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The all-optical control of the trajectory of a nonlinear optical beam propagating in a
nematic liquid crystal cell is studied using a combination of modulation theory and full
numerical solutions of the governing nematic equations. In detail, the output position
of a signal beam is controlled via its interaction with a second, co-propagating control
beam. The input positions of both the signal and control beams are fixed, with the
output position of the signal beam determined by the input angle of the control beam.
A simple modulation theory based on treating the optical beams as mechanical particles
in a potential well is found to give only adequate agreement with numerical solutions.
However, extending this modulation theory to include the detailed profiles of the beams,
so that the beams are treated as rigid bodies moving in a potential well, leads to simple,
extended equations which determine the input angle of the control beam required for
a given output position of the signal beam. The predictions of this extended particle
theory, or rigid body theory, are compared with full numerical solutions of the nematic
equations and excellent agreement is found.

Keywords: nonlinear optics, liquid crystals, solitary waves, modulation theory

1. Introduction

Nematic liquid crystals have proved to be an ideal medium in which to study

many nonlinear optical phenomena due to their “huge” nonlinear response, which

enables nonlinear effects to be observed over millimetre distances1,2. Nematic liquid

crystals having a focusing response to optical beams, so that the refractive index

increases with the beam intensity1, leading to self-sustaining beams for which this

self-focusing balances linear diffraction1,3. Nematic liquid crystals have then been

found to support bulk optical solitary waves1,4, termed nematicons, and optical

vortices1,2,5. A determining feature of nematic liquid crystals is their “nonlocal”

response in that the response of the nematic medium to an optical forcing extends

far beyond the waist of the optical beam1,2,6. This nonlocal response means that two

or more nematic beams can interact at a distance via the nematic medium without

the optical fields interacting directly. This strong nonlocal interaction results in the

interaction between nematicons being attractive, independent of the relative phase

1
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of the nematicons, as shown experimentally7,8,9 and numerically10, in contrast to

local NLS solitons for which the interaction is attractive if the solitons are in-phase

and repulsive if they are out of phase11. This attraction due to the nematic medium

is strong enough to counteract the centrifugal repulsive force when two or more

nematicons spiral around each other, so that a bound state can form12,13,14,15,

in analogy with gravitational attraction14,15. The mutual attraction between co-

propagating nematicons, resulting in the formation of a bound state, also extends

to counter-propagating nematicons16,17,18. Indeed, counter-propagating nematicons

can merge to form a single beam on close enough approach17,18.

One of the reasons for the experimental and theoretical interest in nonlinear

optical beams in nematic liquid crystals is their possible application in all-optical

devices1. An optical beam in a nematic liquid crystal can, in principle, be routed

anywhere within a liquid crystal cell. It can then act as a reconfigurable “wire”

for a co-propagated signal beam. In particular, a number of mechanisms have been

proposed for nematicon-based logic gates and “light” valves, based on the controlled

routing of a nematicon in a liquid crystal cell. The actual routing of the nematicon

can be produced via a number of control mechanisms. The simplest is through

an externally applied electric field19. The adjustment of this external electric field

can be used to control the rotation of the nematic molecules, thus changing the

refractive index of the nematic1,20, resulting in refraction of the nematicon. Of

interest to the current work, the trajectory of a nematicon can be controlled by the

presence of another optical beam. This control beam can be in a plane orthogonal

to the signal beam, resulting in a “light valve”21,22, or can be a co-propagating

nematicon in the same plane7,23. In particular, the control of a signal nematicon

by a co-propagating control nematicon can be used to design power dependent X,

NOR and AND logic gates23.

The present work details a theoretical investigation of the control of the trajec-

tory of a nematicon, the signal beam, by another co-propagating nematicon, the

control beam, as in experimental investigations of nematicon-based logic gates7,23.

This investigation will be based on the use of suitable trial functions for the ne-

maticon solution in a Lagrangian formulation of the equations governing nonlinear

optical beam propagation in nematic liquid crystals24. The use of trial functions

is necessitated due to the lack of any exact solutions for a nematicon, except iso-

lated solutions for fixed parameter values25. However, an appropriate choice of the

trial function has been found to give approximate solutions in excellent agreement

with full numerical solutions for a nematicon2,24,25. This holds for a range of trial

functions, for example Gaussians and hyperbolic secants, as long as they are in

broad agreement with numerical nematicon profiles. This approximate Lagrangian

method has been previously used to study nematicon interaction14,26,27, with ex-

cellent agreement found with numerical solutions.

In this study, the output position in a nematic cell of a signal beam (nemati-

con) will be controlled by another nematicon acting as a control beam. The input
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positions of both beams are fixed, as well as the input angle of the signal beam.

The output position of the signal beam is controlled by varying the input angle of

the control beam. The input angle of the control beam required to lead to a spe-

cific output position of the signal beam is calculated. This input angle is calculated

using both full numerical solutions of the nematicon equations and approximations

based on the Lagrangian method discussed above. The first Lagrangian approach

treats the beams as point particles, as their detailed profiles are averaged out, and

yields dynamical equations for the beam trajectories which are analogous to those

for point particles moving in a potential well which is determined by the response of

the nematic medium. This particle approximation has been used in previous studies

of interacting nematicons and has been found to yield excellent agreement with full

numerical solutions14,15. In addition, these particle approximations have been found

to be useful for general perturbed solitary wave problems28. However, in the present

application to beam control this point particle approximation is found to yield only

adequate agreement with full numerical solutions of the nematic equations, for rea-

sons to be discussed. The particle approximation is then extended to take account

of the detailed profile of the optical beams, yielding what is termed an extended

particle approximation, but which could also be termed a rigid body approxima-

tion as the beam is now treated as an extended body. This extended Lagrangian

approach is found to yield results in near perfect agreement with full numerical

solutions, both for the beam trajectories and the input angle of the control beam

required to obtain a given output position of the signal beam. This extension of

the standard Lagrangian approach should prove useful for other problems involving

solitary waves and their interactions and which have, to date, been studied using

the standard particle approximation only28.

2. Governing equations

Let us consider the propagation and incoherent interaction of two polarised beams

of coherent light of the same wavelengths (colour) in a cell filled with a nematic

liquid crystal. The electric fields of the beams are polarised in the same direction,

which will be taken to be the x direction, with the z direction taken to be the

propagation direction down the cell. The y direction then completes the coordinate

triad. The cell will be taken to have a length D in the z direction. To overcome

the Freédericksz threshold20, the nematic molecules are initially at an angle θ0 to

the z direction. This pre-tilt can be produced, for instance, by an external low

frequency electric field applied across the cell in the x direction. The cell and beam

configuration are sketched in Figure 1. The electric fields of the optical beams then

rotate the nematic molecules by the extra angle θ, so that the molecules make a

total angle θ0 + θ to the z direction. In typical experiments the optical beams are

of low, milliwatt power1,2. The extra rotation θ can then be assumed to be small,

so that |θ| ≪ θ0. With this assumption, the non-dimensional equations governing

the propagation of the optical beams through the liquid crystal cell in the slowly
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Fig. 1. Schematic of liquid crystal cell showing the two interacting beams. The u and v beams
are input at the angles Uu0 and Uv0 , respectively.

varying envelope, paraxial approximation27,29 are

i
∂u

∂z
+

1

2
∇2u+ 2θu = 0, (2.1)

i
∂v

∂z
+

1

2
∇2v + 2θv = 0, (2.2)

ν∇2θ − 2qθ = −2|u|2 − 2|v|2. (2.3)

Here u and v are the electric field envelopes of the two optical beams. The parameter

q is related to the pre-tilt. In the case of a pre-tilt produced by an external electric

field it is proportional to the square of the amplitude of this field4,6. The elastic

response of the nematic is measured by the parameter ν, which isO(100) in the usual

experimental regime6,30,31. As noted, due to the nonlocal response of the nematic,

the beams do not have to overlap to interact, but can interact via the nematic

response. As sketched in Figure 1 the u and v beams enter the cell at x = ξu0 and

x = ξv0 at the angles αu0 = tan−1 Uu0 and αv0 = tan−1 Uv0 to the z direction

and leave the cell at x = ξuf
and x = ξvf at the angles αuf = tan−1 Uuf

and

αvf = tan−1 Uvf to the z direction, respectively. The beams’ trajectories are altered

due to their mutual interaction via the nematic. To greatly simplify the calculations,

the cell will be taken to be much wider than the beams and the beams will be

assumed to be launched near the centre of the cell. The effect of the boundaries

can then be neglected and it can be assumed that u → 0, v → 0 and θ → 0 as

x2+y2 → ∞. This is a reasonable assumption as typical beam widths are 3µm and

typical cell widths are 75µm4.

While the system of equations (2.1)–(2.3) has been described for optical beams

propagating in a nematic liquid crystal cell, the system is, in fact, general. It governs
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nonlinear optical beam propagation in media for which nonlinearity is coupled to

some diffusive phenomena32, examples being thermal media33, lead glasses34,35,36

and certain photo-refractive crystals37. In addition, a similar system of equations

arises in simplified α models of fluid turbulence38,39.

3. Two body particle approximation

The two colour nematic equations (2.1)–(2.3) have the Lagrangian

L = i (u∗uz − uu∗z)− |∇u|2 + 4θ|u|2 + i (v∗vz − vv∗z )

− |∇v|2 + 4θ|v|2 − ν|∇θ|2 − 2qθ2. (3.1)

Lagrangian formulations of the nematic equations have been used to find approx-

imate evolution equations for an evolving nematicon or nematicons24,26,27, these

equations being termed modulation equations3. Standard modulation theory3 is

based on the periodic wave or solitary wave solution of a nonlinear wave equation,

which is taken to slowly vary so that its parameters, such as amplitude and width,

are slowly varying functions of space (and time)3,28. However, even the equations

for a single nematicon have no known general solitary wave solution, only isolated

solutions for fixed values of the parameters q and ν25. To overcome this lack of an

exact solution on which to base modulation theory, suitable trial functions are cho-

sen for this unknown solution40,41, which is then substituted into the Lagrangian

formulation of the governing equations. Averaging the Lagrangian, that is integrat-

ing in x and y from −∞ to ∞3, then results in an averaged Lagrangian whose

variational equations are the modulation equations for its varying parameters as a

function of the evolution variable z. In the context of nonlinear beams in nematic

liquid crystals, variational approximations have been found to give solutions in good

agreement with experimental results30,42,43 and numerical solutions24,26,44,45,46,47.

Suitable trial functions to be used for this variational approximation for the two

colour nematicon equations (2.1)–(2.3) are 24,27

u = aue
−χ2

u/w
2
u eiψu , (3.2)

v = ave
−χ2

v/w
2
v eiψv , (3.3)

θ = αue
−2χ2

u/β
2
u + αve

−2χ2
v/β

2
v , (3.4)

where

χu =

√

(x− ξu)
2
+ y2, χv =

√

(x− ξv)
2
+ y2,

(3.5)

ψu = σu + Uu (x− ξu) , ψv = σv + Uv (x− ξv) .

The beam trial functions (3.2) and (3.3) are approximations to varying

nematicons24. All the parameters of the trial functions (3.2)–(3.4) are usually taken

to be functions of z3,24,41. However, it has been found that the amplitude-width
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oscillations in au, wu and av, wv nearly decouple from the position-velocity oscil-

lations in ξu, Uu and ξv, Uv
15,26,27,48,49,50,51,52. The reduced modulation equations

for the positions and velocities can then be obtained by assuming that the ampli-

tudes au, av, αu and αv and widths wu, wv, βu and βv are constant, with only the

positions ξu, ξv, velocities Uu, Uv and phases σu, σv depending on z. This approxi-

mation is the same as the particle approximation used for perturbed solitary wave

theory28.

As stated in Section 2, the nematic equations (2.1)–(2.3) are non-dimensional

equations, with all quantities being made non-dimensional using typical dimensional

beam parameters30,31. The beam widths are non-dimensionalised on a typical input

width wg of a Gaussian beam. A scale beam amplitude ag is determined from the

input power Pg of the Gaussian beam by31

Pg =
ǫ0
2
cno

∫

∞

−∞

∫

∞

−∞

|ug|
2 dxdy =

ǫ0
2
cno

π

2
a2gw

2
g , (3.6)

where c is the speed of light in a vacuum and no is the ordinary refractive index of

the nematic medium. The non-dimensionalisation then depends on a typical input

beam power, so that the parameters ν and q in the nematic equations (2.1)–(2.3)

also depend on the scale input power. Of course, when the results are transformed

back to dimensional variables, this dependence drops out30,31. For the numerical

results of the present paper, the non-dimensional amplitudes and widths of the

input beams used were au = av = 2.0 and wu = wv = 4.1. For typical ν =

O(100)30,31, this gives that the ratios βu/wu and βv/wv are ∼ 3, see equations

(3.14) and (3.15) which determine βu and βv. We note that the amplitude and

width of the director response are algebraically determined by the optical beam

amplitudes and widths since the director equation (2.3) has no z derivatives. As

the non-dimensional parameter ν controls the size of the ratios βu/wu and βv/wv,

see (3.14) and (3.15), we refer to it as the “nonlocality,” even though experimentally

it is the relative sizes of βu and βv to the beam widths that measure the nonlocal

response. The final physical parameter of interest is the pre-tilt θ0. The actual value

of this parameter is not needed for the solution of the non-dimensional equations

(2.1)–(2.3). It only arises when the non-dimensional quantities are converted back

to dimensional variables as it occurs in the definitions of ν and q30,31.

Substituting the trial functions (3.2)–(3.4) into the Lagrangian (3.1) and aver-

aging by integrating in x and y from −∞ to ∞3 results in the averaged Lagrangian

L = −πa2uw
2
u (σ

′

u − Uuξ
′

u)− πa2vw
2
v (σ

′

v − Uvξ
′

v)− πa2u − πa2v

+ 2πa2uw
2
uαuβ

2
uQ

−1
1 −

π

2
a2uw

2
uU

2
u −

π

2
a2vw

2
vU

2
v − πνα2

u − πνα2
v

−
π

2
qα2

uβ
2
u −

π

2
qα2

vβ
2
v + 2πa2vw

2
vαvβ

2
vQ

−1
3 − φ. (3.7)

In this averaged Lagrangian, the interaction potential φ is

φ = −2πa2uw
2
uαvβ

2
vQ

−1
2 e−γ1 − 2πa2vw

2
vαuβ

2
uQ

−1
4 e−γ2

+ 4πναuαvβ
2
uβ

2
vQ

−2
5 [1− γ3] e

−γ3 + 2πqαuαvβ
2
uβ

2
vQ

−1
5 e−γ3 . (3.8)
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This potential will play a pivotal role in the analysis of the interaction of the two

beams. In this averaged Lagrangian

Q1 = β2
u + w2

u, Q2 = β2
v + w2

u, Q3 = β2
v + w2

v,

Q4 = β2
u + w2

v, Q5 = β2
u + β2

v , (3.9)

γ1 =
2ρ2

Q2
, γ2 =

2ρ2

Q4
, γ3 =

2ρ2

Q5
.

The distance ρ between the beams is

ρ = ξu − ξv. (3.10)

To obtain the approximate equations governing the trajectories of the beams

variations are taken of the averaged Lagrangian (3.7) with respect to the beams’

position parameters. This results in the variational, or modulation3, equations

1

4

[

dσu
dz

−
1

2
U2
u

]

= −
1

2
w−2
u +

[

αuβ
2
u

(

β2
u + w2

u

)

Q−2
1

+αvβ
2
v

(

β2
v + w2

u

)

Q−2
2 e−γ1 − αvw

2
uβ

2
vρ

2Q−3
2 e−γ1

]

, (3.11)

1

4
a2uw

2
u

dUu
dz

= −
∂φ

∂ξu
, (3.12)

dξu
dz

= Uu, (3.13)

plus the algebraic equations
(

ν +
1

2
qβ2
u

)

αu − β2
u

(

a2uw
2
uQ

−1
1 + a2vw

2
vQ

−1
4 e−γ2

)

+ qαvβ
2
uβ

2
vQ

−1
5 e−γ3 + 2ναvβ

2
uβ

2
vQ

−2
5

(

1− 2ρ2Q−1
5

)

e−γ3 = 0, (3.14)

qαu − 4Aua
2
uw

4
uQ

−2
1 − 4Ava

2
vw

4
vQ

−2
4 e−γ2 − 8Ava

2
vw

2
vβ

2
uρ

2Q−3
4 e−γ2

+ 8ναvβ
2
vQ

−3
5

[

β2
v − β2

u −
(

β2
v − 3β2

u

)

2ρ2Q−1
5 − 4β2

uρ
4Q−2

5

]

e−γ3

+ 4qαvβ
2
vQ

−2
5

(

β2
v + 2β2

uρ
2Q−1

5

)

e−γ3 = 0, (3.15)

for the nematicon parameters, together with symmetric equations for the v colour.

Equation (3.11) for the phase σu of the nematicon, and its v colour equivalent, does

not arise in the determination of the trajectories of the beams and will not be dealt

with further. The amplitudes au, av and the widths wu, wv of the beams can be

taken as their input values for the determination of these trajectories, as discussed

above. The modulation equations (3.14) and (3.15), which are algebraic, and their

v colour equivalents, then determine the corresponding amplitudes αu and αv and

widths βu and βv of the director response.

The equations (3.12) and (3.13) for the positions of the nematicons, plus their

v beam equivalents, can be reduced to dynamical equations for two mechanical

particles under a central force whose potential is (3.8)28. In this analogy, ξu and ξv
are the positions of the particles and Uu and Uv are their velocities. The modulation



8 Noel F. Smyth, Bryan Tope

equations (3.12) and (3.13) and their v equivalents then reduce to the mechanical

system

Mu
d2ξu
dz2

= −
∂φ

∂ξu
= −

∂φ

∂ρ
,

Mv
d2ξv
dz2

= −
∂φ

∂ξv
=
∂φ

∂ρ
. (3.16)

The “masses” of the nematicons are

Mu =
1

4
a2uw

2
u and Mv =

1

4
a2vw

2
v. (3.17)

Physically, the massesMu and Mv are the optical powers of the two beams. Unfor-

tunately, the potential φ, (3.8), is not proportional to the masses, as in Newtonian

gravitation. As the masses Mu and Mv cannot be divided out, further analysis is

greatly simplified if the restriction to beams of equal initial masses, or equal optical

powers, is taken, so that Mu =Mv.

For equal masses, the dynamical equations (3.16) have the centre of mass coor-

dinate Ξcm = ξu + ξv. With this centre of mass coordinate, the particle equations

(3.16) then transform to

d2Ξcm
dz2

= 0, Mu
d2ρ

dz2
= −2

∂φ

∂ρ
. (3.18)

The centre of mass has constant velocity, as expected, with the separation of the

beams given by the second of (3.18). The centre of mass equation can now be

integrated to give the momentum conservation result

ξu + ξv = (Uu0 + Uv0) z + ξu0 + ξv0 , (3.19)

since, as shown in Figure 1, the initial positions of the beams are ξu = ξu0 and

ξv = ξv0 at z = 0. The separation equation, the second of (3.18), can be integrated

to give the energy conservation equation

E =
1

2
Muρ̇

2 + 2φ(ρ), (3.20)

with the energy E a constant. The separation of the beams is hence determined by
∫ ρ

ξu0−ξv0

dρ
√

E − 2φ(ρ)
= ±

√

2

Mu
z. (3.21)

Noting that the final positions of the beams are ξuf
and ξvf at z = D for the

u and v beams, respectively, the momentum conservation result (3.19) gives the

relation

Uv0 =
1

D

(

ξuf
+ ξvf − ξu0 − ξv0

)

− Uu0 (3.22)

which links the positions of the input and output beams. In a similar manner, the

energy conservation equation (3.21) gives another relation linking the input and
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output beams
∫ ξuf

−ξvf

ξu0−ξv0

dρ
√

E − 2φ(ρ)
= ±

√

2

Mu
D. (3.23)

The ± sign is determined by whether ξuf
− ξvf > ξu0 − ξv0 or ξuf

− ξvf < ξu0 − ξv0 .

The two conservation equations (3.22) and (3.23) enable the input angle (velocity)

Uv0 of the control beam v to be determined so that the signal beam u exits at a

given ξuf
.

4. Extended particle approximation

The modulation equations developed so far have assumed that the optical beams

can be approximated as point particles. However, as discussed in Section 5, the

point particle modulation equations (3.16) give results which are in only adequate

agreement with full numerical solutions of the nematic equations (2.1)–(2.3). This

is because, as can be seen in Figures 3(a) and (b) and 5(a), that while the beams

are initially well separated and have negligible overlap, especially in their tails,

the beams can closely approach upon interaction. In these cases the point particle

approximation underestimates the interaction between the nematicons and a better

approximation is needed. This extra interaction in the tails was not important in

previous studies of the interaction of nematicons as either the nematicons did not

approach closely or the regions of closest approach were a minor part of their total

interaction14,26,27. To get a more accurate estimate of the interaction potential

between the beams their finite size must be taken into account.

The analogy of the previous section of the interaction of two optical beams and

the interaction of two dynamical masses in a potential well can be further exploited

to take account of the finite size of the beams. This is done using ideas and methods

dating back to Newtonian gravitation to find the gravitational potential of finite

masses with arbitrary density distributions. Let φ(x, y) be the potential for point

masses and P (x, y) be the density distribution of a general, finite mass. In the

present analogy, P (x, y) is the optical intensity distribution of a beam. Then the

total potential Φtot due to the the finite mass is given by

Φtot

∞
∫∫

−∞

P (x, y) dxdy =

∞
∫∫

−∞

P (x, y)φ(x, y) dxdy. (4.1)

In the Newtonian gravitation analogy, P is the density distribution of the gravitat-

ing body and φ is the gravitational potential due to a point massm1, Gm1/r. In the

present case of optical beams the density is given by the trial functions (3.2) and

(3.3), i.e. exp(−χ2
u/w

2
u) and exp(−χ2

v/w
2
v), and the potential is (3.8). The interac-

tion potential between the two beams then contains three terms, (i) the interaction

of a beam and the director distribution determined by the other beam (terms one

and two in (3.8)), (ii) the interaction between the two parts of the director distri-

bution forced by the two beams (term three containing the nonlocality ν in (3.8)),
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which is related to the nonlocal effect of the liquid crystal, and (iii) the interaction

between the two parts of the director distribution (term four in (3.8)), which is

related to the applied field across the liquid crystal (i.e. q). Let us consider the

contributions of each of these three terms in turn to the extended potential taking

account of the finite size of the optical beams.

For the first contribution the beam u profile is exp(−χ2
u/w

2
u) and from (3.8) the

point potential between a point on the beam (Xu, Yu) and a general point (Xv, Yv)

on the director is then

e
−

2[(Xu−Xv)2+(Yu−Yv)2]

β2
v+w2

u . (4.2)

We note that the width of this potential contribution has two contributions, the

beam width wu and the director response width βv under the control beam. It was

noted in Section 3 that βv ≫ wu as ν is large, O(100), and the nematic response is

highly nonlocal. This term could then be approximated by β2
v alone. However, the

width contribution w2
u will be kept as the term (4.2) is then exact. The extended

potential expression (4.1) therefore gives the corresponding potential contribution

from a general point on the u beam over the entire width of the director distribution

due to the other beam v as

w2
u + β2

v

w2
u + 2β2

v

e
−

2[(Xu−ξv)2+(Yu−ηv)2]

w2
u+2β2

v . (4.3)

To calculate the effect of the finite width of the beam u the potential (4.1) is again

used, but this time integrating over all points of the u beam. Taking a general point

(Xu, Yu) on the beam, the total potential contribution due to the finite beam u and

the finite director response v is

Φ(i) =
w2
u + β2

v

w2
u + 2β2

v

∞
∫∫

−∞

e
−

2[(Xu−ξv)2+(Yu−ηv)2]

w2
u+2β2

v e
−

(Xu−ξu)2+(Yu−ηu)2

w2
u dXudYu

∞
∫∫

−∞

e
−

(Xu−ξu)2+(Yu−ηu)2

w2
u dXudYu

, (4.4)

giving the result

Φ(i)(ξu, ξv) =
w2
u + β2

v

3w2
u + 2β2

v

e
−

2ρ2

3w2
u+2β2

v . (4.5)

The same reasoning can be applied to the interaction contributions (ii) and (iii),

resulting in the separate potential contributions

Φ(ii)(ξu, ξv) =
1
4

(

1− ρ2

β2
u+β

2
v

)

e
−

ρ2

β2
u+β2

v , (ν) (4.6)

Φ(iii)(ξu, ξv) =
1
2e

−
ρ2

β2
u+β2

v . (q) (4.7)

Adding together the potential contributions (4.5)–(4.7) gives the total potential

on treating the beams as extended objects as

Φ = −2πAua
2
uw

2
uαvβ

2
vQ

−1
6 e−γ5 − 2πAva

2
vw

2
vαuβ

2
uQ

−1
7 e−γ6

+ πναuαvβ
2
uβ

2
vQ

−2
5 [1− γ4] e

−γ4 + πqαuαvβ
2
uβ

2
vQ

−1
5 e−γ4 . (4.8)
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Here

Q6 = 2β2
v + 3w2

u, Q7 = 2β2
u + 3w2

v, (4.9)

γ4 =
ρ2

Q5
, γ5 =

2ρ2

Q6
, γ6 =

ρ2

Q7
.

The approximate equations for the trajectories of the beams based on this new,

extended potential are (3.16) with φ replaced Φ.

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

 7  8  9  10  11  12  13

α v
0
(d

e
g

re
e

s
)

ξ  uf

Fig. 2. Input angle αv0 of control beam v needed to guide signal beam u to output position ξuf .
The initial positions of the signal beam and the control beams are ξu0 = 13.0 and ξv0 = −13.0,
respectively. Full numerical solution: dashed (green) line; particle approximation: dotted (blue)
line; extended particle approximation: solid (red) line. Here Uu = 0, ν = 200 and D = 60.

5. Results

The utility of the particle and extended particle modulation equations of Sections

3 and 4, respectively, will be demonstrated by comparing their predictions for the

control parameter, the input angle Uv0 of the control beam v, so that the signal beam

exits at a given point ξuf
, with the predictions of these two sets of equations with

full numerical solutions of the nematicon equations (2.1)–(2.3). The modulation
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equations (3.16) of Sections 3 and 4 were solved numerically using the standard 4th

order Runge-Kutta scheme53. The NLS-type beam equations (2.1) and (2.2) were

solved numerically using a pseudo-spectral method based on that of Fornberg and

Whitham54. The director equation (2.3) was solved using a FFT based iterative

method26,53.

The system of equations (3.16) was solved as follows. Setting Mu = Mv and

making the substitutions

X = ξu − ξv

Y = ξu + ξv,

leads to the system of equations

Mu
d2Y

dz2
= 0, (5.1)

Mu
d2X

dz2
= −2

∂φ

∂X
. (5.2)

The centre of mass equation (5.1) has the solution

Y = k1z + k2, where k1 = Vu0 + Vv0 and k2 = ξu0 + ξv0 .

Equation (5.2) for the difference in position of the beams leads to the differential

equation

Ẋ = ±

√

2

Mu
(E − 2φ(X)), (5.3)

where E is the total energy of the system and is a constant. The value of E is

calculated from the initial kinetic and potential energies

E = Kinetic energy + Potential energy

=
1

2
MuẊ

2 + φ(ξu, ξv)

=
1

2
Mu(Uu0 + Uv0)

2 + φ(ξu0 , ξv0).

The ordinary differential equation (5.3) was solved using the standard fourth

order Runge-Kutta scheme53. For an initial velocity Uv0 of the control beam, the

value of ξu for the signal beam was calculated at z = D. If the final value of ξu did

not agree with the target value for the signal beam, the initial value of Uv0 for the

control beam was then adjusted and the value of ξu at z = D recalculated. This

was done iteratively until the final position of the signal beam and the target value

were sufficiently close, within 10−5. To adjust the initial value of Uv0 a Lagrange

interpolation polynomial between the target value of the signal beam and the initial

velocity of the control beam was formed. The initial velocity that would set the

polynomial to the target value was used55. The algebraic equations (3.14) and (3.15)

were solved using steepest descents to obtain an initial guess and then Newton’s

method was used based on this initial guess55.
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Fig. 3. Paths of signal and control beams as given by full numerical solutions of nematic equations
(2.1)–(2.3) and the extended particle. Numerical trajectory: solid (red) line, u beam upper and
v beam lower; extended particle approximation: dashed (green) line, u beam upper and v beam
lower. The target positions of the signal beam are (a) ξuf = 8.0, (b) ξuf = 8.6, (c) ξuf = 9.5.
Here ξu0 = 13, ξv0 = −13, ν = 200 and D = 60.

The modulation theory predictions for the initial angle αv0 required for the

signal beam to exit at z = D at the position ξuf are compared with the numerical

values in Figure 2. The initial positions of the beams are ξu0 = 13.0 and ξv0 =

−13.0. The initial angle of the signal beam was Uu0 = 0. The nonlocality was

taken as ν = 200 and the length of the cell was D = 60. It is clear that, as

discussed above, the point particle approximation of Section 3 only yields basic

agreement with the numerical results with the agreement becoming worse as the

target position of the signal beam increases. As discussed in Section 4, the particle

approximation predicts a control angle larger than the numerical value as it is based

on an interaction between the beams which is too low. In contrast, the extended

particle approximation of Section 4 gives excellent agreement with full numerical

solutions over the full range of output positions. It should be noted that there is

no angle αv0 which will route the signal beam to a position ξuf > 13.0. The output

position of the signal beam is then not arbitrarily adjustable.

The agreement between the detailed beam trajectories as given by full numerical

solutions of the nematic equations (2.1)–(2.3) and the extended modulation theory

of Section 4 is shown in Figure 3. Based on the agreement shown in Figure 2 the

trajectories of the particle approximation of Section 3 are not shown. Figure 3

shows the trajectory comparisons for both the signal u and control beams v for

a range of output positions ξuf of the signal beam. As for the comparisons of

Figure 2 the predictions of the extended particle model are in excellent agreement

with the numerical solutions. The approximate trajectories for the signal beam u

are identical with the numerical trajectories. This is expected as this trajectory is

highly constrained as its start point ξu0 and end point ξuf are fixed. In contrast, the

end point ξvf of the control beam is free. Even with this freedom, the approximate

trajectory for the control beam v is in excellent agreement with the numerical

trajectory.

Figure 4 shows a similar comparison as for Figure 2 for the control beam angle
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Fig. 4. Input angle αv0 of control beam v needed to guide signal beam u to output position ξuf .
The initial positions of the signal beam and the control beams are ξu0 = 16.0 and ξv0 = −16.0,
respectively. Full numerical solution: dashed (green) line; particle approximation: dotted (blue)
line; extended particle approximation: solid (red) line. Here Uu0 = 0, ν = 225 and D = 60.

αv0 to route the signal beam to the output position ξuf . The beams are input

further apart with ξu0 = 16 and ξv0 = −16 and the nonlocality is slightly higher

with ν = 225. The length D = 60 of the cell is the same. The conclusions from this

new comparison are the same as those for Figure 2. The particle approximation

of Section 3 only gives adequate agreement with the numerical results, again due

to the interaction between the beams on which the approximation is made being

too low due to treating the beams as point particles, rather than extended bodies.

In contrast, the extended particle approximation of Section 4 gives an excellent

comparison with the numerical results. This is again due to it taking account of the

beams being extended bodies, not point particles. The control angles αv0 needed

to route the beam are larger than those of Figure 2 as the increased separation

means that the interaction between the beams is lower. As for Figure 2 there is a

maximum deflection of the signal beam and it is not possible to find a control angle

αv0 to route the signal beam to ξuf > 16.

Figure 5 shows detailed individual beam trajectory comparisons for three of the

cases of Figure 4. These results are very similar to the equivalent results of Figure
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Fig. 5. Paths of signal and control beams as given by full numerical solutions of nematic equations
(2.1)–(2.3) and the extended particle. Numerical trajectory: solid (red) line, u beam upper and
v beam lower; extended particle approximation: dashed (green) line, u beam upper and v beam
lower. The target positions of the signal beam are (a) ξuf = 13.0, (b) ξuf = 14.3, (c) ξuf = 15.0.
Here Uu0 = 0, ν = 225 and D = 60.

3. The agreement of the signal beam trajectory as given by the extended particle

modulation theory is in perfect agreement with the numerical results. This is due

to this signal trajectory being constrained at its start and end points. This means

that the trajectory between these points has little scope for variation. The extended

particle modulation analysis control beam trajectories are in excellent agreement

with the numerical trajectories, with some disagreement for higher values of the exit

point ξuf of the signal beam. In general, as can be seen from Figures 3 and 5, the

smaller the overlap between the control and signal beams, the greater the difference

between the numerical and particle approximation control beam trajectories. This

is because as the interaction becomes (exponentially) weaker, the more significant

are small errors in the particle approximation.

6. Conclusions

Modulation theory based on averaged Lagrangians has been found to give excellent

results for the interaction of two nonlinear optical beams in a nematic liquid crystal

cell. This interaction is used as a model for an all-optical device which uses a

control beam to route a signal beam to a given output position at the end of the

cell. It is found that standard modulation theory which treats the beams as point

particles does not perform well in predicting the input angle of the control beam,

the control parameter, even though this modulation theory has performed well in

previous studies of nematicon interaction14,26,27. An extended modulation theory

which takes account of the extended profile of the beams is found to give results

in excellent agreement with full numerical solutions. This extended theory is based

on that used in Newtonian gravitation to find the interaction of two finite size

masses with arbitrary density distributions. It is expected that a similar extended

analysis will be useful to give simple, accurate approximations for other studies of

solitary wave interaction. To this end, the extended particle approach is expected

to have a wider range of validity than the point particle approximation as it can
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more accurately model the interaction of solitary waves when they have significant

overlap.

The particle model makes it easy to understand the forces that are operating

between optical beams in liquid crystals. Such models also give information as to

the physics of the underlying interaction. They also allow fast predictions of the

interaction as they are based on ordinary, rather than partial, differential equations.

The model can only produce reliable predictions when the optical beams can be

treated as indivisible particles. If the power of a beam is too low, then it will not

form a solitary wave. On the other hand, if it is too high, then the beam will break

up into multiple solitary waves. In both these situations, the particle method will

not produce reliable results and cannot be used without further extensions.

This work was supported by the Royal Society of London under grant IE111560.
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