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Abstract

The infinite hidden Markov model is a non-
parametric extension of the widely used hid-
den Markov model. Our paper introduces
a new inference algorithm for the infinite
Hidden Markov model called beam sam-
pling. Beam sampling combines slice sam-
pling, which limits the number of states con-
sidered at each time step to a finite number,
with dynamic programming, which samples
whole state trajectories efficiently. Our algo-
rithm typically outperforms the Gibbs sam-
pler and is more robust. We present appli-
cations of iHMM inference using the beam
sampler on changepoint detection and text
prediction problems.

1. Introduction

The hidden Markov model (HMM) (Rabiner, 1989) is
one of the most widely used models in machine learn-
ing and statistics for sequential or time series data.
The HMM consists of a hidden state sequence with
Markov dynamics, and independent observations at
each time given the corresponding state. There are
three learning related tasks associated with the HMM:
inference of the hidden state sequence, learning of the
parameters, and selection of the right model size.

Inference for the hidden state trajectory can be
performed exactly using the forward-backward algo-
rithm (Rabiner, 1989), a dynamic programming algo-
rithm with O(TK2) computational costs where T is
the number of time steps and K number of states.
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The standard approach to learning uses the Baum-
Welch algorithm, a special instance of the EM al-
gorithm (Dempster et al., 1977) which produces (lo-
cally) maximum likelihood (ML) parameters. Such
ML learning of parameters can potentially lead to over-
fitting if the model size is inappropriate for the amount
of data available. This can be partially mitigated us-
ing a more fully Bayesian learning procedure, e.g. using
variational approximations (MacKay, 1997) or Markov
chain Monte Carlo (MCMC) sampling (Scott, 2002).
Such Bayesian approaches also produce estimates of
the marginal probability of data, which can be used to
select for the appropriate model size (or to average over
model sizes if ones desires a more Bayesian analysis).
Such model selection procedures can be computation-
ally expensive since multiple HMMs of different sizes
need to be explored.

A new twist on the problem of model selection has
emerged in recent years with the increasing popu-
larity of nonparametric Bayesian models. These are
models of infinite capacity, a finite portion of which
will be used to model a finite amount of observed
data. The idea of searching/averaging over the space
of finite models is replaced with Bayesian inference
over the size of submodel used to explain data. Ex-
amples of successful applications of nonparametric
Bayesian methods include Gaussian Processes (Ras-
mussen & Williams, 2005) for regression and classifi-
cation, Dirichlet Process (DP) mixture models (Es-
cobar & West, 1995; Rasmussen, 2000) for cluster-
ing heterogeneous data and density estimation, Indian
Buffet Processes for latent factor analysis (Griffiths
& Ghahramani, 2006), and defining distributions over
non-trivial combinatorial objects such as trees (Teh
et al., 2008).

The Infinite Hidden Markov Model (iHMM), otherwise
known as the HDP-HMM, (Beal et al., 2002) is a non-



Beam Sampling for the Infinite Hidden Markov Model

parametric Bayesian extension of the HMM with an
infinite number of hidden states. Exact Bayesian in-
ference for the iHMM is intractable. Specifically, given
a particular setting of the parameters the forward-
backward algorithm cannot be applied since the num-
ber of states K is infinite, while with the parameters
marginalized out all hidden state variables will be cou-
pled and the forward-backward algorithm cannot be
applied either. Currently the only approximate in-
ference algorithm available is Gibbs sampling, where
individual hidden state variables are resampled condi-
tioned on all other variables (Teh et al., 2006). Unfor-
tunately convergence of Gibbs sampling is notoriously
slow in the HMM setting due to the strong dependen-
cies between consecutive time steps often exhibited by
time series data (Scott, 2002).

In this paper we propose a new sampler for the iHMM
called beam sampling. Beam sampling combines two
ideas—slice sampling and dynamic programming—to
sample whole state trajectories efficiently. Our ap-
plication of slice sampling (Neal, 2003) is inspired
by (Walker, 2007), who used it to limit the number
of clusters considered when sampling assignment vari-
ables in DP mixtures to a finite number. We apply
slice sampling to limit to a finite number the states
considered in each time step of the iHMM, so that dy-
namic programming can be used to sample whole state
trajectories efficiently. We call our proposal beam
sampling due to its similarity to beam search, a heuris-
tic procedure for finding the maximum a posteriori
trajectory given observations in non-linear dynamical
systems. The underlying idea in both is to limit the
search to a small number of states so that a good tra-
jectory can be found using reasonable computational
resources. However, ours is a MCMC sampling method
with guaranteed convergence to the true posterior.

We first present a self-contained description of the
iHMM using the Hierarchical Dirichlet process (HDP)
formalism (Teh et al., 2006) in Section 2, followed
by a discussion of Gibbs sampling in Section 3. We
introduce beam sampling in Section 4 and compare
it against Gibbs sampling on both artificial and real
datasets in Section 5. We find that beam sampling
is (1) at least as fast if not faster than Gibbs sam-
pling; (2) more robust than Gibbs sampling as its
performance is not as dependent on initialization and
hyperparameter choice; (3) handles non-conjugacy in
the model more naturally; (4) straightforward to im-
plement. We conclude in Section 6 with a discus-
sion and suggestions for other cases in which beam
sampling might prove useful. All software is avail-
able from http://mlg.eng.cam.ac.uk/jurgen to encour-
age more widespread adoption of the iHMM and the
beam sampler.

2. The Infinite Hidden Markov Model

We start this section by describing the finite HMM,
then taking the infinite limit to obtain an intuition
for the infinite HMM, followed by a more precise def-
inition. A finite HMM consists of a hidden state se-
quence s = (s1, s2, . . . , sT ) and a corresponding ob-
servation sequence y = (y1, y2, . . . , yT ). Each state
variable st can take on a finite number of states, say
1 . . .K. Transitions between states are governed by
Markov dynamics parameterized by the transition ma-
trix π, where πij = p(st = j|st−1 = i), while the ini-
tial state probabilities are π0i = p(s1 = i). For each
state st ∈ {1 . . .K} there is a parameter φst

which
parametrizes the observation likelihood for that state:
yt|st ∼ F (φst

). Given the parameters {π0,π,φ,K} of
the HMM, the joint distribution over hidden states s
and observations y can be written (with s0 = 0):

p(s,y|π0,π,φ,K) =
T∏
t=1

p(st|st−1)p(yt|st)

We complete the Bayesian description by specifying
the priors. Let the observation parameters φ be iid
drawn from a prior distribution H. With no fur-
ther prior knowledge on the state sequence, the typical
prior for the transition (and initial) probabilities are
symmetric Dirichlet distributions.

A näıve way to obtain a nonparametric HMM with an
infinite number of states might be to use symmetric
Dirichlet priors over the transition probabilities with
parameter α/K and take K → ∞. Such an approach
has been successfully used to derive DP mixture mod-
els (Rasmussen, 2000) but unfortunately does not work
in the HMM context. The subtle reason is that there
is no coupling across transitions out of different states
since the transition probabilities are given indepen-
dent priors (Beal et al., 2002). To introduce coupling
across transitions, one may use a hierarchical Bayesian
formalism where the Dirichlet priors have shared pa-
rameters and given a higher level prior, e.g.

πk ∼ Dirichlet (αβ) ,
β ∼ Dirichlet (γ/K . . . γ/K) (1)

where πk are transition probabilities out of state k and
β are the shared prior parameters. As K →∞, the hi-
erarchical prior (1) approaches (with some alterations)
a hierarchical Dirichlet process (Teh et al., 2006).

A hierarchical Dirichlet process (HDP) is a set of
Dirichlet processes (DPs) coupled through a shared
random base measure which is itself drawn from a
DP (Teh et al., 2006). Specifically, each Gk ∼
DP(α,G0) with shared base measure G0, which can
be understood as the mean of Gk, and concentration
parameter α > 0, which governs variability around G0,
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Figure 1. iHMM Graphical Model

with small α implying greater variability. The shared
base measure is itself given a DP prior: G0 ∼ DP(γ,H)
with H a global base measure. The stick-breaking con-
struction for HDPs shows that the random measures
can be expressed as follows: G0 =

∑∞
k′=1 βk′δφk′ and

Gk =
∑∞
k′=1 πkk′δφk′ , where β ∼ GEM(γ) is the stick-

breaking construction for DPs (Sethuraman, 1994),
πk ∼ DP(α,β), and each φk′ ∼ H independently.

Identifying each Gk as describing both the transition
probabilities πkk′ from state k to k′ and the emis-
sion distributions parametrized by φk′ , we can now
formally define the iHMM as follows:

β ∼ GEM(γ), πk|β ∼ DP(α,β), φk ∼ H, (2)
st|st−1 ∼ Multinomial(πst−1), yt|st ∼ F (φst

). (3)

The graphical model corresponding to this hierarchical
model is shown in figure 1. Thus βk′ is the prior mean
for transition probabilities leading into state k′, and α
governs the variability around the prior mean. If we fix
β = ( 1

K . . . 1
K , 0, 0 . . .) where the first K entries are 1

K
and the remaining are 0, then transition probabilities
into state k′ will be non-zero only if k′ ∈ {1 . . .K}, and
we recover the Bayesian HMM of (MacKay, 1997).

Finally we place priors over the hyperparameters α
and γ. A common solution, when we do not have
strong beliefs about the hyperparameters, is to use
gamma hyperpriors: α ∼ Gamma(aα, bα) and γ ∼
Gamma(aγ , bγ). (Teh et al., 2006) describe how these
hyperparameters can be sampled efficiently, and we
will use this in the experiments to follow.

3. The Gibbs Sampler

The Gibbs sampler was the first sampling algorithm
for the iHMM that converges to the true posterior.
One proposal builds on the direct assignment sampling
scheme for the HDP in (Teh et al., 2006) by marginal-
izing out the hidden variables π,φ from (2), (3) and
ignoring the ordering of states implicit in β. Thus we
only need to sample the hidden trajectory s, the base
DP parameters β and the hyperparameters α, γ. Sam-
pling β, α, γ is exactly the same as for the HDP so we
refer to (Teh et al., 2006) for details.

In order to resample st, we need to compute the prob-
ability p(st|s−t,β,y, α,H) ∝ p(yt|st, s−t,y−t, H) ·
p(st|s−t,β, α). The first factor is the con-
ditional likelihood of yt given s, y and H:∫
p(yt|st,φst

)p(φst
|s−t,y−t, H)dφst

. This is easy to
compute when the base distribution H and likelihood
F from equations (2) and (3) are conjugate. For
the second factor we can use the fact that the hid-
den state sequence is Markov. Let nij be the number
of transitions from state i to state j excluding time
steps t − 1 and t. Let n·i, ni· be the number of tran-
sitions in and out of state i. Finally, let K be the
number of distinct states in s−t. Then we have that1
p(st = k|s−t,β, α) ∝

(nst−1,k + αβk)
nk,st+1+αβst+1

nk·+α
if k ≤ K, k 6= st−1

(nst−1,k + αβk)
nk,st+1+1+αβst+1

nk·+1+α if k = st−1 = st+1

(nst−1,k + αβk)
nk,st+1+αβst+1

nk·+1+α if k = st−1 6= st+1

αβkβst+1 if k = K + 1.

For each 1 ≤ t ≤ T we need to compute O(K)
probabilities, hence the Gibbs sampler has an O(TK)
computational complexity. Non-conjugate models can
be handled using more sophisticated sampling tech-
niques. In our experiments below, we used algorithm
8 from (Neal, 2000).

The Gibbs sampler’s success is due to its straightfor-
ward implementation. However, it suffers from one
major drawback: sequential and time series data are
likely to be strongly correlated. For example, if we
know the value of a stock at time t then we can be
reasonably sure that it will be similar at time t+1. As
is well known, this is a situation which is far from ideal
for the Gibbs sampler: strong correlations in the hid-
den states will make it unlikely that individual updates
to st can cause large blocks within s to be changed.
We will now introduce the beam sampler which does
not suffer from this slow mixing behavior by sampling
the whole sequence s in one go.

4. The Beam Sampler

The forward-backward algorithm does not apply to
the iHMM because the number of states, and hence
the number of potential state trajectories, are infinite.
The idea of beam sampling is to introduce auxiliary
variables u such that conditioned on u the number
of trajectories with positive probability is finite. Now
dynamic programming can be used to compute the
conditional probabilities of each of these trajectories
and thus sample whole trajectories efficiently. These

1Recall that we ignored the ordering of states in β. In
this representation the K distinct states in s are labeled
1 . . .K and K + 1 denotes a new state.
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Figure 2. The auxiliary variable u partitions the probabil-
ity distribution π (vertical bars) into a set of entries less
than u and a set of entries larger than u.

auxiliary variables do not change the marginal distri-
bution over other variables hence MCMC sampling will
converge to the true posterior. This idea of using aux-
iliary variables to limit computation costs is inspired
by (Walker, 2007), who applied it to limit the number
of components in a DP mixture model that need be
considered during sampling.

As opposed to the sampler in the previous section,
the beam sampler does not marginalize out π nor φ.
Specifically, the beam sampler iteratively samples the
auxiliary variables u, the trajectory s, the transition
probabilities π, the shared DP parameters β and the
hyperparameters α and γ conditioned on all other vari-
ables. In the following, we shall describe in more detail
how to sample each set of variables, as well as how the
auxiliary variables allow dynamic programming to be
carried out over a finite number of trajectories without
approximations.

Sampling u: for each t we introduce an auxil-
iary variable ut with conditional distribution ut ∼
Uniform(0, πst−1st) depending on π, st−1 and st.

Sampling s: we sample the whole trajectory s given
the auxiliary variables u and other variables using a
form of forward filtering-backward sampling. The im-
portant observation here is that only trajectories s
with πst−1st

≥ ut for all t will have non-zero probabil-
ity given u. There are only finitely many such trajec-
tories2 and as a result we can compute the conditional
distribution over all such trajectories efficiently using
dynamic programming.

First note that the probability density for ut is
p(ut|st−1, st,π) =

I(0<ut<πst−1,st )

πst−1,st
, where I(C) = 1

if condition C is true and 0 otherwise. We compute
p(st|y1:t, u1:t) for all t as follows (we omitted the ad-

2To see this, note that ut > 0 with probability 1 for each
t, since each πkk′ > 0 with probability 1. Given the auxil-
iary variable ut, note further that for each possible value of
st−1, ut partitions the set of transition probabilities out of
state st−1 into two sets: a finite set with πst−1k > ut and
an infinite set with πst−1k < ut, as illustrated in figure 2.
Thus we can recursively show that for t = 1, 2 . . . T the set
of trajectories s1:t with all πst′−1st′ > ut is finite.

ditional conditioning variables π and φ for clarity):

p(st|y1:t, u1:t)
∝p(st, ut, yt|y1:t−1, u1:t−1),

=
∑
st−1

p(yt|st)p(ut|st, st−1)p(st|st−1)

p(st−1|y1:t−1, u1:t−1),

=p(yt|st)
∑
st−1

I(ut < πst−1,st
)p(st−1|y1:t−1, u1:t−1),

=p(yt|st)
∑

st−1:ut<πst−1,st

p(st−1|y1:t−1, u1:t−1). (4)

Note that we only need to compute (4) for the finitely
many st values belonging to some trajectory with
positive probability. Further, although the sum over
st−1 is technically a sum over an infinite number of
terms, the auxiliary variable ut truncates this summa-
tion to the finitely many st−1’s that satisfy both con-
straints πst−1,st

> ut and p(st−1|y1:t−1, u1:t−1) > 0.
Finally, to sample the whole trajectory s, we sam-
ple sT from p(sT |y1:T , u1:T ) and perform a backward
pass where we sample st given the sample for st+1:
p(st|st+1, y1:T , u1:T ) ∝ p(st|y1:t, u1:t)p(st+1|st, ut+1).

Sampling π, φ, β: these follow directly from the
theory of HDPs (Teh et al., 2006), but we briefly de-
scribe these for completeness.

Let nij be the number of times state i transi-
tions to state j in the trajectory s, where i, j ∈
{1 . . .K}, K is the number of distinct states in s,
and these states have been relabeled 1 . . .K. Merg-
ing the infinitely many states not represented in
s into one state, the conditional distribution of
(πk1 . . . πkK ,

∑∞
k′=K+1 πkk′) given its Markov blanket

s,β, α is

Dirichlet
(
nk1 + αβ1 . . . nkK + αβK , α

∑∞
i=K+1 βi

)
,

To sample β we introduce a further set of auxiliary
variables mij which are independent with conditional
distributions

p(mij = m|s,β, α) ∝ S(nij ,m)(αβj)m,

where S(·, ·) denotes Stirling numbers of the first kind.
The shared DP parameter (β1 . . . , βK ,

∑∞
k′=K+1 βk′)

has conditional distribution

Dirichlet (m·1 . . .m·K , γ) ,

where m·k =
∑K
k′=1mk′k. (Teh et al., 2006; Antoniak,

1974) gives more details.

Finally, each φk is independent of others conditional on
s, y and their prior distribution H, i.e. p(φ|s,y, H) =
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Figure 3. iHMM performance on strong negatively corre-
lated data. The top plot shows the error of the Gibbs and
beam sampler for the first 1500 iterations averaged over
20 runs. The bottom plot shows the average number of
previous states considered in equation (4) for the first 100
iterations of the beam sampler.

∏
k p(φk|s,y, H). When the base distribution H is

conjugate to the data distribution F each φk can
be sampled efficiently. Otherwise we may resort to
Metropolis-Hastings or other approaches. Note that in
the non-conjugate case this is simpler than for Gibbs
sampling. In the experimental section, we describe an
application where the base distribution and likelihood
are non-conjugate.

To conclude our discussion of the beam sampler, it
is useful to point out that there is nothing special
about sampling ut from the uniform distribution on
[0, πst−1,st

]: by choosing a distribution over [0, πst,st−1 ]
with higher mass near smaller values of ut, we will al-
low more trajectories to have positive probability and
hence considered by the forward filtering-backward
sampling algorithm. Although this will typically im-
prove mixing time, it also comes at additional compu-
tational cost. This brings us to the issue of the com-
putational cost of the beam sampler: since for each
timestep and each state assignment we need to sum
over all represented previous states, the worst case
complexity isO(TK2). However, the sum in (4) is only
over previous states for which the transition probabil-
ity is larger than ut; this means that in practice we
might only need to sum over a few previous states.
In our experiments below, we will give some empirical
evidence for this “average case” behavior. Further, we
have found that the drastically improved mixing of the
beam sampler more than made up for the additional
cost over Gibbs sampling. Finally, although we did not
find any advantage doing so, it is certainly possible to
interleave the beam sampler and the Gibbs sampler.
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Figure 4. iHMM error on increasing positively correlated
data. The blue curve shows the beam sampler while the red
curve shows the Gibbs sampler performance. The dotted
line show the one standard deviation error bars.

5. Experiments

We evaluate the beam sampler on two artificial and
two real datasets to illustrate the following properties:
(1) the beam sampler mixes in much fewer iterations
than the Gibbs sampler; (2) the actual complexity per
iteration of the beam sampler is only marginally more
than the Gibbs sampler; (3) the beam sampler mixes
well regardless of strong correlations in the data; (4)
the beam sampler is more robust with respect to vary-
ing initialization and prior distribution; (5) the beam
sampler handles non conjugate models naturally; (6)
the iHMM is a viable alternative to the finite HMM.
All datasets and a Matlab version of our software are
available at http://mlg.eng.cam.ac.uk/jurgen.

5.1. Artificial Data

Our first experiment compares the performance of the
iHMM on a sequence of length 800 generated by a 4
state HMM. The hidden state sequence was almost
cyclic (1-2-3-4-1-2-3-. . . ) with a 1% probability of self
transition: i.o.w the true distribution of hidden states
is strong negatively correlated. We use a multinomial
output distribution with the following emission matrix 0.0 0.5 0.5

0.6666 0.1666 0.1666
0.5 0.0 0.5

0.3333 0.3333 0.3333

 .
Next we run the Gibbs and beam sampler 20 times
from a random initialization with every state randomly
chosen between 1 and 20. We test the performance
of both samplers using three different hyperparame-
ter settings: (1) vague gamma hyperpriors for α and
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Figure 5. The 40’th sample of the beam sampler with every state represented by a different color on the well-log dataset.

γ (Gamma(1, 1) and Gamma(2, 1) respectively); (2)
strong gamma hyperpriors for α and γ (Gamma(6, 15)
and Gamma(16, 4) respectively); (3) fixed hyperparam-
eters α = 0.4, γ = 3.8. The latter were chosen using
the values the beam and Gibbs samplers converged to.
At every iteration, we greedily compute an assignment
of sample states to true states to maximize overlap and
use the resulting Hamming distance as our error mea-
sure. The top plot in figure 3 clearly shows that the
beam sampler discovers the underlying structure much
faster than the Gibbs sampler. Also, the beam sam-
pler is insensitive to the prior while the performance
of the Gibbs sampler becomes worse as we strengthen
our prior beliefs. The bottom plot of figure 3 shows
how many states are summed over in equation (4) av-
eraged per timestep, per state. We find that after only
about 20 iterations, the beam sampler on average con-
siders a little more than one state. This implies that
the actual complexity of the beam sampler is closer
to O(TK) rather than the worst case complexity of
O(TK2). Although this behavior is dependent on the
choice of distribution for the auxiliary variable ut and
the sparsity of the transition matrix, we have verified
that this behavior is consistent also for larger iHMM’s.

Our second experiment illustrates the performance of
the beam sampler on data generated from HMM’s
with increasing positive correlation between the hid-
den states. We generated sequences of length 4000
from a 4 state HMM with self-transition probabilities
increasing from 0.75 to 0.95 and finally 0.999. In one
experiment (top plot of figure 4) we generated nor-
mal distributed observation from an informative out-
put model with means −2.0, 4.0, 1.0,−0.5 and stan-
dard deviation 0.5, in another experiment (bottom
plot of figure 4) we generated normal distributed ob-
servations from a less informative output model with
means −1.0, 0.5,−0.5, 0.0 and standard deviation 0.5.
We initialize the experiment as above and set the base
distribution for the state means to be a 0 mean normal
with 2.0 standard deviation. Then, we greedily com-
pute the error compared to ground truth and average
the results over 60 different random starting positions.
The top row shows that with an informative prior,
both the Gibbs and beam sampler can reduce the ini-

tial error by at least 50% independent of the correla-
tion between hidden states. When the output model
is less informative however and there is little corre-
lation between the hidden states, the learning prob-
lem is hardest: the lower left plot shows that both
the beam and Gibbs sampler discover structure only
slowly. When the correlation increases, the learning
problem should become easier. However, as the lower
right plot shows, although the beam sampler mixes in-
creasingly well, the Gibbs sampler suffers from slow
random walk behavior.

5.2. Well Data

The next experiment illustrates the performance of
the iHMM on a changepoint detection problem. The
data consists of 4050 noisy measurements of nuclear-
response of rock strata obtained via lowering a probe
through a bore-hole. Figure 5 illustrates this datasets.
The data has been previously analyzed in (Ruanaidh
& Fitzgerald, 1996) by eliminating the forty great-
est outliers and running a changepoint detection algo-
rithm with a fixed number of changepoints. This ap-
proach works well as this one-dimensional dataset can
be inspected visually to make a decision on whether
to throw away datapoints and get a rough idea for
the number of changepoints. However, we believe that
with a nonparametric model, we can automatically
adapt the number of changepoints. Moreover, by set-
ting up a noise model with fat tails, we hope to auto-
matically handle the outlier problem.

We model the mean of the nuclear-response for every
segment. First we normalize the data to have zero
mean; then we specify a zero mean normal distribu-
tion for the base distribution H. We choose the vari-
ance of this normal to be the empirical variance of the
dataset. For the output model, we let F correspond
to a Student-t distribution with ν = 1, also known
as the Cauchy distribution. We set the scale parame-
ter for the Cauchy distribution to twice the empirical
standard deviation for the dataset. Since the Cauchy
likelihood is not conjugate with respect to the nor-
mal base distribution, we modified the Gibbs sampler
based on algorithm 8 in (Neal, 2000). We use the aux-
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Figure 6. The left plots show how frequent two datapoints
were in the same cluster averaged over the first 5 samples.
The right plots show how frequently two datapoints were
in the same cluster averaged over the last 30 samples.

iliary variable sampling scheme discussed in (Gelman
et al., 2004) to resample the segment means.

Figure 5 shows the results of one sample from the beam
sampler: the iHMM segments the dataset reasonably
well and robustly handles the outliers. To compare the
Gibbs and beam samplers, we compute 50 samples af-
ter a burnin of 5000 iterations with 1000 iterations in
between each sample. For every pair of datapoints we
compute the probability that they are in the same seg-
ment, averaged over the first five samples (left plots in
figure 6) and the last thirty samples (right plots in
figure 6). First, note that after the first 10000 itera-
tions, the Gibbs sampler hasn’t discovered any struc-
ture while the beam sampler has. This supports our
claim that the beam sampler mixes faster than the
Gibbs sampler. Moreover, we expect that the Gibbs
sampler will have trouble to reassign the state assign-
ment for whole segments because of slow random walk
behavior. The beam sampler on the other hand re-
samples whole hidden state sequences and should be
able to reassign whole segments more easily. The right
plots of figure 6 confirm our expectation: a careful in-
spection of both plots shows that the Gibbs sampler
is visually more black-white indicating that either two
datapoints are always in the same cluster or never in
the same cluster; the beam sampler, on the other hand,
has gray areas which indicate that it averages over dif-
ferent assignments of the segments: e.g. the Gibbs plot
(upper right) suggests that the leftmost segment and
rightmost segment are always in the same state, while
the beam sampler plot (bottom right) indicates that
only part of the time, the left and rightmost segments
are in the same state (90% of the time).

5.3. Alice in Wonderland

Another application domain for HMMs is the area of
text prediction. One such task is that of predicting
sequences of letters in text taken from Alice’s Adven-
tures in Wonderland. We compare the performance of
a finite HMM trained using variational Bayes (as de-
scribed in (MacKay, 1997)) with two iHMMs trained
using beam sampling and Gibbs sampling. Both sam-
plers had a burn-in of 1000 iterations and an additional
10000 iterations to collect 50 samples of hidden state
sequences from the posterior (i.e. we sample every 200
iterations).

The training data for each HMM (whether finite or
infinite) was taken to be a single sequence of 1000
characters from the first chapter of the book. There
were 31 different observation symbols (26 letters ignor-
ing case plus space and basic punctuation characters).
The test data was taken to be the subsequent 4000
characters from the same chapter. For all finite HMMs
we analyzed performance on models with the number
of hidden states ranging from 1 to 50. For VB, we
note that the true predictive distribution is intractable
to compute. Therefore, we used the posterior param-
eter distributions to sample 50 candidate parameter
settings, and used these to compute an approximate
predictive log-likelihood. For the iHMMs, we sam-
pled 50 hidden state sequences from the stationary
distribution after convergence and used these samples
to compute an approximate predictive log-likelihood.
For the VB-HMM we set the prior pseudo-counts for
the transition matrix to 4/K across all states and
the prior pseudo-counts for the emission matrix to 0.3
across all symbols. Accordingly, we set the hyperprior
for the iHMMs such that aα = 4 and bα = 1 and
H ∼ Dirichlet (() 0.3, · · · 0.3). The results for VB and
the iHMMs were averaged over 50 and 20 independent
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Figure 7. Comparing VB-HMM with the iHMM.
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runs respectively. The plot includes error bars corre-
sponding to 2 standard deviations.

Figure 7 illustrates the estimated predictive log-
likelihoods for the finite VB-HMM and the two iHMMs
trained using beam and Gibbs sampling. We find that
the iHMMs have superior predictive power when com-
pared to the VB-HMM, even when we select the best
number of hidden states (around K = 16). Both the
iHMMs converged to a posterior distribution over hid-
den state sequences with around 16 states, showing
that nonparametric Bayesian techniques are an effec-
tive way to handle model selection. The final perfor-
mance of the Gibbs and beam sampler were not found
to be significantly different as we set the number of
iterations high enough to ensure that both algorithms
converge. Indeed, the aim of this experiment is not to
compare the performance of individuals iHMM sam-
pling schemes, rather, it is to further illustrate the rel-
ative effectiveness of using models of infinite capacity.

6. Conclusion

In this paper we introduced the beam sampler, a new
inference algorithm for the iHMM that draws inspi-
ration from slice sampling and dynamic programming
to sample whole hidden state trajectories efficiently.
We showed that the beam sampler is a more robust
sampling algorithm than the Gibbs sampler. We be-
lieve that the beam sampler is the algorithm of choice
for iHMM inference because it converges faster than
the Gibbs sampler and is straightforward to imple-
ment. Moreover, it conveniently allows us to learn
non-conjugate models. To encourage adoption of the
iHMM as an alternative to HMM learning, we have
made the software and datasets used in this paper
available at http://mlg.eng.cam.ac.uk/jurgen.

The beam sampler idea is flexible enough to do in-
ference for various extensions of the iHMM: our cur-
rent work involves an adaptation of the beam sampler
to an extension of the iHMM that handles inputs, ef-
fectively resulting in a nonparametric generalization
of the input-output HMM (Bengio & Frasconi, 1995).
We believe this is a promising model for nonparamet-
ric Bayesian learning of POMDPs. Another project
currently underway is to use the beam sampler for ef-
ficiently learning finite, but very large hidden Markov
models. Finally, we are exploring the possibilities of
using the embedded HMM construction (Neal et al.,
2004) as an alternative for the beam sampler for effi-
cient inference in the iHMM.
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