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Beam loading in a laser-plasma accelerator using a near-hollow plasma channel

C. B. Schroeder, C. Benedetti, E. Esarey, and W. P. Leemans

Lawrence Berkeley National Laboratory, Berkeley, California 94720,

USA

(Dated: 30 December 2013)

Beam loading in laser-plasma accelerators using a near-hollow plasma channel is

examined in the linear wake regime. It is shown that, by properly shaping and phasing

the witness particle beam, high-gradient acceleration can be achieved with high-

efficiency, and without induced energy spread or emittance growth. Both electron

and positron beams can be accelerated in this plasma channel geometry. Matched

propagation of electron beams can be achieved by the focusing force provided by

the channel density. For positron beams, matched propagation can be achieved in a

hollow plasma channel with external focusing. The efficiency of energy transfer from

the wake to a witness beam is calculated for single ultra-short bunches and bunch

trains.
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I. INTRODUCTION

Plasma-based accelerators are able to sustain large acceleration gradients, enabling com-

pact accelerating structures. The longitudinal accelerating field of the excited plasma wave

can be orders of magnitude greater than conventional accelerators, which are limited by

material breakdown. Electron plasma waves with relativistic phase velocities may be ex-

cited by the ponderomotive force of an intense laser1 or the space-charge force of a charged

particle beam.2,3 High-quality 1 GeV electron beams have been produced using intense laser

pulses in cm-scale plasmas.4 Beam-driven plasma waves have also been used to double the

energy of a fraction of electrons on the beam tail by the plasma wave excited by the beam

head.5 Plasma-based acceleration of positron beams has also been demonstrated.6 These

experimental successes have resulted in further interest in the development of plasma-based

acceleration as a basis for future linear colliders.7,8

Hollow plasma channels, with zero density out to the channel radius and constant den-

sity for larger radii, have been studied due to the beneficial properties of the accelerating

structure.9–11 In a hollow channel, the transverse profile of the driver is largely decoupled

from the transverse profile of the accelerating mode. Furthermore, for a relativistic driver,

the accelerating gradient is transversely uniform. In addition, the accelerating mode of the

hollow channel is primarily electromagnetic, unlike the electrostatic fields excited in a ho-

mogeneous plasma. Development of methods to produce hollow channels is an area of active

research.12

Recently it has been proposed13 to use a partially-filled (near-hollow) plasma channel,

with plasma density in the channel much less than the plasma density in the channel wall,

to provide independent control of the amplitude of the accelerating and focusing forces. The

accelerating field is provided by the wall density and the focusing field is determined by

the channel density. It was also shown in Ref. 13 that the accelerating and focusing forces

in this geometry can mitigate emittance growth from Coulomb collisions with background

ions, preserving ultra-low emittance for high-energy physics applications.

In this work we discuss beam-loading of a laser-driven wakefield by a relativistic charged

particle beam in a near-hollow plasma channel. Beam-loading has been previously examined

in homogeneous plasmas in the linear14,15 and nonlinear16 regimes. The different transverse

structures of the wakefield excited in a near-hollow channel, compared to a homogeneous
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plasma, results in a fundamentally different beam loading limit. For a homogeneous plasma

the beam density is limited, whereas, for a near-hollow plasma channel, the beam charge

is limited independent of the beam transverse shape or size. We show that, in a near-

hollow plasma channel geometry, by properly phasing and shaping an accelerating particle

beam, high-gradient acceleration can be achieved with high-efficiency, without induced en-

ergy spread or emittance growth. For the case of electron beams, focusing is provided by

the plasma density in the channel, while a hollow plasma channel is considered for positron

beams with external focusing.

This paper is organized as follows. In Sec. II we discuss the longitudinal wakefields

driven by a laser and a particle beam in a near-hollow plasma channel. Throughout this

paper wakefield excitation is considered analytically in the linear regime. The condition for

laser guiding in the near-hollow plasma channel is calculated in Sec. IIA. The accelerated

beam current for optimal (i.e., without induced energy spread) beam loading is presented

for this plasma channel geometry. The efficiency of energy transfer form the laser-driven

wakefield to the witness particle beam is examined. In contrast to the case of a homogeneous

plasma, the linear laser-driven wakefield contains both electromagnetic and electrostatic

modes, resulting in reduced efficiency. Section III describes control of the focusing forces

provided by the channel density, and positron acceleration in a hollow plasma channel is

discussed. A summary and conclusions are presented in Sec. IV.

II. ACCELERATING WAKEFIELDS IN A NEAR-HOLLOW PLASMA

CHANNEL

Consider a neutral plasma channel with an initial electron plasma density of the form

n(r) =











nc, r < rc

nw, r ≥ rc

, (1)

where nw is the electron plasma density in the wall, nc is the electron plasma density in the

channel (nc ≪ nw), and rc is the channel radius. We will consider channel radii such that

kwrc ∼ 1 where k2
w = 4πnwe

2/mec
2 is the plasma wavenumber corresponding to the wall

density, with me and e the electronic rest mass and charge, respectively, and c is the speed

of light in vacuum. To provide weak focusing of an electron beam we will consider k2
c ≪ k2

w,

where k2
c = 4πnce

2/mec
2 is the plasma wavenumber corresponding to the channel density.
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An intense laser propagating in the channel will drive surface currents in the channel walls

exciting a wakefield. The transerse ponderomotive force of the laser will also expel electrons

radially out of the channel, leaving the background ion density remaining in the channel.

The expelled channel electrons do not return since the space charge force of the channel

ions is screened by the plasma electrons in the wall. The condition for expulsion1 of channel

electrons is a20/(1 + a20/2)
1/2 > k2

cw
2
0/2, where a20 ≃ 7.32 × 10−19λ2

0[µm]I0[W/cm2] with λ0

the laser wavelength, I0 the peak laser intensity, and w0 the laser spot size. This condition

is well-satisfied for relativistic laser intensities a0 ∼ 1 and guided laser pulses w0 ∼ k−1
w in

a near-hollow plasma channel. A charged particle beam with density nb ∼ nw ≫ nc may

also expel channel electrons. In the limit of a near-hollow plasma channel k2
c ≪ k2

w, the

accelerating field will be determined by the wall density Ez ∼ Ew, where Ew = mec
2kw/e.

The ion density in the channel will provide a transverse electrostatic field, and the focusing

force on a relativistic beam will be determined by the channel density, Er − Bθ ≃ Eckcr/2,

where Ec = mec
2kc/e. A detailed calculation of the wakefields in this plasma geometry is

presented in the Appendix.

A. Laser-driven wakefield

The wake excited inside such a channel will consist of an electromagnetic wake owing

to surface currents driven in the channel walls and fields owing to the background ions in

the channel. For a sharp channel-wall interface, electrostatic wakefields excited outside the

channel will not couple to channel modes.17

The wakefield excited by the laser can be derived from Maxwell equations and the lin-

earized fluid equations for a cold, collisionless plasma, assuming a quasi-static driver.1 A

derivation of the linear wakefields is presented in the Appendix valid for |Ez| < Ew. In the

limit k2
c ≪ k2

w, the accelerating field inside the channel is dominated by the currents in the

wall and has the form9

EzL/Ew = −Ω2

∫ ζ

∞

dζ ′ cos[Ω(ζ − ζ ′)]a2(r = rc, ζ
′)/4, (2)

to order a2(rc) < 1, where a(r, ζ) = eA/mec
2 is the normalized transverse vector potential

profile of the laser, ζ = z − βpt, cβp is the driver velocity, and γp = (1 − β2
p)

−1/2 ≫ 1.

The length scales are normalized to the skin depth of the wall k−1
w . For a laser driver,
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γp ∼ k0/kw = 2π/(kwλ0), where λ0 is the laser wavelength. The electromagnetic channel

mode wavenumber9,11 is kwΩ, with

Ω =

[

1 +
rcK0(rc)

2K1(rc)

]−1/2

. (3)

For example, Ω ≃ 0.8 for rc = 1.5. For a bi-Gaussian laser profile with envelope

a2 = a20 exp(−ζ2/2L2) exp(−2r2/w2
0), (4)

where L is the rms intensity pulse length and w0 the laser spot size, the wake amplitude

behind the laser EzL/Ew = ÊL cos(Ωζ + ϕ), where ϕ is a constant phase determined by the

driver, is

|ÊL| = Epeak/Ew = a20(π/8)
1/2Ω2Le−(ΩL)2/2e−2r2

c
/w2

0 . (5)

For a Gaussian longitudinal laser profile, the wake amplitude is maximum for ΩL = 1, and

Epeak/Ew ≃ 0.38Ωa20 exp(−2r2c/w
2
0).

A laser pulse can be guided in a near-hollow channel. The condition for quasi-matched

propagation (i.e., without evolution in the transverse second moment of the laser intensity)

in the channel for relativistic intensities a0 ∼ 1 can be calculated following Ref. 18. Guiding

for a transversely Gaussian laser pulse is provided when the laser spot satisfies18

∫

∞

0

dr2rρ
(

2r2/w2
0 − 1

)

e−2r2/w2

0 = 1, (6)

where ρ = n/(n0γ) is the proper density. Substituting Eq. (1) for ρ (i.e., neglecting guiding

contributions from the wakefield and self-focusing of the laser in the plasma) yields

w0 = rc/[ln(rc)]
1/2. (7)

Using Eq. (7) for the matched spot size implies the wake amplitude scales as |ÊL| ∝
a20 exp(−2r2c/w

2
0) = a20/r

2
c .

Equation (7) is valid in the low intensity limit (a0 < 1) and for laser powers below

the critical power (in the plasma wall). Wakefield and relativistic self-focusing effects can

be included in the proper density ρ and the nonlinear integral equation Eq. (6) solved

numerically. Figure 1 shows the laser spot size for matched propoagation in a near-hollow

channel versus channel radius. The points are the solution to Eq. (6) including the self-

consistent wakefield and plasma motion excited by a bi-Gaussian (L = 1) laser with a0 = 0.8
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FIG. 1. (color online) The laser spot size kww0 for matched propoagation in a near-hollow channel

versus channel radius kwrc: The points are the solution to Eq. (6) including the self-consistent

wakefield and plasma motion for a bi-Gaussian (L = 1) laser with a0 = 0.8 (blue squares), a0 = 1.0

(red circles), and a0 = 1.2 (green triangles). The dashed curve is Eq. (7), w0 = rc/[ln(rc)]
1/2.

(blue squares), a0 = 1.0 (red circles), and a0 = 1.2 (green triangles). The dashed curve in

Fig. 1 is Eq. (7). Figure 1 shows that Eq. (7) is an excellent approximation to the guiding

condition in the regime of quasi-linear laser wakefield excitation a0 ∼ 1.

B. Beam-driven wakefield

The space-charge forces of a relativistic charged particle beam propagating along the axis

of the channel will also excite plasma wakefields. A calculation of the particle beam driven

wakefields derived from the Maxwell equations and linearized cold fluid equations, assuming

the quasi-static approximation, is presented in the Appendix. In the limit k2
c ≪ k2

w, the

accelerating field in the channel driven by a charged particle beam is dominated by the

electromagnetic mode and has the form11

Ezb/Ew = W0Ω
2

∫ ζ

∞

dζ ′ cos[Ω(ζ − ζ ′)]I(ζ ′)/IA, (8)

assuming Ezb < Ew, where I is the particle beam current, IA = mec
3/e is the Alfvén current,

and

W0 =
2K0(rc)

rcK1(rc)
. (9)

For example, W0 ≃ 1.03 for rc = 1.5. A witness charged particle beam will be accelerated

by the total wakefield generated by the driver (laser or beam) and the witness beam.
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C. Beam loading

Van der Meer14 first considered shaping of the witness beam to eliminate energy spread

in a plasma accelerator. Consider a linearly ramped current distribution of length Lb,

I = (1 + ζ/Lb)Ib for −Lb ≤ ζ ≤ 0, with the bunch head at ζ = 0. For this ramped

current distribution solving Eq. (8) yields

Ezb/Ew = {[1− cos(Ωζ)]/Lb + Ωsin(Ωζ)}W0Ib/IA, (10)

within the region of the beam −Lb ≤ ζ ≤ 0. If we consider a laser-driven wakefield accelerat-

ing the particle beam, the total longitudinal field experienced by the beam is Ez = EzL+Ezb.

This ramped current distribution can be used to generate a constant accelerating gradient

throughout a bunch, which, consequently, implies zero induced energy spread. A constant

gradient throughout a beam of Ez/Ew = ÊL cos(ϕ) can be achieved with a beam of length

Lb = tan(ϕ)/Ω using a peak beam current Ib/IA = ÊLsin(ϕ)/(W0Ω), where the peak of the

unloaded accelerating field is at ζ = 0 and ϕ = Ωζhead is the phase position of the head of

the beam.

The beam charge that can be accelerated is

Nb = ÊL
tan(ϕ) sin(ϕ)

2W0Ω2kwre
, (11)

where re = e2/mec
2. Note that, for fixed normalized accelerating field amplitude ÊL, the

number of particles that can be accelerated in the plasma wakefield increases for decreasing

plasma density in the wall, Nb ∝ k−1
w ∝ n

−1/2
w . Although this density scaling is similar

to that found in a homogeneous plasma,15 the beam loading limit in a near-hollow plasma

channel is fundamentally different than that in a homogeneous plasma. In a homogeneous

plasma in the linear regime, beam-loading limits the particle beam density (i.e., more charge

may be accelerated with a larger beam transverse size), whereas in a near-hollow plasma

channel, Eq. (11) is a limit on the total particle beam charge (independent of transverse

beam size).

Figure 2(a) shows an example of a accelerating wakefield EzL/Ew (black curve) driven

by a laser with a0 = 1.2, w0 = 2.3, and a sine-longitudinal profile of length Ls = 3.95,

in a near-hollow plasma channel with radius rc = 1.5 and nc/nw = 5 × 10−5. A ramped

triangular electron beam is phased with the beam head at ϕ = π/3, with respect to the
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maximum accelerating field (at ζ = −4.45), having peak current Ib/IA ≃ 1.1ÊL, beam

length Lb =
√
3/Ω ≃ 2.18, and beam radius σr = 0.25. Figure 2 was generated using the

particle-in-cell code INF&RNO.19 The wakefield from the beam modifies the total wakefield

[red curve in Fig. 2(a)] such that the beam experiences a constant accelerating field (Ez =

−|ÊL|/2) throughout the beam. These quantities have been normalized such that they are

independent of the wall density. Operating at a wall density of nw = 1017 cm−3 for this

example would yield a constant accelerating gradient of 2.3 GV/m throughout the beam,

a wakefield wavelength of 132 µm, a beam charge of 167 pC, a beam length of 36 µm

(rms length 15 µm), and a channel radius of 25 µm. As this example shows, high-gradient

accelerating fields can be achieved without induced energy spread in a near-hollow plasma

channel geometry.

1. Beam loading efficiency

The laser-driven wakefield excites an electromagnetic mode, driven by surface current

in the channel wall and an electrostatic mode both in the channel r < rc and in the wall

r > rc. If we assume a near-hollow channel such that nc/nw ≪ a2(r = rc)/a
2(r = 0), then

the energy deposited in the electrostatic channel mode may be neglected compared to the

electromagnetic channel mode. The initial energy deposited in the plasma channel by the

laser-driver is Ui = Uem + Ues, where Uem and Ues is the total energy per unit length in

the electromagnetic and electrostatic modes, respectively, given by Eqs. (A24) and (A31).

For an optimally shaped bunch to eliminate the energy spread, the peak field following the

bunch is reduced by cos(ϕ), where ϕ = Ωζhead is the phase position of the head of the beam.

Since the relativistic witness beam only excites an electromagnetic mode, the final energy

in the plasma channel after the beam-plasma interaction is Uf = Uem cos2(ϕ) + Ues.

The efficiency of energy transfer from the laser-driven electromagnetic wakefield to the

witness particle beam is

η = 1− Uf

Ui
=

sin2(ϕ)

1 + Ues/Uem
. (12)

In general, with no wake-induced energy spread, there is a trade-off between efficiency η and

accelerating gradient ÊzL cos(ϕ). The energy in the electrostatic mode does not couple to

the witness particle beam and reduces the overall efficiency. Using (A24) and (A31), the

ratio of energy deposited in the electrostatic to electromagnetic modes in the plasma channel
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FIG. 2. (color online) (a) Normalized accelerating wakefield Ez/Ew versus ζ with (red solid curve)

and without (black dotted curve) witness electron beam. Plasma channel has parameters rc = 1.5

and nc/nw = 5 × 10−5. Wakefield is driven by a laser pulse with a0 = 1.2, w0 = 2.3, and sine-

longitudinal profile of length length Ls = 3.95. Witness electron beam is phased ϕ = π/3, with

Ib/IA ≃ 1.1ÊL, Lb =
√
3/Ω ≃ 2.18, σr = 0.25, γ = 104, and ǫn = 0.03. (b) Normalized transverse

wakefield (Er−Bθ)/Ew versus transverse position x (y = 0) inside the beam at two phases ζ = −3.6

(dashed black line) and ζ = −4.3 (solid red line).

is

Ues

Uem

=
A2

1

A2
0

(

Ω2K0(rc)

rcK1(rc)

)
∫

∞

rc

rdr

{

[

a2(r)

a2(rc)
− K0(r)

K0(rc)

]2

+

[

∂ra
2(r)

a2(rc)
+

K1(r)

K0(rc)

]2
}

, (13)

assuming kc ≪ kw. Note that, for a laser with transverse profile a2(r) = a2(rc)K0(r)/K0(rc)

in the wall plasma, the laser will only couple to the electromagnetic mode, Ues = 0, yielding

higher overall efficiency. For a bi-Gaussian laser driver, Eq. (4), resonant with the electro-

magnetic mode (ΩL = 1), the ratio of energy deposited in the electrostatic to electromagnetic

modes in the plasma channel is, with kc ≪ kw,

Ues

Uem
=

e(1−Ω−2)K0(rc)

Ω2rcK1(rc)

∫

∞

rc

rdr

{

[

e−2(r2−r2
c
)/w2

0 − K0(r)

K0(rc)

]2

+

[

K1(r)

K0(rc)
− 4r

w2
0

e−2(r2−r2
c
)/w2

0

]2
}

.

(14)
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FIG. 3. Ratio of energy per unit length in the electrostatic mode to that in the electromagnetic

mode deposited in a plasma channel by a bi-Gaussian laser driver with duration L = Ω−1 and spot

size w0 = rc/
√

ln(rc) (quasi-matched propagation in the plasma channel).

Figure 3 plots Ues/Uem versus channel radius rc, assuming the relation w0 = rc/
√

ln(rc) for

quasi-matched propagation18 in the low intensity, low power limit. For typical parameters,

the energy in the electrostatic mode is a few percent of the total energy deposited in the

plasma channel. For the parameters of Fig. 2, the overall efficiency of energy transfer from

laser-driven wakefield to beam is η ≃ 73%.

2. Beam loading with short beams

Shorter beams may be required for various applications. For example, ultra-short beams

may be used for dynamical studies in ultrafast science. For high-energy physics applications,

short beams can be effective in suppressing beamstrahlung effects.8 If a shorter duration

beam is desired one can consider a trapezoidal current distribution:

I

IA
= ÊL

sin(ϕ)

W0Ω

(

1 +
Ωζ

tan(ϕ)

)

Θ(−ζ + Lb), (15)

for ζ < 0, where Θ(x) = 1 for x > 0 and zero otherwise, and the beam length is Lb ≤
tan(ϕ)/Ω. For the beam distribution given by Eq. (15) the field experienced by the beam is

constant throughout the beam with amplitude Ez/Ew = ÊL cos(ϕ), and the total number

of particles in the beam is

Nb = Lb

[

1− ΩLb

2 tan(ϕ)

]

sin(ϕ)

W0Ω

|ÊL|
kwre

. (16)

Note that Eq. (16) is independent of the transverse size and shape of the witness particle

beam.
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With a trapezoidal beam, the back of the particle beam generates a wake (depositing

energy back into the plasma), and hence the overall efficiency is reduced. The efficiency of

energy transfer from the wakefield to the beam using a trapezoidal current distribution is

η = ηc(1 + Ues/Uem)
−1, with

ηc = ΩLb cos(ϕ) [2 sin(ϕ)− ΩLb cos(ϕ)] . (17)

In the limit of the triangular beam, Lb = tan(ϕ)/Ω, the efficiency is maximized η = (1 +

Ues/Uem)
−1 sin2(ϕ). For fixed beam length Lb, the optimal phase for maximum efficiency is

ϕ = arctan
[

ΩLb/2 +
√

1 + (ΩLb/2)2
]

. (18)

In the limit of ultra-short bunches Lb ≪ 1, the optimal phase for efficiency is ϕ ≃ π/4 +

ΩLb/4, with the efficiency η ≃ ΩLb(1 + Ues/Uem)
−1.

3. Bunch trains

Higher efficiency of energy transfer from the wakefield to the beam can be achieved for

short bunches (Lb ≪ 1) by using multiple bunch trains. As an example, consider two short

trapezoidal bunches. The first bunch of length L1 ≪ 1 with its head located at the phase ϕ1

experiences a uniform accelerating field amplitude EL cos(ϕ1) throughout the bunch, with

charge Nb1 given by Eq. (16) and efficiency ηc1 given by Eq. (17). A second bunch can be

phased behind the first bunch (with head at ϕ2 with respect to the peak of the wakefield

of a trailing plasma wave bucket behind the first bunch) such that the accelerating gradient

is equal throughout both bunches, which implies ϕ2 = arccos[cos(ϕ1)/
√
1− ηc1] < ϕ1. The

second bunch length L2 > L1 can be chosen such that the charge in both bunches is equal

Nb2 = Nb1. In this way, the efficiency (beam charge) is doubled, maintaining a constant

accelerating gradient (in both bunches), while using ultra-short bunches 1 ≫ L2 > L1.

For example, assuming rc = 1.5, if the head of the first trapezoidal bunch is phased at

ϕ1 = π/4, with accelerating field EL/
√
2 and bunch length L1 = 0.1, then the efficiency is

ηc1 = 0.0764. The amplitude of the laser-driven wakefield following the bunch is reduced

(1 − ηc1)
1/2EL ≃ 0.961EL. A second trapezoidal bunch can be placed in a bucket trailing

the first with phase ϕ2 ≃ 0.744 (with respect to the local peak) such that the accelerating

field amplitude is 0.707EL throughout the bunch, and the length is L2 = 0.110 such that
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the bunch charge is equal Nb2 = Nb1. The total efficiency of energy transfer is twice that of

the single bunch.

In a similar fashion, additional trapezoidal bunches can be added to the train to further

increase the efficiency. The mth bunch in the train should be phased, with respect to the

local wakefield peak,

ϕm = arccos

[

cos(ϕ1)
√

1− (m− 1)ηc1

]

< ϕm−1, (19)

where ηc1 = ηc(ϕ1, L1) is given by Eq. (17). The bunch length to maintain equal charge is

Lm−1 < Lm with

Lm = Ω−1 tan(ϕm)

[

1−
√

1− 2ΩL1 sin(ϕ1) cos(ϕm)

sin2(ϕm)
√

1− (m− 1)ηc1

(

1− ΩL1

2 tan(ϕ1)

)

]

. (20)

Here a constant gradient will be maintained throughout all the bunches of equal charge.

The total efficiency after m bunches is

ηtotal = mηc1 (1 + Ues/Uem)
−1 , (21)

where Ues/Uem is given by Eq. (13) and determined by the driver.

The limit on the number of bunches (with equal charge, experiencing equal acceleration)

will be set when the wakefield amplitude becomes sufficiently reduced (energy transferred

to the bunch train) such that a uniform accelerating gradient can not be achieved for the

bunch charge. The efficiency using a m-bunch train can approach that of a single beam

Eq. (12) with the number of bunches equal to the largest previous integer of sin2(ϕ)/ηc1.

In the above example (L1 = 0.1 and ϕ1 = π/4), six bunches (with lengths ≤ L6 ≃ 0.248)

could be used with constant accelerating gradient of EL cos(π/4) and an overall efficiency

of 6ηc1/(1 + Ues/Uem).

III. TRANSVERSE WAKEFIELDS IN A NEAR-HOLLOW PLASMA

CHANNEL

In a near-hollow plasma channel the focusing force provided by the electromagnetic mode

driven by currents in the wall is reduced for relativistic drivers owing to the near cancellation

(to order ∼ γ−2
p ) of the transverse fields in the Lorentz force. Hence, one can consider
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operating in a regime where the plasma density in the channel dominates and provides a

constant, uniform focusing force. The laser, satisfying a20/(1 + a20/2)
1/2 > k2

cw
2
0/2, and the

witness beam, with beam density nb typically satisfying nb ∼ nw ≫ nc, will expel any

electrons in the low density channel, forming an ion column. The focusing wakefield excited

in the channel is then [to order a2(rc) < 1 in the laser field]

(Er − βBθ)/Ew = (Ec/Ew)kcr/2

− r

16γ2
p

(

1 +
γ2
p

γ2

)

Ω3

∫ ζ

∞

dζ ′ sin[Ω(ζ − ζ ′)]a2(r = rc, ζ
′)

+
r

2γ2
W0Ω

3

∫ ζ

∞

dζ ′ sin[Ω(ζ − ζ ′)]I(ζ ′)/IA, (22)

where γ2 = 1/(1 − β2) ≫ 1 and cβ is the witness beam velocity. The first term on the

right-hand side of Eq. (22) is due to the ions in the channel, the second term is due to the

electromagnetic mode excited in the walls for a laser driver, and the third term is the self

wakefield driven by the witness beam. The focusing wakefield is linear with respect to radial

position and, hence, the normalized transverse slice emittance will be preserved.

The ion density in the channel can be used as an effective method to control the focusing

force on a relativistic electron beam. In the regime γ2 ≫ γ2
p and nc/nw ≫ a20(r = rc)/(8γ

2
p),

the focusing from the channel ion density dominates and

Er − βBθ ≃ Eckcr/2, (23)

yielding kβ = kc/
√
2γ, where kβ is the betatron wavenumber for the focusing force. In this

regime matched propagation for an electron beam is achieved for

nc

nw

=
2ǫ2n
γσ4

r

, (24)

where ǫn is the rms normalized transverse emittance and σr is the rms transverse beam size.

Figure 2(b) shows an example of the focusing wakefield experienced by the beam (laser-

beam parameters given in the caption of Fig. 2). In this example, the beam has an energy

γ = 104, normalized transverse size σr = 0.25, and normalized emittance ǫn = 0.03 (for

example, ǫn = 0.5 µm for a wall density of nw = 1017 cm−3). The focusing wakefield is

shown at two phases (near the beam head ζ = −3.6 and near the beam tail ζ = −4.3). The

channel ions, with nc/nw = 5 × 10−5 in this example, provide matched beam propagation

throughout the electron beam.
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Positron beams can be accelerated in a similar fashion as electrons using a ramped or

trapezoidal beam distribution, as described in Sec. IIC, with ϕ = Ωζhead being the phase shift

of the head of the positron beam with respect to the peak accelerating field for positrons.

Although a near-hollow plasma channel can be effective in providing uniform, controlled

focusing for electron beams, such a channel would provide a defocusing force to a positron

beam. For a relativistic positron beam one would operate using a hollow plasma chan-

nel (nc = 0), and rely on external focusing. Strong focusing could be achieved by using

permanent magnetic quadrupoles positioned around the plasma channel structure.

IV. SUMMARY AND CONCLUSIONS

In this work we have examined beam-loading in laser-plasma accelerators using a near-

hollow plasma channel. In this near-hollow plasma channel geometry, the accelerating fields

are determined by the wall density, whereas the channel density may be used to indepen-

dently control the focusing fields experienced by an electron beam. The focusing fields from

the channel ions are linear in radial position and uniform in wakefield phase, eliminating

any emittance growth due to beam mismatch.20 In addition, by controlling the focusing

force in this manner, the beam density can be controlled, eliminating any ion motion in

the channel.21 The near-hollow plasma channel geometry considered in this work effectively

eliminates emittance growth from Coulomb scattering.13

The wakefields in a near-hollow plasma channel, excited by a drive laser and a witness

particle beam, were computed. The guiding condition for a Gaussian laser driver propagat-

ing in a near-hollow channel was calculated [cf. Eq. (7)]. Triangular and trapezoidal current

distributions were considered to eliminate head-to-tail differences in the accelerating field

throughout the beam. By properly shaping and phasing the beam in the laser-driven wake-

field, high-gradient acceleration can be achieved with high efficiency, and without induced

energy spread. The laser-driven electrostatic wake (in the wall plasma) results in reduced

efficiency, although efficiency may be improved by transverse shaping of the laser pulse so

that only the electromagnetic mode is excited. For the numerical example presented in

Sec. IIC at nw = 1017 cm−3, an accelerating gradient of 2.3 GV/m was generated with 73%

efficiency of energy transfer from the laser-driven wakefield to the beam. In addition, short

beams (compared to the skin depth of the wall density) can be accelerated without energy

14



spread and with high efficiency and accelerating gradient using trapezoidal shaped bunches

in a multiple bunch train format.

Both electron and positron beams can be accelerated in this plasma channel geometry.

A positron beam may be accelerated with high efficiency, without energy spread growth,

in a similar fashion as an electron beam. Matched propagation of a positron beam can be

achieved using a hollow channel with external focusing (generated by, for example, perma-

nent magnetic quadrupoles). Although we have focused on laser drivers for excitation of

the accelerating wakefield, the beam-loading analysis presented also applies to particle beam

drivers.

In this work we have assumed a linear plasma response |Ez| < Ew. In particular, the

accelerating gradients (and accelerated charge) can be increased by increasing the drive

laser intensity. However, a nonlinear analysis and numerical modeling are then required to

determine the optimal beam loading, and non-ideal effects, such as wall motion, need to be

considered. The effects of slippage between the driver and witness bunch were also neglected

in this work. Tapering the plasma density may be considered to control slippage.22,23

The proposed approach of using shaped beams in a near-hollow plasma channel geometry

enables efficient acceleration while preserving high-quality electron and positron beams in

plasma-based accelerators for high-energy physics applications.
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Appendix A: Wakefield excitation

In this Appendix we present the solution for the linear wakefields in a near-hollow channel

driven by a laser and/or charged particle beam and calculate the total energy deposited in

the plasma channel. The excited wakefield can be derived from Maxwell equations and the

linearized fluid equations for a cold, collisionless plasma, assuming a quasi-static driver. The

linearized plasma electron fluid momentum equation is

4π∂tJp = k2
p

[

E + (mec
2/e)∇a2/4

]

, (A1)
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where Jp is the plasma current, k2
p = 4πe2n(r)/mec

2, andmec
2∇a2/4 is the laser ponderomo-

tive force (assuming linear polarization of the laser). Combining Eq. (A1) with the Maxwell

equations yields

∇× (∇×E) +
(

∂2
t + k2

p

)

E = −k2
p(mec

2/e)∇a2/4− 4π∂tJb, (A2)

where Jb is the particle beam current. In the following, the fields are normalized to Ew =

mec
2kw/e and the length scales to k−1

w .

In the channel (r < rc), k
2
p = k2

c (plasma electrons in the near-hollow channel are assumed

to be expelled, k2
c ≪ 1, leaving ion density nc), and the Poisson equation is

∇ ·E ≃ (q/e)k2
b + k2

c , (A3)

where k2
b = 4πe2nb(ζ, r)/mec

2 is the beam density with q the charge of the beam particles.

In the wall plasma (r > rb), k
2
b = 0, k2

p = 1, and the plasma fluid continuity equation and

the Poisson equation may be combined to yield
(

∂2

c2∂t2
+ 1

)

∇ ·E = −∇2a2/4. (A4)

With the quasi-static approximation such that the wakefields and drivers are a function

of the co-moving variable ζ = z − cβpt, with βp ≃ 1, a Fourier transform E(ζ, r) → Ẽ(k, r)

may be applied. Solving Eqs. (A2) and (A3) for the wakefields in the channel (r < rc) yields

Ẽz = C1, (A5)

Ẽr = −ikC1
r

2
+

2

r

Ĩ

IA
+ 2πδ(k)k2

cr/2, (A6)

and B̃θ = Ẽr − ∂rẼz/ik = Ẽr, where I is the beam current and IA = mec
3/e. In the wall

(r > rc), assuming vanishing fields at r → ∞, Eqs. (A2) and (A4) may be solved for the

wakefields,

Ẽz = C2K0(r)−
ikã2/4

1− k2
, (A7)

Ẽr = ikC2K1(r)−
∂rã

2/4

1− k2
, (A8)

and B̃θ = Ẽr − ∂rẼz/(ik), where K0 and K1 are modified Bessel functions. Here C1 and C2

are constants determined by the boundary conditions: Ez|rc = 0, Bθ|rc = 0, and

[

(k2 − k2
p)Ẽr − k2

p∂rã
2/4

]

rc
= 0. (A9)
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Applying the boundary conditions yields

C1 =
−ikΩ2

k2 − Ω2

[

W0
Ĩ

IA
− ã2(rc)

4

]

, (A10)

C2 =
−ikΩ2

k2 − Ω2

[

W0
Ĩ

IA
− ã2(rc)

4

]

1

K0(rc)
+

ik

1− k2

ã2(rc)

4K0(rc)
, (A11)

where

W0 =
2K0(rc)

rcK1(rc)
, (A12)

and

Ω =

[

1 +
rcK0(rc)

2K1(rc)

]−1/2

(A13)

is the excited mode wavenumber.

Taking the inverse Fourier transform yields

Ez = −Ω2

∫ ζ

∞

dζ ′ cos[Ω(ζ − ζ ′)]

[

a2(rc, ζ
′)

4
−W0

I(ζ ′)

IA

]

(A14)

in the channel (r < rc), and

Ez = −
∫ ζ

∞

dζ ′ cos(ζ − ζ ′)
a2(rc, ζ

′)

4

[

a2(r)

a2(rc)
− K0(r)

K0(rc)

]

− Ω2 K0(r)

K0(rc)

∫ ζ

∞

dζ ′ cos[Ω(ζ − ζ ′)]

[

a2(rc, ζ
′)

4
−W0

I(ζ ′)

IA

]

(A15)

in the wall (r > rc). The excited mode in the channel Eq. (A14) is electromagnetic, with

frequency Ωkwc, whereas the field in the wall Eq. (A15) has an electrostatic component

[first integral on the right-hand side of Eq. (A15) with oscillation frequency equal to the

plasma frequency in the wall kwc] and an electromagnetic component [second integral on

the right-hand side of Eq. (A15) with frequency Ωkwc]. The relativistic particle beam with

current I will only excite an electromagnetic mode, whereas the laser drives both modes.

As indicated by Eq. (A15), if the laser has the transverse profile a2(r) = a2(rc)K0(r)/K0(rc)

for r > rc, the laser will only excite the electromagnetic mode.
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1. Electromagnetic mode

The electromagnetic fields excited behind the driver have the form

Ez = A0 cos(Ωζ), (A16)

Er = A0 sin(Ωζ)Ωr/2, (A17)

Bθ = Er, (A18)

in the channel (r < rc), and

Ez = A0
K0(r)

K0(rc)
cos(Ωζ), (A19)

Er = −A0Ω
K1(r)

K0(rc)
sin(Ωζ), (A20)

Bθ = (1− Ω−2)Er, (A21)

in the wall (r > rc), where A0 is the peak amplitude of the accelerating field given by the

integral Eq. (A14). For a bi-Gaussian laser profile with envelope

a2 = a20 exp(−ζ2/2L2) exp(−2r2/w2
0), (A22)

where L is the rms intensity pulse length and w0 the laser spot size, the wake amplitude

behind the laser is

A0 = a20(π/8)
1/2Ω2Le−(ΩL)2/2e−2r2

c
/w2

0 , (A23)

and with pulse duration L = Ω−1 the wake amplitude is maximum A0 ≃ 0.38Ωa20 exp(−2r2c/w
2
0).

The energy per unit length in the electromagnetic mode11 is the sum of the energy in the

fields and the plasma fluid motion,

Uem =

∫

d2r⊥ (ufield + ufluid)

=

∫

∞

0

rdr
1

8

[

E2
z + (Er −Bθ)

2 + Ω−2(E2
z + E2

r )
]

= A2
0

[

rcK1(rc)

4Ω2K0(rc)

]

.

(A24)

2. Electrostatic mode

The electrostatic fields in the channel r < rc have the form

Er = k2
cr/2, (A25)
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and in the wall r > rc the laser-driven electrostatic fields have the form

Ez = A1 cos(ζ)

[

a2(r)

a2(rc)
− K0(r)

K0(rc)

]

, (A26)

Er = A1 sin(ζ)

[

∂ra
2(r)

a2(rc)
+

K1(r)

K0(rc)

]

, (A27)

where A1 is given by the integral

Ez = −
∫ ζ

∞

dζ ′ cos(ζ − ζ ′)
a2(rc, ζ

′)

4

[

a2(r)

a2(rc)
− K0(r)

K0(rc)

]

. (A28)

For a bi-Gaussian laser profile, Eq. (A22),

A1 = a20(π/8)
1/2Le−L2/2e−2r2

c
/w2

0 , (A29)

and for a laser pulse duration that is resonant with the electromagnetic mode ΩL = 1,

A1/A0 = Ω−2e(1−Ω−2)/2. (A30)

The energy per unit length in the electrostatic mode is

Ues =

∫

d2r⊥ (ufield + ufluid) =
(kcrc)

4

64

+
A2

1

4

∫

∞

rc

rdr

{

[

a2(r)

a2(rc)
− K0(r)

K0(rc)

]2

+

[

∂ra
2(r)

a2(rc)
+

K1(r)

K0(rc)

]2
}

. (A31)

For kcrc ≪ 1, the energy in the electrostatic fields is dominated by the fluid motion in the

wall plasma r > rc excited by the laser ponderomotive force. The total energy per unit

length deposited in the plasma channel by the driver is Uem + Ues.
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