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Introduction the feedback gains: 

The stability of a beam in an RF accelerating cavity in a 
storage ring or circular accelerator has been studied by 
K. Robinsonl* 2 and many others. Robinson has found that 
under certain assumptions the beam-RF system with no feed- 
back control is stable against “center-of-charge” oscillations 
if the cavity resonance frequency, wo, lies in restricted 
ranges. In particular, if ~0 is less than the RF frequency, 
Y, and the beam current is less than a critical value, IBC, 
the system is always stable. It may be possible, however, 
to increase the value of IBC and the range of stable frequency 
by the use of feedback. This possibility has been investigated 
for a beam-RF system with feedback control of the cavity 
voltage amplitude and phase. 

Under Robinson’s assumptions, the beam-RF cavity sys- 
tem is represented by a sing12 parallel RLC circuit driven by 
ideal current sources iB and I, which characterize the beam 
and generator currents as sho%n in Fig. 1. The assumption 
that the beam may be represented by a single current source 
iB restricts the treatment to center-of-charge motion of the 
whole beam. In a multibunch beam there are as many modes 
of oscillation as there are bunches. The system may be 
described by a set of modes in which the center-of-charge is 
stationary in all modes but one and it is that mode to which 
this analysis applies. TJe_stat$ of the system m_ay be des- 
cribed by the variabIes V, I B, Ig and E, where V is the cav- 
ity voltage and E is the particle energy. The amplitude of 
the beam current is assumed to be a constant and the system 
is assumed to be initially in steady state. At t=O some arbi- 
trary but small perturbations are applied to the system vari- 
ables. The conditions for stability are then determined by 
an analysis of the perturbed system. 

Feedback Equations 

For a system withouLfeedback, the value of A+& is @de- 
pendent of the value of AV. With feedback, however, AIg is 
related to A? via some control functions. For this analysis, 
the time delay in the feedback loop is assumed to be suffi- 
ciently small so that we may neglect it. Then we take for the 
feedback equations 

(1) 

and 
A+, = k9 WV 9 (2) 

where k,v and k+ are constants proportional to the open loop 
gains of the amplitude and ph+ase fezdback loops; Ig and V 
represent ‘the amplitudes of Ig and V and Qg and & their 
phases; A denotes variation of any quantity from its steady 
state value which is labeled with a subscript s. 

Normal Mode Frequency 

I Due to the perturbations applied at t-0, the system vari- 
ables are assumed to vary as e”/t for t > 0. The frequency 
of oscillation, 7, satisfies a similar dispersion equation as 
obtained by Robinson 

y4 + b3y3 + b2y2 +bly+bo=O. (3) 

The coefficients in this dispersion equation are given by the 
coefficients in Robinson’s equation plus terms which contain 
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f0 is the revolution frequency of the beam; h is the harmonic 
number and ~1’ is the momentum compaction coefficient. The 
other symbols are defined in Figs. 1 and 2. 

Stability Condition 

For a stable solution the real part of y must be negative. 
This condition will be fulfilled if all of the coefficients of the 
dispersion relationship are positive, and also if the Routh- 
Hurwitz criterion is satisfied: 

&‘= blb2b3-b;-bobi > 0 . (4) 

For negative feedback case bl and b3 are positiv: since . 
sin qgs > 0 (see Fig. 2). Also, substitution of bl=u;b3 into 
Eq. (4) gives 

w2b s 2 =bO+%u; 

bi 

so that b and Z’ positive implies b2 positive. Thus, for 
negative P eedback case the requirements for a stable solution 
are : 

bo>O and a>O. 

It has been found3 that these conditions will be satisfied pro- 
vided the cavity resonant frequency is chosen such that 
& < $Y< 7r/2 and the beam loading is less than a critical 
valise, IBC, where 

Ws $Bs [km”n GBs -kv(+f +sin +iJ] 
c$, = tan-l 

l-k+sin2@Bs-kvcos2+Bs 

and 

(6) 

For the case of no feedback, these equations give the results 
of Robinson, Le., $J~=O and IBC=(2V,/R) cos +Bs. 

(Presented at the 1971 Particle Accelerator Conference, Chicago, Illinois. h’larch 1-Y. 1971. ) 



Effects of Feedback 

The effect of feedback upon beam loading may be chsr- 
acterized by r, the ratio of IBC with feedback to IBC with- 
out feedback: 

1-kv 
r= (7) 

l+kvsin 2$Bs 

The value of r varies from unity to infinity as k, varies from 
zero to its extreme value - l/sin 2$Bs. It is possible, 
therefore, to stabilize a system for any desired critical beam 
loading by using an sufficient amount of amplitude feedback. 

The effect of feedback upon the stable tuning range of the 
cavity resonant frequency may be characterized by the value 
of +c In particular, for the case with no feedback $c=O SO 

that the system is stable for I < IBC if the cavity Suscep- 
tance is capacitive. This liml tion, however, can be re- %. 
moved by using a sufficient amount of phase feedback such 
that QC is negative. 

The values of the feedback gains corresponding to given 
values of r and qC may be found from Eqs. (5) and (6): 

kv=- r-1 
r sin2$Bs+ 1 (8) 

and 

kO = 

-cos Q 

sin ($B, (tan 9, sin @Bs+ cos @Bs) 
. 

(9) 

As an illustration, the value of k, and k+ for different values 
of r and QBs are plotted in Fig. 3 for the case of $c=O. 
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FIG. l--System model. FIG. 2--steady state 
conditions. 
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FIG. 3--Amplitude and phase feedback gains versus 
r for several values of synchronous phase 
mg1e9 #,,- (+C=o)* 




