 
particular turn), for the case of the parabolic amplitude distribution and a 
constant inductive impedance (exhibiting therefore no growing oscillations!). 

Finding the eigenvalues and eigenvectors of a complex matrix 
by computer can be difficult in some cases, and a simple 
approximate formula for the eigenvalues is useful in practice 

!
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to have a rough estimate. This is known as Sacherer’s 
(longitudinal) formula [134]. Sacherer’s formula is also valid 
for coupled-bunch instability with M equally-populated 
equally-spaced bunches, assuming multi-bunch modes with 
only one type of internal motion. In the case of gaps between 
bunch trains, a time-domain approach is usually better suited. 
 As the bunch intensity increases, the different longitudinal 
modes can no longer be treated separately and the situation is 
more involved. In the longitudinal plane, the microwave 
instability for coasting beams is well understood. It leads to a 
stability diagram, which is a graphical representation of the 
solution of the dispersion relation (taking into account the 
momentum spread) depicting curves of constant growth rates, 
and especially a threshold contour in the complex plane of the 
driving impedance [137]. When the real part of the driving 
impedance is much greater than the modulus of the imaginary 
part, a simple approximation, known as the Keil-Schnell (or 
circle) stability criterion, may be used to estimate the 
threshold curve [138]. For bunched beams, it has been 
proposed by Boussard to use the coasting-beam formalism 
with local values of bunch current and momentum spread 
[139]. A first approach to explain this instability, without 
coasting-beam approximations, has been suggested by 
Sacherer through Longitudinal Mode-Coupling (LMC) [140]. 
The equivalence between LMC and microwave instabilities 
has been pointed out by Sacherer and Laclare [135] in the case 
of broad-band driving resonator impedances, neglecting the 
potential-well distortion. Using the mode-coupling formalism 
for the case of a proton bunch interacting with a broad-band 
resonator impedance, and whose length is greater than the 
inverse of half the resonance frequency, new formulae have 
been derived taking into account the potential well-distortion 
due to both space charge and broad-band resonator 
impedances [141,142]. It is found in particular that due to the 
potential-well distortion, the beam is more stable below 
transition than above. Experimentally, the most evident 
signature of the LMC instability is the intensity-dependent 
longitudinal beam emittance blow-up to remain just below the 
threshold [143]. 
 A similar analysis as the one done for the longitudinal plane 
can be done in the transverse plane [135]. Following the same 
procedure, the horizontal coherent oscillations (over several 
turns) of a “water-bag” bunch (i.e. with constant longitudinal 
amplitude density) interacting with constant inductive 
impedance are shown in Fig. 13 (here again the number of 
nodes correspond to the radial mode number q). 

Fig.  13.  Transverse signal Smq at the pick-up electrode for four different 
modes shown for several superimposed turns, for the case of the “water-bag” 
bunch (i.e. with constant longitudinal amplitude density) and a constant 
inductive impedance. In the present example, the total phase shift between the 
head and the tail equal to 10. 

The main difference with the longitudinal plane is that there is 
no effect of the stationary distribution and the bunch spectrum 
is now centred at the (transverse) chromatic frequency  

fξx ,y = Qx0,y0 f0 ξx,y /η (27) 

where Qx0,y0 are horizontal and vertical low-intensity tunes and 
ξx,y are the relative transverse chromaticities. The sign of the 
chromatic frequency is very important and to avoid the head-
tail instability (of mode 0) it should be slightly positive, 
meaning that the chromaticity should be negative below 
transition and positive above. Sacherer’s formula is also valid 
for coupled-bunch instability with M equally-populated 
equally-spaced bunches, assuming multi-bunch modes with 
only one type of internal motion (i.e. the same head-tail mode 
number). This analysis was extended in Ref. [144] to include 
also the coupling between the modes (and the possibility to 
have different head-tail modes in the different bunches). In the 
case of gaps between bunch trains, a time-domain approach is 
usually better suited. 
 As we saw before, at low intensity (i.e. below a certain 
intensity threshold), the standing-wave patterns (head-tail 
modes) can be treated independently. This leads to instabilities 
where the head and the tail of the bunch exchange their roles 
(due to synchrotron oscillation) several times during the rise-
time of the instability. The (approximate) complex transverse 
coherent betatron frequency shift of bunched-beam modes is 
given by Sacherer’s formula for round pipes [134]. For flat 
chambers, the effect of the quadrupolar impedance has to be 
added to obtain the real part of the coherent tune shift to be 
able to explain why the horizontal coherent tune shift is zero 
in horizontally flat chambers (of good conductors). As an 
example, a head-tail instability with 10 nodes is shown in Fig. 
14 (upper). It is worth mentioning that there is also a head-tail 
instability in the longitudinal plane. The longitudinal head-tail 
instability, first suggested by Hereward [145] and possibly 
observed at the CERN SPS [146] results from the fact that the 
slip factor is not strictly a constant: it depends on the 
instantaneous energy error just as the betatron frequency does. 
The longitudinal beam distribution then acquires a head-tail 
phase, and instability may arise as a result. 
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Fig.  14.  (Upper) Signal from a radial beam position monitor during 20 
consecutive turns observed in the CERN PS at 1.4 GeV kinetic energy in 
1999. Time scale: 20 ns/div. (Lower) Fast instability observed in the CERN 
PS near transition (~6 GeV total energy) in 2000. Single-turn signals from a 
wide-band pick-up. From top to bottom: Σ, Δx, and Δy. Time scale: 10 ns/div. 
The head of the bunch is stable and only the tail is unstable in the vertical 
plane. The particles lost at the tail of the bunch can be seen from the hollow in 
the bunch profile. 

 As the bunch intensity increases, the different head-tail 
modes can no longer be treated separately. In this regime, the 
wake fields couple the modes together and a wave pattern 
travelling along the bunch is created (see e.g. Fig. 14 (lower)): 
this is the Transverse Mode Coupling Instability (TMCI). The 
TMCI for circular accelerators has been first described by 
Kohaupt [147] in terms of coupling of Sacherer’s head-tail 
modes. This extended to the transverse motion, the theory 
proposed by Sacherer to explain the longitudinal microwave 
instability through coupling of the longitudinal coherent bunch 
modes. The TMCI is the manifestation in synchrotrons of the 
Beam Break-Up (BBU) mechanism observed in linacs. The 
only difference comes from the synchrotron oscillation, which 
stabilizes the beam in synchrotrons below a threshold intensity 
by swapping the head and the tail continuously. In fact, 
several analytical formalisms exist for fast (compared to the 
synchrotron period) instabilities, but the same formula is 
obtained (within a factor smaller than two) from five, 
seemingly diverse, formalisms in the case of a broad-band 
resonator impedance [148]: (i) Coasting-beam approach with 
peak values, (ii) Fast blow-up, (iii) BBU (for 0 chromaticity), 
(iv) Post head-tail, and (v) TMCI with 2 modes in the “long-
bunch” regime (for 0 chromaticity). Two regimes are indeed 
possible for the TMCI according to whether the total bunch 
length is larger or smaller than the inverse of twice the 
resonance frequency of the impedance. The simple formula 
reveals the scaling with the different parameters, as, or a fixed 
impedance, the (e.g. vertical) intensity threshold is given by 

Nb,y
th ∝ η εl Qy0 . (28) 

It can be seen in particular that the instability does not 
disappear at high energy but saturates like the slip factor (what 
is important is not the energy but the distance from the 
transition energy). This means that the TMCI intensity 
threshold can be raised by changing the transition energy, i.e. 
by modifying the optics. Furthermore, the intensity threshold 
increases linearly with the longitudinal emittance and the 
transverse tune. Note that the coherent synchrobetatron 
resonances, important in large machines, are not discussed 
here. This was checked with the MOSES code [149], which is 
a program computing the coherent bunched-beam mode. 

Below is a comparison between the MOSES code and the 
HEADTAIL code [150], which is a macroparticle tracking 
simulation code, in the case of a LHC-type single bunch at 
SPS injection [151]. As can be seen from Fig. 15, a very good 
agreement between the two was found. For a general 
impedance (i.e. not a resonator impedance) the situation is 
more involved and one should rely on HEADTAIL 
simulations. In the case of flat chambers, the intensity 
threshold is higher in one plane than in the other and linear 
coupling can be used to raise the TMCI intensity threshold 
[152]. Note finally that with many bunches the TMCI intensity 
threshold can be considerably reduced [144]. 

Fig.  15.  Comparison between MOSES (in red) and HEADTAIL (in white) in 
the case of a broad-band resonator [151]. The evolution of the real parts of the 
shifts of the transverse modes (with respect to the unperturbed betatron tune 
and normalized by the synchrotron tune), is shown vs. bunch intensity. 

 It is worth mentioning also all the work done for the TMCI 
in LEP, as Chin’s work (with MOSES) came later. It was 
proposed to cure the TMCI with a reactive feedback that 
would prevent the zero mode frequency from changing with 
increasing beam intensity [153]. In Refs. [154,155] a theory of 
reactive feedback has been developed in the two-particle 
approach and with the Vlasov equation. Theory has revealed 
that the reactive feedback can really appreciably increase the 
TMCI intensity threshold, which was confirmed by 
simulation [156,157]. On the contrary, the resistive feedback 
was found to be “completely” ineffective as a cure for the 
TMCI [155]. An action of a feedback on the TMCI intensity 
threshold was later examined experimentally at PEP [158]. It 
was confirmed that a reactive feedback is indeed capable to 
increase the TMCI intensity threshold. But it turned out 
unexpectedly that a resistive feedback can also increase the 
TMCI intensity threshold and even more effectively [158]. In 
Ref. [159], an attempt was made to develop an advanced 
transverse feedback theory capable to elucidate the conditions 

!!
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at which the resistive or reactive or some intermediate 
feedback can cure the TMCI. Positive chromaticity above 
transition helps, but depending on the coupling impedance, 
beam stability may require a large value of the chromaticity 
either unattainable or which reduces the beam lifetime. It was 
proposed to have a negative chromaticity (what is usually 
avoided), where the zero mode is unstable (by head-tail 
instability) and all the other modes are damped, and stabilise 
this mode by a resistive feedback, keeping the higher order 
modes stable.  
 Several stabilising mechanisms exist which can prevent the 
previous instabilities from developing. One of them is Landau 
damping, which is a general process that arises when one 
considers a whole collection of particles or other systems, 
which have a spectrum of resonant frequencies, and interact in 
some way. In accelerators we are usually concerned with an 
interaction of a kind that may make the beam unstable (wake 
fields), and we want to find out whether or not (and how) the 
spread of resonant frequencies will stabilise it. If the particles 
have a spread in their natural frequencies, the motion of the 
particles can lose its coherency. In fact, the origins of the 
frequency spread that leads to Landau damping need to be 
taken into account. The case where the frequency spread 
comes from the longitudinal momentum spread of the beam is 
straightforward (for a coasting beam), because the longitudinal 
momentum is a constant, which just affects the coefficients in 
the equations of motion of the transverse oscillations, and 
hence their frequencies: it is the distribution function which is 
important. The same result applies also if one considers a tune 
spread that is due to a non-linearity (e.g. from octupole lenses) 
in the other plane. However, this result is no longer valid if the 
non-linearity is in the plane of coherent motion. In this case, 
the steady-state is more involved because the coherent motion 
is then a small addition to the large incoherent amplitudes that 
make the frequency spread, and it is inconsistent to assume 
that it can be treated as a linear superposition [160]. One needs 
to consider “second order” non-linear terms and the final 
result is that in this case it is not the distribution function 
which matters but its derivative. Using the Vlasov formalism, 
this result is recovered more straightforwardly. 
 In the presence of tune spread (very often introduced by 
octupoles in the transverse plane, but other sources exist), the 
Landau damping mechanism of coherent instabilities is 
discussed through a dispersion relation. Without tune spread, 
the condition for the beam to be stable is simply that the 
imaginary part of the coherent tune shift is positive. In the 
presence of tune spread, a stability boundary diagram is 
defined, i.e. some beam stability can be reached even if the 
imaginary part of the coherent tune shift is negative: if the 
complex tune shift without tune spread is below the stability 
diagram, then the beam is stable. It is worth reminding that 
Landau damping of coherent instabilities and maximization of 
the dynamic aperture are partly conflicting requirements. On 
the one hand, a spread of the betatron frequencies is needed 
for the stability of the beam coherent motion, which requires 
nonlinearities to be effective at small amplitude. On the other 
hand, the nonlinearities of the lattice must be minimized at 
large amplitude to guarantee the stability of the single-particle 
motion. A trade-off between Landau damping and dynamic 
aperture is therefore usually necessary. Note that some work is 

being done to use the nonlinear optics as a path to high 
intensity, providing “infinite (transverse) Landau damping” 
[161]. The case of additional space charge nonlinearities is 
discussed later in this paper. 
 Note that linear coupling between the transverse planes can 
also influence the Landau damping mechanism [162], leading 
to a sharing of the Landau damping between the transverse 
planes, which can have a beneficial effect (i.e. stabilising the 
other plane) or a detrimental effect (i.e. destabilising one or 
two planes, as it was believed to be the case with the Batman 
instability of the HERA proton ring [163]). Furthermore, one 
has also to be careful with linear coupling as it modifies the 
transverse emittances [164,165]. 
 Similarly, Landau damping is an important stabilizing 
mechanism in the longitudinal plane. When the bunch is very 
small inside the RF bucket, the motion of the particles is linear 
and all the particles have the same (unperturbed, maximum) 
synchrotron frequency. By increasing the bunch length the 
incoherent synchrotron frequency spread is increased (the 
maximum synchrotron frequency spread is obtained when the 
bunch length is equal to the RF bucket length as in this case 
the synchrotron frequency of the particles with the largest 
amplitude is equal to 0. 

B. Longitudinal Instabilities in the CERN SPS 
1) Microwave instability
There is a very wide range of phenomena in high-intensity 

circular accelerators that are called by the same name 
“microwave instability”. Usually, but not always, an 
instability is called microwave if 

fr τ >>1, (29) 

where τ is the (full) bunch length and fr is the resonant 
impedance frequency (or the central frequency where the 
instability develops). In proton accelerators the microwave 
instability is observed as a fast increase of the bunch length 
and thus of the longitudinal emittance εl. This bunch 
lengthening can be distinguished from the bunch lengthening 
due to potential well distortion by an increase in the slope of 
bunch length versus intensity. The break point where the slope 
changes is considered as the instability threshold. 

The fast (with respect to the synchrotron period) microwave 
instability threshold can be estimated for a broad-band 
impedance using the Keil-Schnell-Boussard criterion. 
However, when applied to the SPS case in the past, a much 
lower threshold in intensity was obtained [166]. Indeed, the 
SPS impedance model is very far from the broad-band 
resonator (see later). Analytical solutions for the instability 
thresholds can be calculated for a fast instability growth for a 
bunch with Gaussian distribution in the limiting cases of a 
broad-band (fr  τ  >> Q) or narrow-band fr  τ  << Q) resonant 
impedance [166,167]. For the instability threshold of a single 
bunch in a single RF system defined by the interaction with a 
narrow-band resonator it is the value of Rsh / Q which is 
important. However, for a broad-band impedance Rsh / nr is 
more relevant, where nr is the harmonic number of the 
resonant impedance, nr = fr / f0. Macroparticle simulations 
were carried out to verify this prediction, using the code 



20 

BLonD [168]. The simulation was set up to match the 
experimental conditions at SPS flat top. The initial matched 
distribution was created iteratively and the particles were then 
tracked for 1.15 s (around twice the time of the SPS flat top). 
The criterion used to estimate the threshold was based on the 
bunch length growth and on its oscillation amplitude at the 
end of the simulation. In particular, the bunch was considered 
unstable when the final bunch length is larger than 5% of the 
initial bunch length or the maximum bunch length oscillation 
amplitude is larger than 100 ps. Initially, the case with a single 
RF system was studied. In order to compare with the above-
mentioned analytical predictions, a resonator with fr = 1.4 
GHz and the same Rsh / Q = 10 kΩ was used, while the value 
of Q (and Rsh) was scanned. The simulation results are 
summarized in Fig. 16, where the instability threshold as a 
function of bunch emittance is plotted. 

Fig.  16.  Instability threshold as a function of intensity for different Q values, 
found in simulations for a single bunch at SPS flat top (450 GeV/c) in single 
RF and for a resonator with fr = 1.4 GHz and Rsh / Q = 10 kΩ. The voltage V200 
= 2 MV. 

For Q ≥ 50 the instability threshold is practically unchanged, 
confirming the fact that only Rsh / Q is important for the bunch 
stability when the resonator is in the narrow-band regime. 
Note that for all the simulated bunches fr  τ  < 4 << 50. 
Instead, when Q < 50, Rsh becomes important for stability 
since the resonator approaches the broad-band regime. As a 
consequence, for instability in narrow-band impedance 
regime, damping the resonator does not help much since Rsh / 
Q stays constant. In particular, a damping of more than a 
factor 50 should be achieved in order to increase the instability 
threshold. Similar dependence on Rsh / Q and Q was also found 
for a double RF system when the harmonic and the voltage 
ratios are h2 / h1 = V1 / V2 = 2. The two operating modes of the 
double RF system were studied, namely the bunch-shortening 
mode (BSM) and the bunch-lengthening mode (BLM) in 
which, above transition, the phase between the two RF 
systems is π and 0, respectively. The results for Q = 250 are 
presented in Fig. 17, together with the single RF case for 
comparison.  

Fig.  17.  Instability threshold as a function of intensity found in simulations 
for a single bunch at the SPS flat top (450 GeV/c) in single and double RF 
systems (BSM and BLM) with h2 / h1 = V1 / V2 = 2. A resonator with Q = 250 
and Rsh / Q = 10 kΩ was used as an impedance source. The voltages V200 = 2 
MV and V800 = 1 MV. 

From microwave theory, it is expected that the instability 
threshold increases with relative momentum spread Δp / p 
inside the bunch [138,148,166,167]. The fact that BSM, which 
has the maximum value of Δp / p, has the highest threshold is 
in line with this. Similarly, BLM has the lowest threshold 
amongst the three cases.  However, the previous result is not 
valid anymore when the harmonic ratio between the two RF 
systems is h2 / h1 = 4, as presently in the SPS. Particle 
simulations performed for this harmonic ratio and for two 
different voltage ratios showed that above a certain emittance 
the instability threshold is higher in a single RF system (see 
Fig. 18).  

Fig.  18.  Instability threshold as a function of intensity found in simulations 
for a single bunch at SPS flat top (450 GeV/c) in single and double RF 
systems (BSM) with h2 / h1 = 4. A resonator with Q = 250 and Rsh / Q = 10 kΩ 
was used. The voltage V200 = 2 MV. 

A possible explanation of this fact can be obtained by 
inspecting the synchrotron frequency distribution inside the 
bunch fs (J), where J is the action (similar to the longitudinal 
emittance εl). Examples of distributions calculated for a bunch 
of εl = 0.6 eVs are presented in Fig. 19. Note that εl = 0.6 eVs 
corresponds to the typical emittance of LHC-type proton 
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beams at SPS flat top. As one can see, in BSM, there are 
regions with zero derivative in the tails of the bunch which can 
reduce significantly the loss of Landau damping 
threshold [169,170]. This is discussed in the next section.  

Fig.  19.  Synchrotron frequency distribution inside the bunch, corresponding 
to the points with εl = 0.6 eVs in Fig. 18, with the same color convention. 

2) Loss of Landau damping
Previous studies of beam stability in a double RF system 

already pointed out that in the BLM Landau damping can be 
lost for particles in the region where the synchrotron 
frequency distribution has its maximum outside the bunch 
center [171,172]. This region was also creating problems in 
the beam control of the CERN PS Booster due to the large 
coherent signal in a double harmonic RF system [173]. Indeed, 
large amplitude coherent response was measured in beam 
transfer function (BTF) in the BLM at frequencies 
corresponding to the maximum of the distribution [174]. 
Recently, an analytical approach made it possible to find this 
threshold through the onset of a discrete Van Kampen mode 
(coherent mode without Landau damping) by solving 
numerically the linearized Vlasov equation [169]. The latter 
method is used in [170], together with macroparticle 
simulations for inductive impedance, to explain the 
observations in the SPS during the ppbar operation. Only the 
dipole modes are addressed since they are expected to have 
the lowest threshold and no coupling between different 
azimuthal modes is considered. Two RF systems of 100 MHz 
and 200 MHz are used with voltage amplitudes V100 = 0.6 MV 
and V200 = 0.3 MV, while for the phase-space density a 
parabolic distribution was used, close to the one fitted to 
measurements. The intensity threshold of the loss of Landau 
damping Nth, for different longitudinal emittances in a double 
RF (BLM, BSM) and a single RF systems is shown in Fig. 20. 

Fig.  20.  Loss of Landau damping thresholds versus bunch emittance for a 
double RF (BLM - red, BSM - blue) and a single RF (black) systems found 
from calculations (dots) and simulations (diamonds). Application for the SPS 
during the ppbar operation at injection energy (26 GeV/c). Voltage ratio 
between the two RF systems at V1 / V2 = 2. 

For the BLM, one can see that  Nth increases with εl until some 
value of ~ 0.5 eVs. After this point further increase in εl leads 
to threshold reduction. In fact, an inspection of the incoherent 
synchrotron frequency distribution, see Fig. 21 (red curve), 
shows that the flat region where the derivative of the 
distribution is 0 (vertical line) corresponds to the critical 
emittance εcr = 0.65 eVs.  

Fig.  21.  Relative synchrotron frequency distribution for a double RF (BLM - 
red, BSM - blue) and a single RF (black) systems. No intensity effects are 
included. The vertical line at 0.65 eVs indicates the maximum of the BLM 
curve. Similar conditions as in Fig. 20. 

This result can actually explain the un-damped oscillations at 
the injection plateau during the ppbar operation, since for the 
nominal (0.65 eVs) or larger emittances the threshold for the 
loss of Landau damping is very low [175]. Although the 
spread inside the bunch is still big, the lack of stability in this 
case is determined by the non-monotonic behavior of the 
distribution function in the tails of the bunch. On the other 
hand one can see that for a double RF in BSM and a single RF 
the intensity threshold keeps increasing with the emittance, as 
was expected from the monotonic behavior of their 
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distribution functions shown in Fig. 21. For bunches with εl < 
0.2 eVs, the BLM is the preferable mode at operation, while 
after this value the threshold of the BSM is rapidly increasing, 
making this mode a better choice for stability. However, it is 
clear from Fig. 22 that the BSM is unacceptable above 0.6 eVs 
due to lack of longitudinal acceptance, which would lead to 
significant particle losses. For εl > 0.6 eVs, a single RF seems 
to be the best option. Similar results were obtained in [169] for 
a resistive wake where again the threshold for loss of Landau 
damping in BLM is the highest for small emittances but for 
higher emittances drops first below the threshold in BSM and 
then below the single RF case. 

Fig.  22.  Bucket area versus emittance for a double RF (BLM - red, BSM -
blue) and a single RF (black) in the cases corresponding to the intensity 
threshold in Fig. 20. The black straight line is the limit where εl is equal to the 
bucket area. 

C. Beam Instability Macroparticle Simulations 
 Numerical simulations have always been an important tool 
to understand the physics of collective effects in particle 
accelerators leading to beam instabilities and thus brightness 
limitations. Moreover, they are a valuable means to evaluate 
and propose mitigation techniques to improve these 
limitations. In the past, simulation tools were often geared to 
modelling certain types of collective effects. There were for 
example specialized codes to study the effect of beam-beam 
interactions, other codes were more focused on the interaction 
of a beam with impedances and yet others were used to 
investigate electron cloud effects. The understanding of the 
individual effects has improved by a large amount such that 
the combination of the different effects is becoming 
increasingly important. To systematically study these 
combined effects on the beam stability, it is mandatory to 
bring together all the specific features of collective effects 
simulation codes. 

1) pyHEADTAIL
PyHEADTAIL is a recently developed simulation code that 

is based on the HEADTAIL code [150] written in 2000 and 
originally designed to study electron cloud instabilities in 
circular accelerators. At a later stage, the HEADTAIL code 
was branched into a separate version intended to study the 
effect of impedances on beam dynamics in greater depth. The 

two versions of the code coexisted and were used to study the 
different types of instabilities separately. New effects and 
features were continuously added to enhance the beam 
dynamics model of either one of the versions. Concerning the 
code addressing the study of impedance effects, the newly 
added features covered e.g. the influence of multi-turn wake 
fields as well as the multi-bunch treatment. For the electron 
cloud version on the other hand, the modeling of wideband 
feedback systems was a major enhancement of the code. At a 
certain point during this evolution, the idea emerged to 
separate the different portions of the code into independent 
modules, each representing a separate physical phenomenon. 
This would drastically ease the maintenance of the code, allow 
to separately develop individual modules and, moreover, 
would greatly improve the extensibility, i.e. the possibility to 
easily add new modules to treat new physical phenomena 
without having to thoroughly engage into the rest of the code. 
In addition, the idea was to make the simulations scriptable. A 
simulation would no longer be statically controlled via an 
input file. Instead, different modules of the code are combined 
in a custom tailored script with all the necessary control flow 
tools provided. One therefore designs specific simulations that 
can be managed dynamically at run time. This led to the 
creation of PyHEADTAIL.  

The physical drift/kick model of PyHEADTAIL was largely 
adopted from HEADTAIL. The model treats the accelerator 
ring as a collection of interaction points distributed along its 
circumference. The interaction points are connected by ring 
segments. Hence, the ring is naturally split into a set of 
segments with an interaction point at the end of each segment 
where one or more collective effects take place as outlined in 
Fig. 23. 

Fig.  23.  Scheme of the drift/kick model adopted for PyHEADTAIL. 

A beam is modeled as a set of macroparticles, each 
represented by a charge, a mass and the generalized 
coordinates and corresponding canonically conjugate 
momenta. It is transported along one segment from one 
interaction point to the next via the linear transport map, 
which takes into account the local Twiss parameters and the 
dispersion at each interaction point. Non-linear tracking 
features are not directly included in the form of non-linear 
kicks. Instead, the effects of any non-linearities on the 
incoherent detuning are wrapped into global machine 
parameters such as chromaticity or anharmonicities, for 
example. Each segment then provides an additional detuning 
to each individual macroparticle in accordance with the 
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specified chromaticities or anharmonicities, etc. This 
treatment is crucial for collective effects to correctly model 
head-tail instabilities or Landau damping. The longitudinal 
coordinates and momenta are updated via the symplectic 
Verlet integration scheme consisting of a half drift, a kick and 
again a half drift. PyHEADTAIL features acceleration as well 
as multi-harmonic RF systems. Collective effects are applied 
at the end of each segment. Typically, these effects are 
correlated with the longitudinal position of particles within the 
beam. To make the computations numerically efficient, a 
beam is longitudinally binned into a set of slices via a 1D 
particle-in-cell (PIC) algorithm. A single slice is then thought 
to be representative for all the macroparticles contained 
within. Collective effects are correspondingly applied to the 
macroparticles on a slice-by-slice basis. To date, the 
implemented types of collective effects cover (multi-turn) 
wake fields, a transverse damper, wideband feedback systems, 
space charge and electron cloud. The algorithms that are 
implemented to treat the individual collective effects range 
from simple convolutions, used e.g. to determine the action of 
wake fields, to 2D Poisson solvers needed to compute the 
electron cloud interaction. The latter are also able to account 
for complicated geometrical boundaries using the Shortley-
Weller finite difference (FD) scheme [176]. 

The programming language of choice to write 
PyHEADTAIL was Python. Python is a modern, general-
purpose, high-level programming language that supports 
multiple programming paradigms. It is widely spread and 
supported and contains a large set of third party libraries 
specialized for scientific computing, most importantly to be 
mentioned here, the NumPy and SciPy packages. Moreover, it 
can be interfaced with Fortran or C routines via F2PY or 
Cython to speed up computationally demanding parts of the 
code and thus to overcome performance bottlenecks. Python 
has a clear and simple syntax and is said to considerably 
reduce the lines of code when compared with classical lower 
level languages such as C/C++. For these reasons, code 
readability and understanding is drastically improved, which 
reduces the chance of implementing bugs and significantly 
enhances both maintainability and extensibility of the code. 
For the general architecture of PyHEADTAIL it was thus 
decided to have the code layout and structure managed in 
Python and to provide crucial inner-loop functions in Fortran 
or C where computational speed-up is needed. Currently, 
efforts are on-going to offer optional parallelization of 
PyHEADTAIL via OPEN-MP (for multi-CPU-core usage) as 
well as CUDA (to benefit from GPU hardware acceleration). 
The PyHEADTAIL design opts to be a direct mapping of the 
underlying physical model. An object-oriented approach was 
chosen to ease the internal organization of the code and help in 
providing the desired modularity. The idea is that each 
physical entity or phenomenon should be represented by a 
class, each containing its specific attributes and methods to 
handle any processes specific to this object. Roughly, the 
classes available in PyHEADTAIL can be categorized into 
beam objects and machine objects. A beam object represents 
the physical beam as a set of macroparticles. The basic 
attributes of this set of macroparticles are the number of 
macroparticles together with the number of physical particles 
to be represented. Furthermore, there are the particle charge 

and mass and, finally, a set of generalized coordinates and the 
corresponding canonically conjugate momenta of all the 
macroparticles. The available beam methods include functions 
to evaluate beam properties such as the beam energy or the 
emittance. A machine object on the other hand knows how to 
handle a beam by modifying any of the beam attributes 
accordingly. This could for instance be the reduction of the 
number of macroparticles and physical particles of a beam by 
an aperture element or the update of the phase space 
coordinates of the beam particles by a tracking element. The 
general philosophy is that any machine object should have a 
“track” method that accepts a beam object as the only 
argument. The internal tracking routine would then depend on 
the individual machine object but the interface for tracking a 
beam is common to all machine classes. To assure this 
interface, any new machine-type class is derived from an 
abstract base class, which requires a track method with the 
given interface. That way, any new feature representing a 
physical phenomenon acting on the beam can easily be added 
as a machine-type class. Machine objects perform a variety of 
operations on the beam. Some examples are: 

• Transverse tracker: transports a beam along a ring
segment by updating its transverse coordinates and
momenta using a linear transport map according to
the local Twiss parameters of the machine;

• Longitudinal tracker: transports a beam once around
the full ring by updating the longitudinal coordinates
via a Verlet integration scheme;

• Wake field: applies wake field interaction with a
beam by updating the beam momenta after the
convolution with a given wake field;

• Aperture: removes particles from the beam according
to the provided aperture restrictions.

Apart from the beam and machine classes, there are Slicer 
objects that perform the longitudinal binning of the beam. 
They do not need to be explicitly called by the user, but are 
used internally by some of the machine-type classes in 
PyHEADTAIL. Furthermore, there are various monitor 
classes that allow the user to save the evolution of the beam 
state during the simulation in the HDF5 file format. The 
chosen design not only eases maintenance and extendibility of 
the code, but also allows for a flexible workflow for 
simulations. When setting up a simulation, which fully takes 
place in a Python scripting environment, all the 
PyHEADTAIL modules required for the simulation are 
imported first. The objects needed for the simulation are then 
instantiated with their specific interfaces ensuring that all the 
necessary parameters are provided. The design is set up such 
that all the machine object instances can simply be linked 
together to a list of accelerator element maps. That way, any 
combination of machine elements can be easily built allowing 
to study a wide variety of different configurations. The 
simulations are individually adaptable and the study of the 
combination of different collective effects becomes trivial at 
least in terms of setting up and performing the simulation. The 
code snippet responsible for the actual tracking consists of 
only three lines as depicted in Fig. 24. 
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Fig.  24.  Typical workflow when setting up a PyHEADTAIL simulation. 

Some of the applications are described below. One of the big 
advantages that come with running simulations in a scripting 
language is the dynamic control over the simulation process. 
For example, it is possible to access instance variables 
representing simulation parameters and to modify them at run 
time. This allows to seamlessly implement trim functions into 
the simulation. In principle, real machine cycles can thus be 
realistically simulated. One example where dynamically 
changing parameters have been employed is the creation of 
longitudinally hollow bunches in the CERN PSB. Here, a 
double harmonic RF system is used to shape the beam to a 
hollow ring in the longitudinal phase space. Correspondingly, 
this distribution features a flattened line charge density, which 
effectively mitigates transverse space charge, an important 
player at the low beam energies of the PSB or the PS at 
CERN. To achieve the flat bunch profile, the RF parameters 
need to be dynamically adjusted in the machine. The trim 
functions are shown in Fig. 25 and have been adopted in the 
simulations. It was shown that with these trim functions the 
hollow bunches could be reproduced in simulations. In a 
second step, the effect of longitudinal space charge was added 
and its impact on the formation of hollow bunches could be 
studied in detail. An example result obtained from such a 
simulation is shown in Fig. 26. 

Fig.  25.  Trim functions for the double harmonic RF systems. The plot shows 
the time evolution of the voltage (red) and phase (green) of the first (solid) 
and the second (dashed) harmonic RF systems. 

Fig.  26.  Hollow bunch shape in longitudinal phase space after having applied 
the trim functions shown in the figure above. The line density profile becomes 
flat. 

An example of the benefits coming with the modular design 
of the code is the creation of an interface to PyECLOUD 
[177], which is a macroparticle simulation code (see also later) 
to model the build-up of electron clouds in circular 
accelerators due to multipacting (the exponential growth of the 
number of electrons from amplification due to secondary 
emission from the inner surface of vacuum chambers). It has 
been widely used in the past to study the formation of electron 
clouds in different machines with their specific beams and has 
also been benchmarked against experiments. It features a 
sophisticated multipacting model and FD PIC solvers to model 
the collective interaction of electrons among each other and 
with the passing beam. Both the multipacting algorithm as 
well as the PIC solvers account for non-trivial boundary 
geometries. PyECLOUD includes a Boris tracker (global 
bound on energy error, though not symplectic) in order to 
correctly handle and resolve the electron dynamics in arbitrary 
magnetic fields. This allows studying the electron cloud build-
up in the vacuum chambers of dipole or quadrupole magnets, 
for example (see Fig. 27). For the study of electron cloud 
induced instabilities it is therefore natural to reuse all the 
existing features of PyECLOUD. For this, all that needed to be 
done was to provide PyECLOUD with a beam tracking 
algorithm together with an interface to PyHEADTAIL. Due to 
the orthogonal design of the PyHEADTAIL modules, no 
additional knowledge of any of the other modules was 
necessary for the successful integration of PyECLOUD. This 
made the inclusion of an entire separate code seamless and 
drastically reduced the probability of introducing any bugs in 
any of the working routines. Equipped with this additional 
feature, PyHEADTAIL was used to study electron cloud 
instabilities in different vacuum chambers with different 
magnetic field configurations for the SPS at CERN. It is also 
being used to study the beam stability in presence of electron 
clouds in the quadrupoles of the LHC and the HL-LHC, where 
the high beam energies generate very fast cyclotron motion of 

Import	  modules	   Instan/ate	  beam	  
object	  

Instan/ate	  machine	  
objects	  

Instan/ate	  any	  
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Perform	  tracking:	  
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range(n_turns): 

 for m in one_turn_map: 
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the electrons which makes the correct modeling of the electron 
motion numerically very challenging. 

Fig.  27.  Electron cloud pinch in a vacuum chamber within a quadrupolar 
magnetic field. Bright spots indicate regions with high electron cloud 
densities. 

In summary, to satisfy the needs of future studies of 
collective beam instabilities, which are increasingly focused 
towards investigating the combination of different collective 
effects, modern numerical simulation tools should provide 
simple and flexible ways to set up and perform studies of a 
variety of scenarios. With contemporary availability of 
computational power and modern scripting languages such as 
Python, PyHEADTAIL has been developed as a recent 
advancement of the original HEADTAIL code. It has been 
extended by additional features such as an improved, detailed 
treatment of electron cloud effects and has been applied to 
simulated scenarios, which would have been extremely hard to 
realize within the classical framework of HEADTAIL. The 
approach taken in the design of PyHEADTAIL is 
representative for modern numerical simulation tools for the 
study of collective beam instabilities. These tools are geared 
towards ease of maintenance and extendibility and provide the 
necessary flexibility to simply design customized simulations 
for the study of increasingly complex scenarios and the 
interplay of a variety of collective effects. 

2) pyECLOUD
Secondary electron emission in resonance with an 

alternating electric field can lead to avalanche electron 
multiplication. The underlying mechanism is called 
multipactor effect. Although desirable for some applications 
[178], it is usually associated with deleterious effects, such as 
voltage breakdown in radio frequency (RF) devices, 
outgassing, surface heating [179-181]. In the case of a particle 
accelerator operated with closely spaced bunches multipactor 
effects can occur in the beam chambers leading to the 
formation of so called Electron Clouds (EC) with several 
negative effects on the machine performances [182-186]. EC 
effects have been observed in several accelerators all over the 
world, much more commonly in those operated with positively 
charged particles (e.g. positrons, protons, heavy ions), and are 
presently among the major performance limitations for high 
energy colliders, like the Relativistic Heavy Ion Collider 
(RHIC) in the USA [187], the KEKB electron positron 
collider in Japan [188], the DAΦNE electron positron collider 

in Italy [189] and, more recently, the CERN LHC [190]. A 
qualitative picture of the EC buildup at a section of an 
accelerator operated with bunches of positively charged 
particles is sketched in Fig. 28 (see also [191]).  

Fig.  28.  Schematic of the formation of an electron cloud in a particle 
accelerator (a similar sketch can be found in [191]). 

The circulating beam particles can produce electrons due to 
different mechanisms, e.g. ionization of the residual gas in the 
beam chamber or photoemission from the chamber's wall due 
to the synchrotron radiation emitted by the beam. These are 
called “primary or seed electrons”. Seeds are attracted by the 
passing particle bunch and can be accelerated to energies up to 
several hundreds of eV. When an electron with this energy 
impacts the wall, “secondary electrons” are likely to be 
emitted. The secondaries have energies up to few tens of eV 
and, if they impact the wall with these energies, they are either 
absorbed or elastically reflected but cannot produce any 
secondary. On the other hand, if they survive until the passage 
of the following bunch they can in turn be accelerated, 
projected onto the wall and produce secondaries. This can 
trigger an avalanche multiplication effect which builds up the 
EC during the passage of an entire bunch train. The presence 
of EC in the beam chamber can limit the achievable 
performance of a particle accelerator through different effects, 
which will be briefly reviewed in the following (all these 
effects have been observed at the LHC and in its injector 
chain, as described in detail in [190]): 

• Transverse beam instabilities: the forces exerted by
the EC on the particle beam can drive transverse 
instabilities (e.g. exponentially growing oscillation of the 
particle around the nominal trajectory). Both “coupled 
bunch'” instabilities and intra-bunch motion [192] can be 
observed leading to fast transverse emittance blowup and 
particle losses, which in many cases can prevent a safe 
operation of the accelerator. Due to the important high 
frequency content, the conventional transverse feedback 
systems are usually ineffective in controlling EC induced 
instabilities. Better results can be obtained introducing 
Landau damping [192] through high chromaticity settings 
or using octupole magnets, typically at expense of 
transverse emittance preservation and beam 
lifetime [193,194]. 

• Incoherent beam effects: even when transverse
instabilities can be avoided (either because the EC 
density is low enough, or thanks to Landau damping) the 
interaction of the beam with the EC can drive incoherent 
effects e.g. slow emittance blow up, particle losses, 
transverse tune spread, which are particularly worrying in 
storage rings and particle colliders where the aim is to 
store the beam in the ring for a very long time (several 
hours) while preserving the beam quality.   

• Vacuum degradation: the electron flux on the chamber's
wall stimulates the desorption of gas molecules from the 
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surface which results in an increased residual gas density 
in the beam chamber, and therefore in a pressure 
increase. This has several deleterious effects like larger 
equipment irradiation, worse background in the 
experimental areas, increased probability of breakdown 
in high voltage devices like kickers or electrostatic septa, 
and impact on the beam lifetime [195]. 

• Heat load: the electrons also deposit energy on the
chamber's wall. While this effect is typically negligible in
room temperature accelerator components, it can become
a serious issue in devices operating at cryogenic
temperature like the superconducting magnets of the
LHC, where the EC induced heat load can reach the
cooling capacity limit of the cryogenic system [196].

• Impact on beam diagnostics: the presence of an
unforeseen electron flux can induce malfunctions on
beam diagnostics devices like pickups and Beam Position
Monitors [197].

The analysis of EC observations in the LHC and its injectors 
has raised new challenges for the EC build-up simulations. For 
a correct understanding of machine observations it is often 
necessary to deal with beams with thousands of bunches and 
with non idealities like non uniform bunch populations and 
bunch lengths along the beam. Beside the usual simulation 
scenarios of field free regions and dipole magnets, also more 
complex situations needed to be addressed, like the EC 
buildup in quadrupoles or combined function magnets and 
with two counter-rotating beams in the same chamber. 
Moreover, the demand for extensive parameter scans gave 
quite stringent requirements in terms of speed and reliability. 
CERN has a long experience in the EC build-up simulation, 
mostly carried out with the ECLOUD code, developed and 
maintained at CERN since 1997 [191,198,199,150] and, more 
recently, a fully reorganized simulation code has been 
developed in order to better fulfill the aforementioned 
requirements. The new code has been called PyECLOUD, 
since it is almost entirely written in Python and inherits the 
physical models of the ECLOUD code.  

PyECLOUD is a 2D code that simulates the EC buildup in a 
thin slice around a certain section of a particle accelerator. 
Electrons are grouped in MacroParticles (MP) in order to 
achieve a reasonable computational burden and the dynamics 
of the MP system is simulated following the flow diagram 
sketched in Fig. 29.  

Fig.  29.  Flowchart representing PyECLOUD main loop. 

At each time step, seed electrons due to residual gas ionization 
and/or to photoemission, are generated with a number 
consistent with the passing beam slice. Then the electric field 
acting on each MP is evaluated: the field of the beam is 
precomputed on a suitable rectangular grid (using analytic 
expressions for special chamber and beam shapes or an Finite 
Difference Poisson solver for more general cases) and 
obtained at each MP location by a linear interpolation. The 
electron space charge contribution is calculated using a 
Particle In Cell (PIC) algorithm based on a Finite Difference 
solution of the Poisson equation. Curved chamber boundaries 
can be accurately simulated since the Shortley-Weller method 
is implemented in the code [200] and a significant speed-up is 
obtained by pre-computing the LU factorization of the 
inherent matrix and reusing it at the different time steps. Once 
the total electric field at each MP location is known, MP 
positions and momenta are updated by integrating the equation 
of motion. At this stage the presence of an externally applied 
magnetic field can also be taken into account. To obtain 
sufficient accuracy also for long-lived electrons, e.g. those 
trapped in the quadrupole fields [201], the Boris tracking 
algorithm is used [202]. At each time step, a certain number of 
MPs can hit the wall. In these cases a proper model of the 
secondary emission process is applied to generate charge, 
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energy and angle of the emitted electrons. One of the 
peculiarities of the EC buildup process is the fact that, due to 
the exponential rise driven by multipacting, the number of 
electrons can spread several orders of magnitude along the 
passage of the bunch train (see Fig. 30 (top)).  

Fig.  30.  Top: evolution of the number of electrons in the beam pipe for an 
LHC type beam with 25 ns bunch spacing in the SPS (2 trains of 72 bunches. 
MBB type magnet); middle: evolution of the reference MP size; bottom: 
evolution of the number of MPs, the regeneration threshold is highlighted in 
red. 

As a consequence, it is impossible to choose a MP size, which 
is suitable for the entire simulation, allowing both a 
satisfactory description of the phenomena and a 
computationally affordable number of MPs at every stage of 
the simulation. The MP size management in PyECLOUD has 
been modified from the ECLOUD concept and will be briefly 
described in the following. MP sizes are not enforced 
throughout the simulation process but are determined step by 
step by “decisions” taken during the execution. For this 
purpose a target MP size nref, dynamically adapted during the 
simulation, is employed to control the number of electrons per 
MP. In particular: 

• The size of MPs generated by seed mechanisms is
exactly nref;

• When a MP hits the wall, it is simply rescaled
according to the Secondary Electron Yield (SEY) if
the emitted charge is below 1.5 nref, otherwise
“true” secondary MPs are generated so that the
resulting MP size is as close as possible to nref;

• Once per bunch passage, a cleaning procedure is
performed, which deletes the MPs with charge
lower than 10-4 nref.

The target MP size nref is changed whenever the total number 
of MPs becomes larger than a certain threshold defined by the 
user (typical value ~ 105), which means that the computational 
burden has become too high. When this happens, a 
regeneration of the set of MPs is applied, by performing the 
following procedure (see Fig. 30): 

• Each MP is assigned to a cell of a uniform grid in
the 5-D phase space (x,y,υx,υy,υz) obtaining an
approximation of the phase space distribution of the
electron gas;

• The new nref is chosen in order to get a target
number of MPs (typically 5-10 times smaller than
the regeneration threshold), which still allows for

an accurate simulation but with a more reasonable 
computational effort; 

• A new set of MPs, having the new reference size, is
generated according to the computed distribution.

The preservation of the entire phase space is very important in 
EC build-up simulation since the dynamics imparted by 
passing bunches generates very distinctive velocity 
distributions at the different time steps and the conservation of 
few specific lower order moments (e.g. total charge, total 
energy) might not guarantee a sufficient accuracy. 

Several numerical tests have shown that the errors on the 
total charge and the total energy which are introduced by this 
procedure, are about 1 % at the first time step after the 
regeneration and they become even smaller after the first 
bunch passage following the regeneration.  

The passage from ECLOUD to PyECLOUD had a 
significant impact on the performances both in terms of 
accuracy and of computational efficiency. Furthermore, the 
new code has been designed in order to offer an increased 
usage flexibility, allowing to deal with irregular beam 
structures e.g. non uniform bunch intensity and/or bunch 
length along the bunch train, irregular bunch spacings and 
bunch profiles. Thanks to these new features, PyECLOUD has 
been already largely applied at CERN for several EC 
simulation studies for the LHC and its injector chain [203-
206]. In particular PyECLOUD simulations have been used to 
reconstruct the evolution of the SEY of the chambers in the 
LHC arcs, from the measurement of the heat load deposited on 
the beam screen of the cryogenic magnets. Simulation studies 
have also addressed the EC formation in the common vacuum 
chambers of the LHC. Examples of this kind of application are 
described in [190], showing the capability of PyECLOUD to 
deal with beams made of thousands of bunches with irregular 
spacings. The new code also allows us to estimate the bunch 
by bunch energy loss due to the interaction of the beam with 
the EC and to export the electron distribution seen by each 
bunch. The first feature allowed us to benchmark the results 
against bunch by bunch stable phase measurements, as shown 
in Fig. 31, while the second was used, together with 
HEADTAIL simulations, to analyze the instabilities observed 
in the LHC with 25 ns bunch spacing [207]. 
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Fig.  31.  Simulated and measured energy loss for a train of 72 bunches with 
25 ns spacing circulating in the LHC. 

D. Effect of Transition Energy on the Transverse Mode-
Coupling and Electron Cloud Instabilities: Example of the 
CERN SPS 
 The transition energy of a circular accelerator can have a 
strong impact on the intensity thresholds for coherent beam 
instabilities, as seen before. The same threshold scaling 
applies to the single bunch instability driven by e-cloud, in 
case the wake field generated by the electrons can be 
approximated by a broad-band resonator. In case a machine is 
operated not too far from transition, a relatively small change 
of γ!" can result in a significant increase of the absolute value 
of the slippage factor and thus to significantly higher 
thresholds for these instabilities in case the RF voltage is 
adjusted such that the bucket area and thus the bunch length 
remain constant. This can be understood intuitively, since the 
larger absolute value of the slippage factor results in faster 
synchrotron motion and this is the basic stabilization 
mechanism for instabilities of the strong head-tail type. The 
effect of the transition energy on these types of instabilities is 
illustrated by the example of the CERN SPS in the following. 
The SPS machine optics used for LHC type beams until 2012 
has a gamma at transition of 𝛾!" = 22.8 and is called Q26 
according to the integer part of the betatron tunes 𝑄! ,𝑄! =
26.13, 26.18 . Since the LHC proton beams are injected at 26 
GeV/c and thus above transition, reducing the transition 
energy of the lattice results in a higher slippage factor 
throughout the acceleration cycle. This is illustrated in Fig. 32, 
which shows 𝜂 normalized to the value in the nominal SPS 
optics as function of γ!" for the case of injection (26 GeV/c) 
and extraction (450 GeV/c). Note that the largest relative gain 
can be achieved at injection, which is the most critical part of 
the cycle with respect to the TMCI in the SPS. 

A new optics configuration with lower transition energy has 
therefore been developed [208] to overcome the TMCI at SPS 
injection for reaching the future beam intensity requirements 
of the LHC. Compared to the Q26 optics, the working point in 
this so-called Q20 optics is lowered by six integer units 

𝑄! ,𝑄! = 20.13, 20.18  in both planes such that the 
transition energy is reduced to 𝛾!" = 18 and at injection 
energy a 2.85 times larger slippage factor is achieved.  
Experimental and simulation studies have been performed in 
order to compare the intensity threshold for the TMCI in the 
vertical plane at SPS injection in these two optics 
configurations in the same experimental conditions. In Q26, 
the RF voltage of the main 200 MHz RF system was set to 
1.4 MV. In order to achieve the same bucket area in the two 
optics, the voltage was increased to 4.0 MV in Q20. The 
800 MHz cavity was operated in bunch shortening mode at 
10% the voltage of the main RF system. The vertical single 
bunch TMCI at injection is one of the main intensity 
limitations for LHC beams in the Q26 optics. For bunches 
injected with the nominal longitudinal emittance εl = 0.35 eVs, 
the corresponding instability threshold is around 1.6×1011 p/b 
(with vertical chromaticity adjusted close to zero) [209]. The 
instability results in emittance blow-up and fast losses as 
shown in Fig. 32 (top). A significant increase of the ratio of 
the slippage factor and the vertical beta function at important 
impedance sources |𝜂|/𝛽! is about 2.5 times higher compared 
to the Q26 optics (the beta functions are slightly higher in 
Q20). This has been verified in measurements with high 
intensity single bunch beams as shown in Fig. 32 (bottom), 
where the instability threshold in the Q20 optics for 
chromaticity close to zero and the nominal longitudinal 
emittance of εl = 0.35 eVs at injection was found at around 
4.5×1011 p/b, in good agreement with the analytical estimation 
(see Eq. (28)). 

Fig. 32.  Slippage factor η relative to the slippage factor of the nominal optics 
(𝛾𝑡𝑟 = 22.8) plotted as a function of 𝛾𝑡𝑟. The two curves show the case of
injection and extraction momentum.  

Fig. 32.  Intensity as function of time after injection in the Q26 optics (top) 
and in the Q20 optics (bottom). Red traces indicated unstable beam conditions 
and green traces correspond to stable conditions. 



29 

 The TMCI intensity threshold in the Q20 and the Q26 
optics was also characterized as a function of the longitudinal 
emittance and the bunch intensity [208] as shown in Fig. 33 
(left). Each measurement point corresponds to the injection of 
a single bunch into the SPS. Cases in which the beam was 
stable are indicated by green dots. Injections where the beam 
was unstable are marked by red dots if losses occurred within 
the first 1000 turns (“fast losses”) and blue dots if losses 
occurred later in the cycle (“slow losses”). In the case of the 
Q26 optics, a linear dependence of the intensity threshold as a 
function of the longitudinal emittance is observed, as expected 
from the analytical models. In addition to the strong TMCI at 
high intensity, an area of “weak instability” is observed in the 
Q20 optics for longitudinal emittances below εl ≈ 0.32 eVs 
and intensities between 1.1×1011 p/b and 2.3×1011 p/b. 

The experimental observations in the two SPS optics are 
compared with numerical simulations using the wake 
functions obtained from the SPS impedance model [210], 
which reproduces almost completely the measured vertical 
coherent tune shift with intensity. Note that in the beam 
stability simulations presented here the impedance of the SPS 
transition pieces between the different types of vacuum 

chamber geometries is not yet included. However, simulation 
results indicate that they play a minor role for the TMCI 
instability thresholds. Figure 33 (right) shows the vertical 
growth rate as a function of longitudinal emittance and 
intensity for the two SPS optics as obtained with the 
macroparticle code HEADTAIL. Both the 200 and the 800 
MHz RF systems and the non-linear chromaticity up to third 
order measured in a separate experiment [208] are taken into 
account. The threshold intensities are very similar to those 
observed in the measurements. Furthermore, the area of slow 
instability experimentally found in the Q20 optics is 
reproduced in the simulations. Figure 54 shows the measured 
intra bunch motion for a few example cases in comparison 
with the results of the HEADTAIL simulations. A clear 
traveling wave pattern without nodes is observed in the 
measurement for high intensity in the Q26 optics, which is a 
typical signature of a TMCI. A very similar intra bunch 
motion is also observed in the simulation for comparable beam 
parameters (see Fig. 34). Two cases are shown for the Q20 
optics: for high beam intensity, where the strong instability 
appears, a traveling wave pattern is observed. For an 
intermediate intensity at which the weak instability occurs, the 
intra bunch motion has one node in the center of the bunch. 

Fig. 33.  Measurements of the beam stability at injection with low vertical chromaticity (left) and comparison with the growth rate as predicted by HEADTAIL 
simulations (right) for the Q26 optics (top) and Q20 optics (bottom). 
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The TMCI observations in the two SPS optics for different 
ranges of intensities and longitudinal emittances can be 
reproduced in excellent agreement by numerical simulations 
when using the detailed SPS impedance model. The scaling of 
the intensity threshold for the fast TMCI at injection between 
the Q26 and the low gamma transition Q20 optics is similar to 
analytical models based on a broadband resonator impedance. 
With the Q20 optics the TMCI is not of concern for the beam 
parameters envisaged for the upgrades. 

In addition to the TMCI at injection, the electron cloud 
effect can be a serious performance limitation for the 25 ns 
LHC proton beams in the SPS, as discussed above. The 
threshold of the single bunch electron cloud driven instability 
(ECI) in the SPS has been studied in numerical simulations 
using HEADTAIL. 

It is not attempted to provide an exact prediction for the ECI 
thresholds in the two optics, in particular since the studies 
presented here are based on simplified assumptions, such as 
for example a uniform initial electron distribution. It is rather 
intended to obtain a relative scaling of the ECI threshold 
between the Q26 and the Q20 optics in particular at injection 
energy, at which electron cloud effects in the SPS are usually 
most critical. First the effect of the transition energy on the 
instability threshold is studied. Some existing models for the 
electron cloud single bunch instability predict that the 
threshold electron density for the ECI onset scales linearly 
with the synchrotron tune 𝑄! under the assumption that the 
bunch length is a given parameter and the RF bucket area is 
kept constant. Note that in this case the change of the 
synchrotron tune is proportional to the change of the slippage 
factor. Figure 35 shows the threshold electron density as 
function of the synchrotron tune as obtained in HEADTAIL 
simulations assuming the presence of a dipole magnetic field 
for beam and machine parameters at SPS injection [208] and 
zero chromaticity. The expected linear scaling is found. The 
dependence of the threshold electron cloud density on the 
optics functions is more complicated compared to the TMCI 
caused by an impedance source. In particular the electron 
oscillation frequency around the bunch center due to the 
attractive electric field generated by the protons is a function 
of the beam size and thus the wake field generated by the 
electron cloud depends on the optics functions. Therefore the 
corresponding average beta functions in the long straight 
sections and in the bending magnets of the SPS are used for 
comparing the instability thresholds between the two SPS 
optics configurations in dipoles and in field free regions, 
respectively. The resulting threshold electron densities are 
shown in Fig. 36 for the intensity range of interest for the 
future upgrades. In both field free regions and dipole regions 
the electron density threshold in the low gamma transition 
Q20 optics is about two times higher compared to the Q26 
optics. The difference between the two optics seems to be 
more significant at lower bunch intensities. In field free 
regions, the electrons can move freely in both transverse 
directions and thus the proton bunch can become unstable in 

Fig. 34. Vertical intra bunch motion in the SPS Head-Tail monitor 
measurement (left) in comparison with the corresponding HEADTAIL 
simulations (right) for one case of the Q26 and two cases of the Q20 optics. 

Fig. 35. HEADTAIL simulations yielding the instability threshold density as 
function of the synchrotron tune for constant bunch parameters. Simulated 
points are compared with the predicted linear dependence. 
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both planes. However, the beam stability is observed to be 
more critical in the vertical plane.  

In summary, a clear effect of the transition energy on beam 
stability was demonstrated (as predicted) on the example of 
the CERN SPS for the TMCI and the ECI. Due to the fact that 
LHC beams are always injected above transition in the SPS, 
the slippage factor and thus the instability thresholds are raised 
throughout the acceleration cycle by lowering the transition 
energy. In particular, the thresholds for the TMCI and the ECI 
are about 2.5 and 2 times higher compared to the normal SPS 
optics used in the past. Since the change of the SPS optics did 
not require any hardware modification, a very cost effective 
solution to overcome important performance limitations for 
LHC beams in the SPS has been found. The example of the 
SPS demonstrates the importance of the interplay between the 
machine optics and collective effects and the potential for 
performance optimization by optics manipulations. 

IV. THE EXAMPLE OF THE CERN IMPEDANCE MODELS:
COMPARISON BETWEEN THEORY, SIMULATIONS AND BEAM-

BASED MEASUREMENTS 
Impedance models have been developed in the past for most 

of the accelerators in the world, with more or less efforts and 
with more or less success. Some observables from beam-based 

measurements often revealed a factor 2 in the best cases, 
which was most of the time sufficient. For a decade a lot of 
efforts have been devoted at CERN (in the framework of 
upgrade projects) to develop more precise impedance models 
for the different machines such as the PSB, PS, SPS and LHC. 
The example of the SPS (longitudinal and transverse) and 
LHC (longitudinal) impedance models are discussed below. 

A. CERN SPS Transverse Impedance 
The latest SPS transverse impedance model includes kicker 

magnets, wall impedance, transition pieces (e.g. flanges and 
vacuum chamber discontinuities), beam position monitors and 
RF cavities. Analytical models, 3D simulations and bench 
measurements are used to estimate these contributions. The 
SPS impedance model is dynamical because it needs to be 
updated to include newly identified impedance sources as well 
as modifications of installed elements or new elements. The 
model has been successfully benchmarked against 
experimental observations (coherent tune shift, transverse 
mode coupling and headtail instability measurements). The 
present version of the SPS transverse impedance model, which 
we present here, includes the following contributions: 

• Kicker magnets. They are likely to be the most
important impedance source in the SPS. In a very
simple approximation a SPS ferrite loaded kicker can
be modelled as two parallel plates of ferrite. For this
simple geometrical model all the impedance terms
(longitudinal, driving and detuning horizontal and
vertical impedances) have been calculated
analytically. CST 3D simulations were found to be in
very good agreement with the analytical results. The
excellent agreement between analytical model and
numerical simulations can be read as an important
benchmark for the simulation code in the correct
solution of electromagnetic problems involving
dispersive materials such a ferrite. In the framework
of an improvement of the kicker impedance model
we performed a step by step simulation study starting
from the simplest model and introducing one by one
the new features that make the model gradually
closer to reality. This approach allows for a good
understanding of the different contributions brought
to the kicker impedance by the different aspects.
First, the ferrite is assumed to be C-shaped and the
whole finite length device is inserted in the vacuum
tank and equipped with an inner conductor [211]. In
order to further approach a more realistic model other
aspects have to be included: the cell longitudinal
structure, also called segmentation, which determines
a significant increase of the beam coupling
impedance for the SPS injection kickers (due to the
short cell length) and the serigraphy for the SPS
extraction kickers. All the details about the SPS
kicker impedance model can be found in [210].

• Wall (resistive wall and indirect space charge), based
on analytical calculation taking into account the
different SPS vacuum chambers [210];

• Beam position monitors, based on CST 3D
simulations [100];

• RF cavities, based on CST 3D simulations [212];

Fig. 36. : HEADTAIL simulations yielding the instability threshold 
density as a function of intensity per bunch comparing the Q26 with the 
Q20 optics for field free regions (top) and for the electron cloud located in 
dipole magnets (bottom), assuming the corresponding average beta 
functions in the respective locations. 
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• Broadband impedance from step transitions, based on
the information for the SPS flanges collected during
the task force for the identification of the longitudinal
impedance source responsible of the impedance peak
at 1.4 GHz observed during beam
measurements [102]. The broadband impedance
contribution of each type of transition has been
obtained by means of CST 3D simulations.

Figure 37 shows the full SPS impedance model including all 
the impedance sources analyzed weighted by the respective 
length and beta functions for the horizontal and vertical 
driving and detuning impedances [210].  

Fig. 37.  Horizontal (top) and vertical (bottom) SPS impedance model. 

The model has been found to reproduce with very good 
accuracy coherent tune shift measurements (which give an 
integrated information about the effective impedance of a 
machine, which depends on both its full impedance and the 
length/shape of the bunch used for the measurements, see 
later) in both transverse planes [213] (see Fig. 38). Moreover, 
macroparticle HEADTAIL simulations have been found in 
very good agreement with TMCI and headtail instability 
measurements [213,214]. We present here (see Fig. 39) the 
benchmark with the headtail instability measurements (the 
benchmark with TMCI measurements was discussed before).  

Fig. 38.  (Top) vertical tune versus bunch intensity. Measurements performed 
in September 2012. (Bottom) horizontal tune versus bunch intensity. 
Measurements performed in March 2013. 
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Fig. 39.  Comparison between measurements and simulations of the headtail 
vertical growth rates vs. the chromatic frequency, for both Q20 (top) and Q26 
(bottom) optics. 

In conclusion, the HEADTAIL simulations using the present 
version of the CERN-SPS transverse impedance model have 
been found to reproduce the headtail vertical instability 
measurements (growth rates and intra-bunch motion). This 
result, together with the successful benchmark for the coherent 
tune shift and for the TMCI instability behavior make the SPS 
a fine example of a machine, whose impedance model can 
reproduce experimental results with an unprecedented degree 
of accuracy for particle accelerators. Such an accurate 
impedance model can be used to drive machine impedance 
optimization and to estimate the impact on the beam stability 
of accelerator elements before installation in the machine. The 
models must be kept up to date according to modifications. 
Measurements of the tune shifts versus chromaticity are 
foreseen to further benchmark the impedance model. 

B. CERN SPS Longitudinal Impedance 
The present longitudinal impedance model of the SPS is a 

result of intensive impedance calculations and measurements, 
often driven by beam studies. Indeed, even after the successful 
impedance reduction in 2000, which eliminated the 
microwave instability caused by ~ 800 inter-magnet pumping 
ports, longitudinal instability in the SPS is still one of the main 
intensity limitations for future high intensity beams [215]. It is 
observed during acceleration for both single- and multi-bunch 
beams at intensities well below the nominal LHC intensity. 
The production of the higher intensity beams required by the 
HL-LHC project cannot be guaranteed without eliminating the 
source of this instability [216]. Possible sources are the 
fundamental and high order modes of the main (200~MHz) 
and high harmonic (800~MHz) RF systems as well as the 
impedance of the vacuum flanges. The latter contribution, 
discovered only recently, consists of many high frequency 
resonances in the range (1.2-2.5) GHz [217] with the highest 
peak at 1.4 GHz, seen first in the measurements with long 
bunches and RF off [218]. The example of the unstable bunch 
spectra obtained from measurements and simulations using the 
present SPS impedance model is shown in Fig. 40. The growth 
rate of the instability at frequency close to the resonant 
frequency depends on Rsh / Q of the impedance and peak 

positions in the spectrum give valuable information about 
important sources of the impedance in the ring. 

Fig. 40.  Projection of spectrum evolution of unstable long bunches on the 
SPS flat bottom with RF off in measurements (black dashed line) and 
simulations with two different particle distributions using the present SPS 
impedance model. Bunches had an average length of 25 ns and an intensity of 
1.0 1011 p/b. 

The measured and simulated single bunch instability 
thresholds are visible from bunch length measurements on the 
SPS flat top presented in Fig. 41. One can see that the 
simulations [219] performed using the present SPS impedance 
model are in good agreement with two sets of measurements 
done in 2012 and 2014. An inverted  dependence of instability 
threshold on bunch emittance for these particular beam 
parameters is due to effect of the potential well distortion  in a 
double RF system (200 MHz and 800 MHz). 

Fig. 42.  Measured and simulated bunch length as a function of intensity on 
the SPS flat top (450 GeV/c) for two values of the longitudinal emittance. At 
450 GeV/c the RF voltage at 200 MHz was 2 MV and 0.2 MV at 800 MHz. 

The measured multi-bunch instability threshold is different 
for 25 ns and 50 ns spaced bunches but it doesn't depend on 
the number of batches in the ring (with 225 ns batch gaps). 
This points out to the short-range wake which is compatible 
with the main impedances of the 200 MHz and 800 MHz RF 
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systems which have, correspondingly, quality factor Q of 150 
and 300, as well as with vacuum flange impedance at 1.4 GHz 
with Q ~ 200. As expected from scaling of coupled-bunch 
instability threshold [220], it clearly depends on energy and 
longitudinal emittance: more dense bunches become unstable 
earlier in the cycle. In present operation the LHC beams are 
stabilized by increased synchrotron frequency spread (Landau 
damping) using the fourth harmonic RF system in bunch-
shortening mode and controlled longitudinal emittance blow-
up performed by band-limited noise. The emittance blow-up in 
a double RF system has its own limitations due to 
modification of the synchrotron frequency distribution by 
presence of beam loading [221]. The thresholds were also 
increased in the new SPS optics (Q20) with lower transition 
energy (γt = 18 instead of the previous γt = 22.8 with the Q26 
optics) [208]. For a low transition energy the expected 
increase in longitudinal instability threshold is proportional to 
the slip factor [222]. However for the same longitudinal 
parameters the required voltage also scales as the absolute 
value of the slip factor. Already the maximum 200 MHz 
voltage is used for beam transfer to LHC, but the controlled 
emittance blow-up could also be reduced for the same 
intensity. This scaling was tested by measurements performed 
in different beam studies [208]. Significant improvement in 
beam stability (around factor 3) was obtained on the flat 
bottom. However on the flat top the high harmonic RF system 
is still insufficient for stability of high intensity beams and one 
needs in addition the controlled emittance blow-up.  

Single short bunches injected into mismatched RF voltage 
continue to oscillate on the SPS flat bottom for many seconds. 
The reactive impedance, responsible for this loss of Landau 
damping, was probed at the 26 GeV/c flat bottom by 
measuring the synchrotron frequency shift as a function of 
intensity for different bunch lengths. The comparison of 
measured and simulated synchrotron frequency slopes are 
shown in Fig. 43. At this beam energy the space charge 
contribution should also be included into the SPS impedance 
model used in simulations. The calculations done for realistic 
transverse emittances taking into account bunch and vacuum 
chamber size variation over the ring give 1.1 Ω for the Q20 
optics (1.2 Ω  for the previous, Q26 optics).  One can see that 
for certain bunch lengths the shifts are close to zero. This is a 
result of a complicated dependence of the SPS reactive 
impedance on frequency and in particular of the presence of 
the high frequency impedance from vacuum flanges. The new 
SPS impedance reduction programme, which will include 
shielding or redesign of the vacuum flanges in under 
discussion in the frame of the CERN LIU project [215]. 

Fig. 43.  Slope b of quadrupole synchrotron frequency shift with intensity f2 = 
a + b N found from measurements and simulations for different bunch lengths 
in the Q20 optics at 26 GeV/c. 

C. CERN LHC Longitudinal Impedance 
During the design phase of the LHC, significant efforts were 

made to reduce its impedance in order to minimize the impact 
of collective effects on the accelerator performance. 
According to the LHC Design Report [223] and the current 
LHC impedance model [105], the reactive part of the LHC 
effective longitudinal impedance ImZ / n is 0.08 Ω. This value 
is very small compared to other CERN proton accelerators, 
e.g. 4 Ω in the SPS and 20 Ω in the PS. Therefore, beam 
measurements of the LHC impedance with usual methods are 
very challenging. This impedance is however sufficient to 
cause loss of Landau damping during acceleration leading to 
single-bunch instability in the LHC [224]. Therefore, 
controlled longitudinal emittance blow-up is required in 
operation. So far, observation of loss of Landau damping was 
found to be the most sensitive method for validation of the 
LHC impedance model. During one measurement session in 
2012, 4 bunches of similar intensity (~ 2.4 1011 p/b) and 
different longitudinal emittances were accelerated to 4 TeV 
with phase loop off. The energy Eth at which bunches became 
unstable is shown in Fig. 44, and the dependence on the 
longitudinal emittance is in accordance with the expected 
scaling Eth ∝ εl

2 [225-227]. These measurements show that the 
nature of the instability observed is compatible with loss of 
Landau damping. From measurements made during another 
session in 2012 at 4 TeV and with an RF voltage of 12 MV, 
the threshold of loss of Landau damping was found to be 
around 1 eVs for a bunch intensity of 1.0 1011 p/b  [228]. With 
the aim of reproducing the measurements at 4 TeV, 
simulations using the LHC impedance model were performed 
with the code BLonD [168]. The generated particle 
distribution was similar to the measured one and matched with 
intensity effects. Then a phase kick of 1° was applied to the 
bunch and the bunch phase oscillations were observed. 
Figure 45 shows the intensity threshold for different 
longitudinal emittances found in simulations and in 
measurements. Unfortunately only one point is available from 
measurements up to now, for which the agreement is very 
good. The dependence of the threshold on the longitudinal 
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emittance is in accordance with the expected scaling Nth ∝ εl
5/2 

[225-227]. 

Fig.  44.  Measured energy threshold Eth of loss of Landau damping as a 
function of longitudinal emittance εl with phase loop off. The dashed line is 
the fit of the measurements according to Eth∝ εl. 

Fig.  15.  Intensity threshold of loss of Landau damping from simulations 
(blue circles) together with the expected scaling 𝑁!! ∝ 𝜀!/! (dashed line) and 
the measured threshold (red cross). 

The reactive impedance ImZ /  n can also be estimated from 
the measured incoherent synchrotron frequency shift Δ𝑓! with 
intensity. The expected frequency shift can be calculated for a 
Gaussian bunch with intensity N and 4𝜎 length  𝜏 using the 
following expression (e.g. [135]) 

  Δ𝑓! =   −𝑓!
2
𝜋

!
! 16  𝑁  𝑒  𝜔!  ℎ!

𝑉  (2  𝜋  ℎ  𝑓!  𝜏)!
𝐼𝑚𝑍
𝑛

,     (30) 

where h is the harmonic number and V is the RF voltage. Two 
different methods were used to measure  Δ𝑓!.  In the first one, 
the synchrotron frequency was obtained from the quadrupole 
line of the peak-detected Schottky spectrum [229]. 
Measurements done with bunches of the same length (1.4 ns) 

and a difference in intensity of 1.0×10!!  show that the 
frequency shift is smaller than 0.5 Hz. Although this result is 
at the limit of the measurement accuracy, it is in agreement 
with the expected frequency shift found from (1), Δ𝑓! =
0.38 Hz. The incoherent synchrotron frequency shift was also 
estimated from measurements using an RF phase modulation 
at 450 GeV [230]. A sine-wave modulation was applied to 8 
bunches, which had close longitudinal emittance and different 
intensities. The modulation frequency was reduced in steps of 
0.1 Hz starting from 55.3 Hz, above the linear synchrotron 
frequency 𝑓!! = 55.09 Hz for an RF voltage V = 6 MV. A 
bunch with 𝑁   =   0.8×10!! and 𝜏 = 1.2 ns was excited with a 
frequency 0.1 Hz higher than one with 𝑁   =   1.4×10!! and 
𝜏 = 1.35 ns. This measurement is in good agreement with the 
expected 0.11 Hz shift calculated from Eq. (30).  

A first attempt to measure the resistive part of the 
longitudinal impedance was done using synchronous phase 
measurements. This method was successfully used to measure 
the energy loss due to electron-cloud [231], which produces a 
synchronous phase shift in the order of 1° with 25 ns spaced 
bunches. The expected phase shift due to the resistive 
impedance is smaller, in the order of 0.1° for 1 ns long 
bunches with a difference in bunch intensity of 1.0×10!!, 
which is approximately in the same order as the systematic 
errors in the measurements. The accuracy of the method is 
therefore not enough to measure the absolute value of the 
resistive impedance, but it can be used for relative 
measurements. For example, it was used to measure the 
resistive impedance of the LHC beam injection beam stopper 
(TDI) [232] and results are in agreement with electromagnetic 
simulations. Some improvements were done during the LHC 
Long Shutdown 1 (2013-2015) to the synchronous phase 
measurement system in order to reduce the systematic errors 
and new attempts to measure the resistive impedance will be 
done during the LHC Run 2 in 2015.

V. EFFECTS OF OTHER MECHANISMS ON THE IMPEDANCE-
INDUCED BEAM INSTABILITIES 

A. Transverse Damper 

1) NHT Vlasov solver
So far, solutions of the Vlasov equation were limited by 

rather simple cases (see e. g. Ref [1]), insufficient to tell about 
complicated reality of multi-bunch beams with feedbacks and 
octupoles, and also beam-beam effects in colliders. That is 
why a second approach to beam stability problems, 
macroparticle simulations, attracted more and more attention, 
driven by continuing burst of computational powers. For 
colliders, such codes as HEADTAIL [150] and 
BeamBeam3D [233] are known and used for more than ten 
years. Attractiveness of the macroparticle tracking programs is 
related to their similarity to real beams; they appear to be as 
close to reality as possible, allowing rather straightforward 
introduction of all the factors influencing beam stability. 
However, an attempt of these direct simulations of reality has 
its drawback: convergence typically requires a big number of 
macroparticles per bunch, at the order ~106 or so. For 
thousands bunches per beam in the collider, it makes a 
required study of multi-dimensional space of parameters so far 
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impossible by means of the macroparticle tracking – even with 
the help of parallel computations by powerful supercomputers.  

This limitation of the tracking methods brings us back to the 
Vlasov equation with a motivation to develop more 
sophisticated methods of its solution, where all important 
factors of reality would be properly taken into account. The 
Nested Head-Tail (NHT) Vlasov solver suggests an attempt in 
this direction [234]. Its name points to its primary idea: 
solutions of the Vlasov equation are sought as expansions over 
conventional head-tail functions, defined at a set of nested 
rings in the longitudinal phase space. Since the impedance, 
feedback, and coherent beam-beam are described by linear 
response functions, their analysis is reduced to a standard 
eigensystem problem that is solved instantaneously, as soon as 
the related matrices are defined. After this is done, growth 
rates and tune shifts of all potentially dangerous modes are 
known. However, with any feedback, that pure linear system 
is still unstable: its stabilization requires some Landau 
damping, an intrinsic self-stabilization mechanism caused by 
nonlinearity of single-particle motion. In general, these 
anharmonicities lead to very complicated equations (see e.g. 
Eq.(6.179) in Ref. [1]). However, for many practical cases, the 
anharmonicities may be treated as perturbations of the linear 
system. When Landau damping moves the coherent tune shifts 
not by much, it can be found as a perturbation. That is how 
Landau damping is treated by the NHT, allowing finding 
thresholds of the instabilities, with both octupoles and beam-
beam nonlinearities taken into account. Fortunately, for many 
practical cases this perturbative approach to Landau damping 
is justified. For pure transverse nonlinearities it leads to well-
known dispersion relations (see Ref. [235] and references 
therein). Otherwise, more general form of the dispersion 
relation has to be applied, see a section “Landau Damping” in 
Ref. [234].   

In Ref. [236], the instability growth rate computed from the 
BeamBeam3D [233] tracking simulations for LHC parameters 
is presented as a function of the chromaticity and damper gain 
(the gain here is in unit of synchrotron tune and 1.4 
corresponds to a damping time of 50 turns). For those 
simulations, a single 3D-Gaussian bunch per beam and single 
IP were assumed. The intensity and collision parameters were 
taken close to the end of the beta-squeeze case. Namely, 10 
rms beam radius of the beam-beam separation was assumed, 
and the computed beam-beam long-range kick was 
additionally enhanced by a factor of 10, thus simulating 10 
identical long-range collisions instead of one. The IP optics 
was taken as perfectly round, all the octupoles were zeroed, 
the potential well was supposed to be ideally parabolic, and 
the doubled nominal impedance of the LHC [47] was 
implemented. To make a comparison, NHT computations 
were fulfilled for the same conditions. 

Fig.  46.  Threshold chromaticity versus the damper gain for BeamBeam3D 
tracking (circles) [233] and NHT solutions (squares). 

In Fig. 46, these results of BeamBeam3D are presented 
together with corresponding NHT ones. The NHT results 
reflect eigenvalue computation with both coherent and 
incoherent beam-beam on, followed by analysis of the stability 
diagram. Since implementation of the incoherent beam-beam 
effects is formally identical to the octupoles, the good 
agreement between the two principally different codes shows 
correctness of their linear and octupolar parts. 

Figures 47 and 48 show NHT results for the effective 
octupole current stabilizing one or two LHC beams seeing 
each other at the end of the betatron squeeze. The effective 
octupole current is the sum of the Landau octupole current and 
a contribution of the beam-beam nonlinearity expressed in 
terms of the equivalent octupole current. According to 
Ref. [237], the oncoming beam contributes 100 A to the 
effective octupole current for the pacman bunches and twice 
more for the central ones at the end of the squeeze. It follows 
then, that about 100A of the Landau octupoles should be 
sufficient for the stabilization, assuming the machine is 
operated at the high gain and high chromaticity plateau of Fig. 
48, as it was in the second part of 2012. Contrary to this 
conclusion, at the end of the squeeze a transverse instability 
was permanently observed, notwithstanding the octupole 
current was kept at its maximum of ~ 550A [238]. 
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Fig.  47.  Threshold octupole current [A] at positive polarity, for a full 50 ns 
single beam in the LHC and doubled nominal impedance. 

Fig.  48.  Same as above, but for two 50 ns single beams at the end of the 
betatron squeeze. 

 An initial idea that this instability is driven by the coherent 
(strong-strong) beam-beam effect or some hidden two-beam 
impedance was refuted by the NHT computations [239], 
confirmed later by a dedicated LHC beam experiment [240]. 
To explain this instability, a hypothesis of three-beam 
instability, or beam-beam-beam effect was suggested, where 
the third beam is an electron cloud accumulated in a high-beta 
area of the main interaction regions [241, see later]. 

The NHT Vlasov solver has been effectively used as a 
computation tool for transverse collective oscillations of high-
energy beams in the LHC, with their radial modes, couple-
bunch modes, feedbacks, beam-beam effects and octupole-
related Landau damping accurately handled. The main 
advantage of that solver against macroparticle tracking codes 
is many orders of magnitude shorter CPU time, which allows a 
fast and efficient analysis of that complicated system in a 
multidimensional space of parameters. In many cases the 
measurements of beam stability were within a factor ~ 2. The 
effect of chromaticity and damper gain will be studied in more 
detail during the LHC Run II (2015-2018). 

2) DELPHI
DELPHI (for Discrete Expansion over Laguerre 

Polynomials and Headtail modes to compute Instabilities), is 
an analytical code to compute transverse instability modes 
from beam-coupling impedance and transverse feedback. Its 
find the eigenmodes of Vlasov equation for a distribution of 
particles circulating in a synchrotron under the combined 
action of beam-coupling impedance and a feedback damper, 
based on an extension of Sacherer integral equation solved on 
a basis of Laguerre polynomials combined with standard 
azimuthal headtail modes, and it is systematically checking for 
convergence vs. the number of modes [242]. Instabilities can 
be predicted for any machine, with any initial longitudinal 
distribution, any kind of transverse dipolar impedance and for 
any reactive or resistive bunch-by-bunch damper. 

Chromaticity is included in the model, as well as multi-bunch 
effects. We apply the present theory to several synchrotrons 
such as VEPP and LEP, and benchmark our code with other 
approaches, including other instability theories and particle 
tracking simulations. In particular, a new light is shed on the 
relative lack of success in trying to stabilize the transverse 
mode coupling instability using a reactive or resistive 
transverse feedback in the LEP. 

This approach is very similar to the one adopted in the 
MOSES [149] code, as well as in the model by Karliner and 
Popov [159]. The main additions here are 1/ the extension to 
the multibunch case, 2/ the possibility to consider any 
longitudinal distribution, and 3/ the automatic checking of the 
convergence vs. matrix size. 

As a first example, we show in Figs. 49 and 50 a comparison 
between the codes MOSES and DELPHI for the case of the 
old CERN LEP collider (whose tunnel is currently being used 
for the LHC), without transverse damper. Note that the LEP 
impedance model is reduced to a single broadband resonator, 
corresponding to the RF cavities [243,244], as the code 
MOSES cannot perform calculations on impedance models 
more elaborated than a single resonator. In Fig. 49 the real part 
of all the modes are compared at zero chromaticity, while in 
Fig. 50 the imaginary part of the modes at the chromaticity Q’ 
= 22 are benchmarked. In both cases, the agreement between 
the two codes is excellent, which is expected since they are 
based on the same formalism. Note that the number of modes 
have been fixed in our approach, i.e. the algorithm to check 
convergence in DELPHI is deactivated, in order to be able to 
compare with MOSES in which the number of modes has to 
fixed in input. We benchmarked also DELPHI with some of 
the results from Karliner and Popov [159], in the case of the 
VEPP-4 machine (BINP, Novosibirsk). For a non-zero 
feedback gain and zero chromaticity an excellent agreement 
was found also in this case. Again, the number of modes 
included in the computation has been fixed to allow the 
comparison. 

Fig.  49.  Comparison between DELPHI and MOSES for LEP in single-bunch 
at zero chromaticity, for the real part of the tuneshifts of all modes. LEP 
parameters are: energy 22 GeV, RMS bunch length 1.834 cm, circumference 
26.659 km, Qx = 76.194, Qs = 0.108, αp = 1.855 · 10−4, broad- band shunt 
impedance R = 1.51 MΩ/m with Q = 1 and cut-off frequency 1.4 GHz. 5 
azimuthal modes and 2 radial modes were included in the computations. 
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Fig.  50.  Comparison between DELPHI and MOSES for LEP in single-bunch 
at Q′ = 22, for the imaginary part of the tuneshifts of all modes. LEP 
parameters are the same as in Fig. 49. Note that instabilities correspond to 
negative tune shift in our convention. 

However, in the case when both chromaticity and damper 
gain are non-zero, a significant discrepancy was found 
between the two approaches. Note that in this case, the fully 
converged result is used in DELPHI, but a similar discrepancy 
(although somewhat different) would be still visible when the 
number of modes are set exactly the same as in Karliner and 
Popov’s paper. Note still that the damper model used here is 
simpler than the sophisticated damper these authors use, which 
we cannot model here since its parameters are not all provided 
in Ref. [159]. Nevertheless, in the same plot (see Fig. 51) we 
also show the results of HEADTAIL macroparticles 
simulations, which turn out to give a curve very similar to the 
one obtained from DELPHI for the most unstable mode. 

Fig.  51.  Comparison between DELPHI and Karliner-Popov results for the 
imaginary part of the tune shifts of all modes in VEPP-4 in single-bunch at Q′ 
= −7.5, with a resistive feedback gain corresponding to f = 2.5 (see details in 
Ref. [159] – the corresponding damping gain 1 / nd in our theory depends on 
the intensity and is related to f by 1 / nd = I f 2π Qs / Ib with I the intensity in A 
and Ib = 0.0199 A). VEPP-4 parameters are: energy 1.8 GeV, RMS bunch 
length 7.5 cm, circumference 357.9 m, Qx = 7.62, Qs = 0.025, αp = 0.01645, 
broad-band shunt impedance R = 5.02 MΩ/m with Q = 1 and cutoff frequency 
0.506 GHz. 5 azimuthal modes and 2 radial modes were included in the 
computations. We also show the imaginary tune shift of the most unstable 
mode from HEADTAIL macroparticles simulations. 

Having benchmarked our code in various situations, we now 
try to use DELPHI to shed a new light on LEP TMCI and the 

relative lack of success in the various attempts to stabilize it 
with a transverse bunch-by-bunch feedback [245]. Over the 
years of operation of LEP, at least two kinds of damper were 
tested: 1/ a reactive feedback, to prevent the azimuthal mode 0 
to shift down and couple with the azimuthal mode – 1, or 2/ a 
resistive feedback, which was tried at LEP but never used in 
operation, and recently thought to be a good option by 
Karliner-Popov [159] with a possible increase of the TMCI 
threshold by a factor ~ 5 . It is also worth mentioning that 
there was in general a good agreement between measurements 
of the TMCI threshold (just below 1 mA) and the LEP 
impedance model [245]. To try to explain these observations, 
we show in Figs. 52 and 53 two-dimensional plots where the 
color represents the TMCI threshold as a function of the 
chromaticity and feedback gain, for respectively a resistive 
and a reactive feedback, using the DELPHI code (fully 
converged). It appears clearly that the resistive feedback does 
not improve the TMCI threshold, and the reactive one can 
improve it only marginally (at high feedback gain). This is in 
qualitative agreement with the observations in LEP. 

The code is available as part of a broader software suite that 
can be used to compute impedances and instabilities in particle 
accelerators and synchrotrons, called IRIS (for Impedance, 
Resistive-Wall and Instability codes and Scripts) [246]. In the 
future, all kinds of longitudinal non-linearities could be 
included, but with probably some difficulties: (i) non-linear 
bucket, (ii) quadrupolar wakes and (iii) second order 
chromaticity. 

Fig.  52.  TMCI threshold (color) vs. chromaticity and damper gain of a 
transverse resistive feedback. Parameters are the same as in Fig. 49 except for 
the RMS bunch length (1.3 cm) and the impedance model that is more 
complete here (two broad-band resonators for the RF cavities and the bellows, 
of shunt impedances respectively 1.1 and 0.23 MΩ/m, cut-off frequencies 2 
and 12 GHz, and of quality factor Q = 1). 
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Fig.  53.  TMCI threshold (color) vs. chromaticity and damper gain of a 
transverse reactive feedback. Parameters are the same as in Fig. 52. 

B. Space Charge 
1) Theory

The head-tail instability of bunched beams was observed and 
theoretically described many years ago, as discussed before. 
Since then, this explanation has been accepted and included in 
textbooks, but still there is an important gap in the theory of 
head-tail interaction. This relates to the influence of space 
charge on the coherent modes: their shapes, growth rates, and 
Landau damping. Two theoretical articles of M. Blaskiewicz 
[247,248] shed certain light on this issue. In particular, a 
compact analytical description of the coherent modes was 
found there for a square well model with a short-range wake 
function, without any assumption for the relative values of the 
space charge tune shift, the synchrotron tune, and the coherent 
tune shift.  

Compared to these papers, an attempt of Ref. [249] is both 
broader and narrower. It is broader since there are no 
assumptions about the shape of the potential well, the bunch 
distribution function, single- and coupled-bunch dipole and 
quadrupole wake functions and feedbacks. The solution for a 
parabolic potential well and 3D Gaussian bunch had been 
given there in detail, but the method is universal. It was shown 
that contrary to the coasting beams, there is the intrinsic 
Landau damping, i.e. Landau damping driven by the space 
charge itself. Both intrinsic and octupole-related damping 
rates were estimated up to a numerical factor ~1.  

From another aspect, the approach of Ref. [249] is narrower 
than that of Ref. [247, 248], since in the former the strong 
space charge approximation was applied, i.e. the space charge 
tune shift was assumed to be large compared to the 
synchrotron tune and the wake-driven coherent tune shifts. 

The reason why this case allows to be effectively treated is 
that all the particles at the given longitudinal position respond 
almost identically to the collective field when the space charge 
is strong, since spread of the incoherent frequencies is much 
smaller than the separation between the coherent and 
incoherent peaks.  Thus, as soon as the space charge is strong, 
the bunch slices oscillate as rigid discs; the strong space 
charge approximation can be called the rigid slice 
approximation as well. This fact entails the fact that the bunch 

eigenfunctions to depend on a single longitudinal phase space 
argument, namely, the position along the bunch, contrary to 
the no space charge case, when the eigenfunctions depend on 
two arguments, the synchrotron action and phase. Thus, rather 
unexpectedly, space charge leads to the significant 
simplification, when it is strong.   

Using the rigid slice approximation, the problem for the 
coherent modes in the presence of strong space charge and 
arbitrary wakes has been reduced in Ref. [249] to a single-
dimension second-order linear integro-differential equation 
with zero boundary conditions for the eigenfunction 
derivative; this has been done for arbitrary beam distribution 
functions and potential well. The detailed formulas can be 
found in Ref. [249] or, with more details, in [250].      

It has been also shown how this problem is effectively 
solved in two-step approach. At the first step, no-wakes 
problem (zero right-hand side of the Burov equation) has to be 
treated. This is a standard Sturm-Liouville problem which 
solution is given by a one-dimensional array of orthogonal 
eigen-functions. For the Gaussian distribution, the spectrum of 
this equation has been described in Refs. [249-251]; similarly, 
it can be found for any potential well and distribution function. 
After the no–wake problem is solved, its eigenfunctions can 
be used as an ortho-normalized basis for the Burov equation 
with given wakes and dampers. Expansion of the 
eigenfunction over the no-wake set the amplitudes  to be 
found, leads to the algebraic problem for the eigenvector of 
the amplitudes. This equation allows computing the instability 
growth rates for fairly general situations when the Landau 
damping can be neglected. However, without Landau damping 
nothing can be said about the instability threshold, so the 
theory would be incomplete. For the strong space charge, 
Landau damping rates were roughly estimated in Ref. [249]. 
Numerical simulations give a possibility for more accurate 
knowledge of the damping rates, with the numerical factors to 
be found with a good precision. This work was started by V. 
Kornilov and O. Boine-Frankenheim several years ago with 
their PATRIC code [252,253], and has been joined recently by 
A. Macridin et al. with the Synergia program [254, 255]. 
When the collective tune shifts imposed by the wakes are 
small compared to the synchrotron tune, their influence on the 
Landau damping can be neglected. Potential importance of the 
image charges and currents for Landau damping was shown in 
Ref. [252, 253]. A preliminary version of the Vlasov solver 
built in these principles was presented in Refs. [256,257]. 
Hopefully, this work will be generally completed in a 
reasonable future. However, outside the strong space charge 
approximation, the problem of the transverse collective 
motion of the bunched beams with space charge does not have 
any other solution except the macro-particle tracking so far.  

2) Simulations
The eigenspectrum of transverse head-tail oscillations for a 

bunch in an rf bucket with the synchrotron tune Qs is given by 
Qk = k Qs (k ∈ Z). These can be observed in the Schottky 
noise as equidistant satellites at each betatron side band, 
f = f0 (1 ± Qf) where Qf is the fractional part of the bare 
betatron tune. The composition of the betatron side band with 
different amplitudes provides the power frequency spectrum 
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for a given head-tail mode and depends on the bunch 
distribution.  

In order to characterize the space charge force in a bunch, 
we use the space charge parameter 

q = ΔQSC
KV

Qs

, (30) 

which is the direct space charge tune shift for the rms-
equivalent K-V beam (the geometric factor, which depends on 
the transverse distribution, is 2 for the Gaussian profile and 1 
for a K-V beam) in the peak of the line density normalised by 
the synchrotron tune. 

A very useful model for the head-tail instability with 
arbitrary space charge has been suggested in [247], as 
discussed before. This "airbag" model assumes two opposing 
flows of particles in the longitudinal plane, and a square-well 
potential and thus a constant line density. Rigid flows are 
considered, i.e. only dipole oscillations without variation in 
the transverse distribution of the flows are included. The 
resulting tune shift due to space charge is given by 

ΔQ
Qs

= −
q
2
±

q2

4
+ k2 , (31) 

where "+" is for modes k > 0. These space charge tune shifts 
are illustrated in Fig. 54. 

Fig.  54.  Tune shifts of five head-tail modes versus space charge parameter q 
as given by the airbag theory (see Eq. (30)), the dashed line is the incoherent 
betatron tune (Q0 - ΔQsc). 

The validity of this model has been perfectly confirmed by 
particle tracking simulations [258], which suggests to use the 
model also for accurate numerical code validation. In the 
recent works discussed before [249-251] analytical treatments 
of head-tail modes with space charge for realistic bunch 
distributions (e.g. Gaussian) have been proposed. It appeared 
that the airbag model is still surprisingly good for predicting 
the bunch eigenfrequencies, especially for strong space 
charge. Figure 55 shows the coherent oscillation spectra for a 
bunch with q = 20 from particle tracking 
simulations [252,259], in a comparison with the airbag theory. 
Note that without space charge the modes are located at k Qs, 
so the prediction error is below ~ 5 %. 

Fig.  55.  Transverse bunch spectrum from simulations [252] for a Gaussian 
bunch with space charge. Red dashed lines are given by Eq. (31). 

The effect of space charge on head-tail modes has also been 
observed in experiments [260] in the heavy-ion synchrotron 
SIS18, GSI Darmstadt. Figure 56 shows an example of the 
bunch spectrum for q ≈ 4.5, where the mode k = 1 dominates. 
Interestingly, the mode k = - 1 is also clearly seen, which is 
strongly shifted downwards and is usually damped in 
agreement with the theory. 

Fig.  56.  Transverse coherent spectrum for a bunch with space charge in 
SIS18, GSI Darmstadt [260], the mode eigenfrequency shifts correspond the 
effect of space charge according to a modified [260] airbag model [247]. 

The head-tail eigenmodes in bunches with strong space 
charge for realistic distributions can be calculated numerically 
using the theories [249-251]. Figure 57 demonstrates that even 
for bunches with space charge q = 6 the airbag predictions are 
very close to the complete theory results. Also experimental 
observations [260] of the bunches with space charge 
confirmed this. 
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Fig.  57.  Dipole moments from simulations [252] for a Gaussian bunch (red 
lines), theory eigenfunctions for a Gaussian bunch from [249,250] (green 
lines) and for the airbag bunch (blue lines). 

The effect of space charge on the eigenmodes saturates for 
strong space charge, thus the instability growth rates saturate 
for strong space charge as well [247-250,252]. Since the 
frequency shifts within the sidebands are relatively small, and 
the eigenmode modifications due to space charge are 
relactively weak, the effect on the instability increments is not 
strong. The important effect of space charge on head-tail 
instability is the Landau damping induced by the space charge 
tune spread. It was predicted theoretically in [249-251] and 
observed and quantified numerically in [252]. This damping is 
due to interaction of the coherent mode with the incoherent 
particle spectrum. In opposite to the coasting beam [261], the 
tune spread due to space charge provides damping for the 
bunch eigenmodes. The bunch transverse and longitudinal 
distribution define the space charge tune spread and thus 
determine the damping. This is illustrated in Fig. 58, where the 
transverse K-V distribution is compared with the 3D-Gaussian 
bunch. 

Fig.  58.  Decrement of the space charge damping from particle tracking 
simulations for k = 1 head-tail mode. Solid lines correspond to the 
longitudinal Gaussian and transversal K-V bunches from [252]. Dashed lines 
are for the Gaussian (longitudinal and transversal) bunches [262,263]. 

The decrement of the space charge induced damping has 
been analytically estimated [249], for strong space charge q 
>> 2 k, 

Im ΔQ( ) ~ − k
4 Qs

q3
. (32) 

The simulation results [252] confirmed the scaling of the 
damping rate with the mode number and with q. The absolute 
values of the damping decrement depend on the given bunch 
distribution because it defines the number of resonant particles 
which interact with the coherent wave. The damping of bunch 
eigenmodes can be enhanced by larger incoherent tune 
spread [262], for example due to octupoles [264,265],  RF 
nonlinearities, or detuning wakes [10]. Also coherent tune 
shifts which push the eigenmodes closer to the incoherent 
spectrum can significantly enhance the space charge damping 
and change the stability thresholds. For example, image 
charges in the vacuum pipes can provide an enhancing effect 

on damping [262,263]. Another important effect of space 
charge on collective instabilities is the suppression of the 
transverse mode coupling instability [2,247,249]. This 
instability appears because the coherent tune shifts due to 
impedances/wakes are different for different bunch 
eigenmodes, and the crossing the modes frequencies trigger 
fast high-frequency instabilities. If the eigenmode tune shifts 
are dominated by space charge, it can prevent the coupling due 
to the impedances. 

C. Beam-Beam 
1) Weak-Strong: Landau damping of head-tail modes due to
incoherent beam-beam effects 

Most hadron synchrotrons rely on lattice nonlinearities for 
Landau damping of impedance driven coherent modes of 
oscillation. However, in a collider, the presence of beam-beam 
interactions strongly modifies the transverse amplitude 
detuning and therefore the resulting stability diagram. 
Numerical investigations of this effect are discussed, 
supported by observations at the LHC. 

In circular hadron colliders, the amplitude detuning due to 
beam-beam interactions largely exceeds the one caused by 
lattice non-linearities, having a significant impact on the 
Landau damping effect on coherent modes oscillations driven 
by the beam coupling impedance. Furthermore, the type and 
strength of the beam-beam interactions vary strongly during 
the operational cycle, it is therefore crucial to be able to 
quantify the Landau damping including the effect of beam-
beam interactions during all phases of the operational cycle of 
the collider. While the effect of lattice non-linearities can be 
addressed analytically, the complex configuration of beam-
beam interactions leads to amplitude detuning with difficult 
analytical expressions [266,267], which render the solution of 
the dispersion relation difficult. This problem is easier 
addressed numerically, using single particle tracking to 
evaluate the amplitude detuning and numerical integration of 
the dispersion integral [268,269]. The non-linearities of beam-
beam interactions not only modify the amplitude detuning but 
can also significantly distort the particles distribution in the 
beam, affecting the strength of the Landau damping. Both 
these incoherent effects of beam-beam interactions are 
discussed in this paper. 

a) Long-Range interactions
To first order the amplitude detuning from the lattice can be 

written: 

ΔQx = ax Jx + axy Jy
ΔQy = ayx Jx + ay Jy

"
#
$

%$
. (33) 

In the LHC, the main component of the lattice detuning is 
controlled via a dedicated set of octupole magnets, arranged 
such that ax ≈ ay and axy ≈ ayx in order to ensure equivalent 
Landau damping in both transverse plans [270]. Furthermore, 
the amplitude detuning arising from a set of long-range 
interactions around two Interaction Points (IPs) located at 
opposite azimuth in the ring, with crossing angles in 
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alternating planes can be written with the same form, 
with [266] 

ax = ay =
3 NLR ξ
2 d 4

axy = ayx = −
3 NLR ξ
d 4

"

#

$
$

%

$
$

, (34) 

with NLR the number of long-range interactions around each 
IP, d the separation between the beams at the location of the 
interactions normalised to the beam size, and where the beam-
beam parameter is defined as 

ξ =
Nb rp
4 π εtn

. (35) 

The combined effect of the lattice octupoles and of long-range 
interactions is therefore constructive if the octupoles are set 
such that the direct detuning coefficients are positive and the 
cross terms negative and destructive otherwise (see also 
[271,272). Higher order components of the amplitude detuning 
induced by long-range interactions needs to be included in 
order to obtain a quantitative estimation of their effect on the 
Landau damping, however the first order usually dominates, 
therefore the statement on the sign of the coefficients holds for 
all configurations where the two effects have similar strength. 
Nevertheless, in the LHC their relative strength varies 
significantly during the operational cycle. The strength of the 
octupoles is dominant in the first part of the cycle, when the 
separation between the beams at the location of the beam-
beam interaction is large. The reduction of the β-function at 
the IP, during the so-called betatron squeeze, reduces the 
normalised separation between the beams at the location of 
long-range interaction increasing their strength to a level 
comparable to the one of the octupoles. During this operation, 
the detuning is either increased or reduced depending on the 
sign of the detuning coefficients, as illustrated in Fig. 59. 
While the so-called positive polarity of the octupoles seems at 
first sight preferable, the actual preference is more subtle. 
Indeed, depending on the real part of the imaginary tune shifts 
expected, one of the polarity might be preferred when the 
beams are well separated. Indeed, before the betatron squeeze, 
one observes that the stability diagram arising from the 
negative polarity is slightly shifted in the negative imaginary 
parts with respect to the positive polarity, which makes it a 
favourable solution in case the expected imaginary tune shifts 
are negative, as in the LHC [47]. Therefore, the best choice of 
polarity results from a careful optimisation of the beam 
stability with weak and strong long-range interactions, i.e. 
before and after the betatron squeeze. 

Fig.  59.  Evolution of the stability diagram as the normalized separation 
between the beams is reduced during the betatron squeeze for the nominal 
LHC optics and beam parameters [269]. At the end of this operation, nominal 
LHC beams have a normalized separation of 10 σ. 

During the 2012 run of the LHC, instabilities were observed at 
the end of the squeeze with both polarities of the octupole 
[269], excluding this mechanism as a sole explanation for the 
instabilities observed, in particular when the contribution of 
long-range beam-beam interaction and the octupole contibute 
constructively to the stability diagram. Nevertheless, the size 
of the amplitude detuning is not the only consideration to take 
into account, as the dynamics of single particles is highly 
affected by both the long-range interactions and the lattice 
non-linearities. This matter is discussed later. 

b) Head-On interactions
The main component of the amplitude detuning due to head-

on interactions is not linear with the transverse actions and 
therefore has a very different impact on the stability diagram 
with respect to the lattice non-linearities and long-range 
interactions. This feature is clearly visible in the tune footprint 
in Fig. 60.  

Fig.  60.  Comparison of the amplitude detuning represented by the transverse 
tunes Qx and Qy for particles oscillating at different amplitudes in a so-called 
tune footprint (left) and the corresponding stability diagrams (right) generated 
by octupole magnets, long-range beam-beam interactions in IP1 and 5 or 
head-on beam-beam interactions in IP1 and 5. The machine and beam 
parameters are those of the nominal LHC. 

The corresponding stability diagrams obtained numerically 
shows the different contributions. In particular, one observes 
that head-on interactions provides a larger stability diagram 
for a similar amplitude detuning, due to the strong amplitude 
detuning for the most populated part of the distribution, i.e. for 
the particles oscillating with small amplitudes. Due to this 
difference, the lattice detuning as well as the effect of long-
range interactions have a negligible impact on the stability 
diagram when the beams are colliding head-on. This 
interesting feature of head-on interactions is considered as a 
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potential solution to increase the beam stability earlier in the 
cycle, e.g. by bringing the beams into collision before the 
betatron squeeze, thus avoiding the difficulties linked to the 
interplay of long-range interactions and the lattice non-
linearities discussed before, provided that all bunches in the 
machine experience a head-on collision [271]. Similarly, an 
electron lens providing an amplitude detuning similar to the 
one of head-on beam-beam interactions [272] could be 
envisaged to efficiently provide a large stability diagram 
before head-on collisions are established, instead of the 
relying on lattice non-linearities or octupole magnets which 
might have detrimental effects on the single particle dynamics. 

The beams in hadron colliders collide with small transverse 
offset, i.e. in the order of the beam size at the interaction point, 
in a transient phase aiming at bringing the beams into collision 
or when an orbit bump is introduced statically in order to 
artificially reduce the luminosity for different experimental 
purposes. During such phases, the amplitude detuning varies 
from a configuration dominated by the lattice non-linearities 
and long-range interactions to a configuration dominated by 
head-on interactions, as illustrated by the tune footprints in 
Fig. 61. The corresponding evolution of the stability diagram 
in the horizontal plane is shown in Fig. 62. In particular, one 
observes that the change of sign of the tune shift and 
amplitude detuning leads to a systematic cancellation of the 
imaginary part in the dispersion integral, leading to a 
minimum of Landau damping with beams separated by around 
1.5 σ [269]. 

Fig.  61.  Example of tune footprint of a bunch colliding in IP1 with different 
separations in the horizontal plane. 

Fig.  62.  Evolution of the stability diagram while varying the separation 
between the beams at the interaction point. 

During the 2012 run of the LHC, the luminosity was leveled 
with a transverse offset in IP8. While not harmful for most 
bunches with head-on interactions in IP1 and 5, this technique 
turned out to be critical for a subset of bunches without head-
on collision in other experiments. Indeed, the situation of these 
bunches is similar to the one described in Fig. 62. 
Observations of such instabilities during a fill dedicated to 
luminosity production are shown in Fig. 63. Many bunches 
experience an instability at the very beginning of luminosity 
production, during the adjustment of the orbit at the IP, while 
the separation is larger than 3 σ. Yet, most bunches lose their 
intensities in a normal way during 5 hours of luminosity 
production and, suddenly, lose a significant fraction of their 
intensity on a time scale of a second. Simultaneously, a 
coherent oscillation of the beam was measured. It is important 
to note that a coherent signal is observed only in a single 
beams, the other beam is not affected by the instability. This 
excludes the coupled coherent beam-beam modes as an 
explanation for these instabilities [273]. A mechanism similar 
to the one described above, based on the destructive interplay 
of the lattice non-linearities and the octupolar component of 
the beam-beam interaction, was suggested to explain beam 
losses when bringing the beams into collision at CERN's 
Intersecting Storage Rings [274]. It is however likely that 
these losses were of a similar nature of those observed when 
levelling the luminosity with a transverse offset at the LHC. 
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Fig.  63.  Above, separation between the beams at the interaction point during 
luminosity leveling with a transverse offset in IP8, derived from measured 
luminosity in IP1,5 and 8, expressed in units of the transverse beam size. 
Below, the intensity of the 49 bunches colliding only in IP8, the other 1331 
bunches follow a standard quasi-exponential decay. 

Due to its derivative in the nominator of the dispersion 
integral, variations of the beam distribution significantly 
impact the stability diagram. This parameter is unfortunately 
poorly measured in hadron colliders. In particular the presence 
of under or over populated tails in the beam distribution have a 
great impact on the stability diagram [275]. The presence of 
diffusion mechanisms acting on specific parts of the 
distribution can have an even greater impact on the stability 
diagram for small distortions of the distribution. Let us 
illustrate this phenomenon, by considering the distribution of 
particles in a beam experiencing a linear amplitude detuning 
and an external source of noise, modelled by a harmonic 
excitation of frequency within the beam frequency spread and 
a finite correlation time. Such noise enhances the diffusion of 
resonant particles, as confirmed by a multiparticle tracking 
simulation. Indeed, the depletion of the distribution at the 
action of resonant particles is visible, as well as the 
overpopulation for slightly larger actions. This effect has been 
studied for a different purposes, e.g. in [276]. The measurable 
effect on the distribution in real space is beyond available 
measurement accuracy. Nevertheless, the effect on the 
stability diagram is significant, as illustrated by the 
comparison of the stability diagram obtained using the initial 
and perturbed distributions (see Fig.64). 

Fig.  64.  Comparison of the stability diagram for a distribution perturbed by 
an external source of noise (red) to the one obtained with a Gaussian 
distribution (blue). 

While the presence of such a source of noise is unlikely in a 
machine like the LHC, there are other mechanisms that could 
lead to a similar distortion of the distribution. In the presence 
of a wideband source of noise, e.g. from the power supply 
ripples, the ground motion or the noise in the transverse 
feedback, the beam response will be higher at the frequency of 
the coherent modes excited by the beam coupling impedance. 
Such excitation can enhance the diffusion of the resonant 
particles responsible for the Landau damping of these modes, 
eventually leading to a loss of Landau damping [277]. 

The strong non-linearities of beam-beam interactions also 
provoke the diffusion of the particle in specific areas of phase 
space. In particular, single particle tracking studies have 
revealed that the LHC configuration in the second part of the 
2012 run featured a dynamic aperture around 4 σ at the end of 
the betatron squeeze [278]. The corresponding frequency map 
analysis of the single particle motion revealed significant 
diffusion mechanisms for particles with even lower 
amplitudes, which could have a strong impact on the beam 
distribution and consequently on the stability diagram. Such a 
mechanism could explain the discrepancy discussed before, 
studies are on going to quantify the behaviour of the beam 
distribution under the influence of strong non-linearities and 
its impact on the stability diagram. 

In summary, beam-beam interactions have an impact on both 
the amplitude detuning and the beam distribution, the strength 
of the Landau damping on head-tail modes is greatly affected 
by these modifications. A good knowledge of the different 
contributions, as well as their variation during the different 
operational procedures is crucial in order to ensure the beam 
stability during the full cycle. 

2) Strong-Strong: Coherent modes of oscillation due to
beam-beam interactions and the beam coupling impedance 

In high brightness circular colliders, the coherent and 
incoherent beam dynamics are dominated by beam-beam 
interactions. It is generally assumed that the incoherent tune 
spread introduced by the beam-beam interactions is sufficient 
to prevent any instability driven by the beam coupling 
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impedance. However, as the two counter-rotating beams 
interact they can give rise to coherent dipole modes and 
therefore modify the coherent beam dynamics. The stability of 
the beams under the influence of both beam-beam interactions 
and the beam-coupling impedance is investigated using a 
linearized model and macro-particle simulations.  

As they interact with each other, the two beams will couple, 
resulting in coherent oscillations. In the case of equal bunches 
and tunes these coherent oscillations can be described by two 
eigenmodes, corresponding to either in-phase or out-of-phase 
oscillations, respectively the σ and π modes. The tune shift 
between σ and π modes is equal to Y ξ, where Y is the Yokoya 
factor and ξ the beam-beam parameter [279]. These coherent 
modes have been routinely observed in various colliders and 
are generally not self-excited [280,281]. However, the 
frequency of these modes may be well separated from the 
incoherent tune spread and consequently they do not profit 
from the large intrinsic Landau damping properties of the 
beam-beam interactions [282]. Under external excitation, such 
as machine impedance, these modes could therefore become 
unstable. Assessing the stability of colliding beams therefore 
requires considering these two processes simultaneously and 
in a self-consistent way. Past studies have shown that the 
combination of beam-beam interactions and impedance could 
lead to coherent instabilities. However, these studies were 
either performed using a linearized model [283], i.e. not 
including Landau damping, or for very specific cases applied 
to the Tevatron [284]. During the 2012 proton run of the LHC, 
coherent instabilities of colliding beams were routinely 
observed [285], triggering a renewed interest to pursue these 
studies in a more general scope. This section will give a 
review of the recent progress made regarding multi-particle 
strong-strong simulations of the interplay of beam-beam and 
impedance. A complete study of these effects and 
benchmarking of the numerical tools presented in the 
following can be found in [286] and the reader may refer to 
this paper for details. The motivation for this study being 
mainly driven by LHC observations, the LHC impedance 
model and beam parameters will be used, the numerical tools 
developed are however applicable to any configurations and 
the results should be qualitatively similar for other designs. 

a) Numerical Models
Two models were developed or more precisely extended to 

characterize the interplay of beam-beam and impedance: 
• a linearized model based on the circulant matrix

approach introduced in [287];
• a fully self-consistent multi-particle tracking model.

Single bunch effects were studied with the code
BEAM-BEAM3D [233] and multi-bunch effects
with the code  COMBI [288].

The Circulant Matrix Model (CMM) was introduced in [287] 
and later extended to include single bunch head-on beam-
beam interactions in [283]. More recently, this method was 
extended to an arbitrary number of bunches and IPs including 
long-range interactions and bunch train structures [286]. 
Transverse damper, chromaticity and arbitrary wake function 
were also included in our implementation. The two 
parallelized tracking codes used for this study, 

BEAMBEAM3D and COMBI, feature very similar 
implementations. The main differences reside in the field 
solver and the parallelization concepts. The field solvers are 
well documented in Refs. [289] and [290]. BEAMBEAM3D is 
intended for single bunch simulations allowing for 
longitudinal slicing at the collision point while COMBI allows 
for multi-bunch simulation but the beam-beam kick is 
computed with a 4D lens to optimize the computation time. 
Both codes were extended to include self-consistent 
impedance calculation following similar implementation as 
the wake fields tracking code HEADTAIL. The bunches are 
modeled as an ensemble of particles initialized with random 
Gaussian distributions in the 6 dimensions. After each turn the 
bunches are sliced longitudinally and the dipole moments of 
each of the slices as well as their charge is computed, such as 
to compute wake fields and apply the corresponding kicks. 
Similarly to the CMM, transverse damper, chromaticity and in 
addition, non-linear fields are available for stability studies. 
Figure 65 and 66 illustrate benchmarking simulations 
comparing the results of the CMM and the multi-particle 
tracking codes, a perfect agreement is observed. 

Fig.  65.  Synchro-betatron modes as a function of the beam-beam parameter 
for Q’ = 0 and β* / σs ≈ 1. Impedance was not included in this case. The white 
dots are the results from the tracking and the red lines from the CMM. 

Fig.  66.  Intensity scans at Q’ = 0. The red lines are from the CMM and the 
colored spectrogram from multi-particle tracking. 
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b) Single-bunch simulations
The main result obtained with these simulation codes was 

the demonstration of the existence of an impedance driven 
transverse mode coupling instability involving the beam-beam 
coherent modes. As the beam-beam π mode approaches the 
headtail mode -1 (ξ ≈ Qs), their frequencies become equal and 
they couple leading to strong instabilities with similar rise 
times and characteristics to the classical impedance driven 
Transverse Mode Coupling Instability (TMCI). This is 
observed both in the tracking and CMM with comparable rise 
times as shown in Figs. 67 and 68 illustrating scan in beam-
beam parameter at constant impedance. 

Fig.  67.  Synchro-betatron modes as a function of the beam-beam parameter 
for Q’ = 0 and β* / σs ≈ 90. The colors correspond to the amplitude of the 
spectral line. Impedance effects were kept constant over the whole scan. The 
most unstable modes are shown in green. 

Fig.  68.  Imaginary part of the tune shift of the most unstable modes as a 
function of the beam-beam parameter for Q’ = 0 and β* / σs ≈ 90. Impedance 
effects were kept constant over the whole scan. 

These results were later confirmed in a dedicated experiment 
performed at the LHC. Applying a transverse offset is an 
efficient way to vary the beam-beam parameter without 
having to re-inject bunches of different intensities. This 
experimental setup was therefore chosen to efficiently verify 
the simulation results. Figure 69 shows a spectrogram of the 
vertical plane of Beam 1 over the duration of the whole 
experiment. 

Fig.  69.  Spectrogram from turn-by-turn data for the vertical plane of beam 1. 
The separation is derived from luminosity data. 

When separated by 6 σ, the vertical plane of beam 1 was 
found to be unstable without transverse damper for an 
octupole current up to 480 A. These single beam instabilities 
can be observed before t = 0 when the octupole current was 
raised in steps in an attempt to stabilize the beam without 
transverse damper and at the end of the separation scan when 
the separation is back to 6 σ. The measured rise time for these 
single beam instabilities was estimated to 5.9 s. In this case the 
frequency of the unstable mode appears to correspond to the 
first lower synchrotron sideband (headtail mode -1). Bringing 
the beams into collision in one of the two IPs, at t = 0, 
provides stability even in the absence of transverse damper. 
This was expected from the large beam-beam tune spread and 
the absence of mode coupling instabilities at ξ >> Qs. As the 
vertical separation is increased in steps we observed the 
appearance of instabilities for intermediate separations 
between 0.7 σ and 1.4 σ corresponding to ξ ≈ Qs (Qs being 
shifted by the quadrupolar part of the beam-beam force). 
These instabilities have quite different characteristics than the 
ones observed at large separation. They appear to involve both 
beams at the same time and their rise-time was measured to be 
approximately 1.8 s, which is approximately a factor 3 faster 
than the single beam instabilities. Finally the frequency of the 
unstable mode is different and is consistent with the beam-
beam π mode. It should be noted that in all instances turning 
ON the transverse damper restored the beam stability. A full 
set of simulations were performed to confirm the observation 
of a mode coupling instability and provided strong arguments 
in this direction, the details of the calculations can be found in 
[273]. Although this instability may seem very harmful for 
high bunch intensity operation of a collider, it was shown from 
CMM calculation and tracking simulation that both 
chromaticity and transverse damper can mitigate the 
transverse mode coupling instability. The transverse damper 
appears to be very efficient, while very high chromaticity 
would be required in the absence of transverse damper. This 
result is consistent with experimental data which showed that 
the transverse damper was very efficient to cure these 
instabilities. 
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c) Multi-bunch simulations
In the LHC, for 25 ns bunch spacing, individual bunches can 

experience up to 32 long-range  interactions per IP  (this 
number goes down by a factor 2 for 50 ns bunch spacing), 
where the separation between the two beams is approximately 
10 σ. In some cases, the accumulated tune shifts from these 
interactions can become larger than the synchrotron 
frequency, potentially leading to mode coupling instabilities. 
In our model, each interaction region is modeled as a series of 
long-range interactions with constant separation located at 
phase advances of ± π / 2 from the IP. Once in collision, the 
beam dynamics is dominated by the head-on interactions. We 
will therefore concentrate on the case with long-range 
interactions only which corresponds to the LHC once the β-
function at the IP has been reduced, i.e. after the so-called 
betatron squeeze. Over this period the separation at the IP is of 
the order of 40 σ. This additional long-range encounter is 
therefore neglected in the following analysis. At the locations 
of the long-range encounters β / σs >> 1 and the beam-beam 
interaction can be reduced to the 4D case. Due to their train 
structure, the LHC beams suffer the so-called PACMAN 
effects: bunches along the trains will experience different 
number of long-range encounters and hence have different 
tune shifts leading to a large variety of coherent modes with 
nearby frequencies. 

Figure 70 illustrates the impact of PACMAN effects for a 
simplified case. Two trains of 8 bunches are colliding in a 
single IP, the PACMAN effects are artificially enhanced by 
allowing collisions only on one side of the IP. Each bunch 
therefore experiences up to 7 long-range interactions. Even for 
this simplified case a large number of mode coupling 
instabilities are observed involving various modes. As the 
separation is reduced, and hence the beam-beam tune shift is 
increased, the probability for two modes to overlap become 
higher and in some cases multiple mode coupling instabilities 
can occur simultaneously.  

Fig.  70.  Real (bottom) and imaginary (top) part of the coherent tunes of the 
modes obtained with the CMM for two trains of 8 bunches colliding in one IP 
with Q’ = 0 and no transverse feedback. The PACMAN effects are enhanced 
by allowing collisions only on one side of the IP. 

Figure 71 shows the imaginary part of the tune of the most 
unstable mode derived with the CMM as a function of both 
chromaticity and damper gain. The separation was set to 13 σ 
for which strong mode coupling instabilities are observed. 

Above 500 turns damping time or a chromaticity of 10 a 
significant decrease of the growth rate is observed indicating a 
mitigation of the mode coupling instability. 

Fig.  71.  Imaginary part of the tune of the most unstable mode obtained with 
the CMM for two trains of 16 bunches colliding in one IP, for different 
chromaticity and damper gain at separations of 13 σ. 

D. Three-Beam Instability? 
An electron cloud influences proton oscillations in two 

aspects. First, it works as a static lens, shifting up all coherent 
and incoherent tunes. This lens is nonlinear; the tune shifts of 
the transverse tails are smaller than those of the core, so, 
contrary to the linear part, the nonlinearity of e-clouds is 
defocusing. E-cloud nonlinearity changes the incoherent 
spectrum, i.e. it modifies Landau damping; taken by itself, it is 
a stabilizing factor. The second aspect of e-cloud is that it is a 
reactive medium, whose response to proton perturbations is 
similar to a low-Q impedance [291-293]. Collective response 
of the electron cloud introduces the growth rates and coherent 
tune shifts of the circulating beam, so by itself it is a 
destabilizing factor. This brief qualitative analysis already 
shows that e-cloud is a controversial entity: it introduces both 
stabilizing and destabilizing factors.   

 Each of these factors is definitely stabilizing or 
destabilizing only by itself. When e-clouds are combined with 
other nonlinearities and impedances, these factors may work 
in the opposite direction [294]. The cloud nonlinearity could 
partially cancel one of the octupoles or beam-beam, thus 
reducing the stability area. The coherent tune shift of the 
electron cloud, in its turn, could partially compensate one of 
the regular impedance, thus reducing the amount of 
nonlinearity needed for the stabilization.  

 One more agent able to modify e–cloud effects is the beam 
space charge. If the space charge tune shift exceeds ones of e-
cloud, the latter would not play any role in the Landau 
damping, so e-cloud would be purely destabilizing. However, 
there are some reasons to speculate that e-cloud nonlinearity 
may be sufficient to suppress the instability driven by its 
impedance. If it is true, then without space charge and by itself 
e-cloud may let the beam to remain stable. In this case, in the 
presence of space charge, conditions for e-cloud instability 
limit the electron intensity not only from below but also from 
above [295].   
 Electron cloud instabilities may have special features at the 
LHC as a proton-proton collider. Since the two beams share 

-0.008
-0.006
-0.004
-0.002

 0
 0.002
 0.004
 0.006
 0.008

 8  10  12  14  16  18  20

Im
[Q

]

Separation [m]

 0.307
 0.308
 0.309
 0.31

 0.311
 0.312
 0.313
 0.314

 8  10  12  14  16  18  20

Re
[Q

]

Separation [m]

-20 -15 -10 -5  0  5  10  15  20
Q’

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

G
ai

n 
[1

/tu
rn

]

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05



48 

the same vacuum chamber at the vicinity of detectors, the 
build–up of e-cloud could be stronger in these areas, being 
affected by two beams. This enhanced build–up allows to 
speculate about the “three–beam instability”, or the “beam-
beam-beam effect” [294] as a possible explanation of the end-
of-the-squeeze instability regularly observed during the Run I 
[238]. Due to the betatron squeeze, the beam sizes increased at 
the sensitive areas, slowing fast oscillations of the electron 
wake along the proton bunch, and thus making the beam more 
prone to the instability. Together with this impedance growth, 
another important effect of the electron cloud may happen at 
certain cloud intensity: its nonlinearity may partially 
compensate one of the machine octupoles, leading to a partial 
collapse of the stability diagram. Thus, impedance and 
nonlinearity factors of the electron cloud may be reasons for 
the end-of-the-squeeze instability at the LHC. Is it really so or 
not is an open question so far. 

VI. CONCLUSION

 Beam instabilities have been studied for several decades 
and many intricate phenomena have been revealed. They were 
very often treated separately in the past but since some time 
the need to study several mechanisms together appeared, to try 
and better explained the reality of our accelerators. With the 
increasing power of our computers this becomes easier but the 
need to continue and develop theories remains, to have a better 
understanding of the interplays between all these effects, 
which is the current challenge in the study of beam 
instabilities. 
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