
Beam search heuristics for quadratic earliness

and tardiness scheduling

Jorge M. S. Valente∗

LIAAD, Faculdade de Economia, Universidade do Porto, Portugal

July 29, 2008

Abstract

In this paper, we present beam search heuristics for the single

machine scheduling problem with quadratic earliness and tardiness

costs, and no machine idle time. These heuristics include classic beam

search procedures, as well as filtered and recovering algorithms. We

consider three dispatching heuristics as evaluation functions, in order

to analyse the effect of different rules on the performance of the beam

search procedures.

The computational results show that using better dispatching heuris-

tics improves the effectiveness of the beam search algorithms. The

performance of the several heuristics is similar for instances with low

variability. For high variability instances, however, the detailed, fil-

tered and recovering beam search procedures clearly outperform the

∗Address: Faculdade de Economia, Universidade do Porto, Rua Dr. Roberto Frias,
4200-464 Porto, Portugal. E-mail: jvalente@fep.up.pt.

1

best existing heuristic. The detailed beam search algorithm performs

quite well, and is recommended for small to medium size instances. For

larger instances, however, this procedure requires excessive computa-

tion times, and the recovering beam search algorithm then becomes

the heuristic of choice.

Keywords: scheduling, heuristics, beam search, single machine, quadratic

earliness, quadratic tardiness.

Introduction

In this paper, we consider a single machine scheduling problemwith quadratic

earliness and tardiness costs, and no machine idle time. Scheduling models

with both earliness and tardiness penalties are compatible with the just-in-

time (JIT) production philosophy. The JIT approach focuses on producing

goods only when they are needed, and therefore considers that both earli-

ness and tardiness should be discouraged. Also, a recent trend in industry

has been the adoption of supply chain management by many organisations.

In this approach, customers and suppliers try to integrate the flow of ma-

terials, in order to improve the efficiency of the supply chain and provide a

better service to the end user. This change to supply chain management has

caused organisations to view early deliveries, in addition to tardy deliveries,

as undesirable.

We consider quadratic earliness and tardiness penalties, instead of a lin-

ear objective function, in order to penalize more heavily deliveries that are

quite early or tardy. This is appropriate for practical settings where non-

2

conformance with the due dates is increasingly undesirable. Moreover, the

quadratic penalties avoid schedules in which a single or only a few jobs con-

tribute the majority of the cost, without regard to how the overall cost is

distributed.

We assume that no machine idle time may be inserted in a schedule. This

assumption is not unrealistic or incompatible with the earliness and tardiness

costs, even though the early/tardy objective function value could eventually

be improved by the insertion of idle time. However, other factors can make

the insertion of idle time undesirable, despite those potential improvements

in the objective function. Furthermore, in certain productions environments,

it might even not be feasible to leave the machine idle for a period of time, so

idle time insertion may be actually impossible. For instance, idle time should

be avoided when the capacity of the machine is limited when compared with

the demand. In this case, the machine must be kept running in order to

satisfy the orders of the customers, or of stages further down the production

line or supply chain.

The assumption of no idle time is also justified for machines with high

operating costs, and/or when starting a new production run involves high

setup costs or times. Indeed, idle time should not be inserted when the cost

of keeping the machine running idle is higher than the earliness cost incurred

by completing a job before its due date. Also, stopping and restarting the

machine may not be an option when starting a new production run requires

high setup costs, or a large amount of time (as is usually the case, for in-

stance, with furnaces and similar machines). Therefore, this assumption is

not unrealistic, and is actually appropriate for many real production settings,

3

so the problem is of practical relevance. Some specific examples of real pro-

duction environments where the assumption of no idle time is justified have

been given by Korman (1994) and Landis (1993). More specifically, Korman

(1994) considers the Pioneer Video Manufacturing (now Deluxe Video Ser-

vices) disc factory at Carson, California, while Landis (1993) analyses the

Westvaco envelope plant at Los Angeles.

Formally, the problem can be stated as follows. A set of n indepen-

dent jobs {1, 2, · · · , n} has to be scheduled on a single machine that can

handle at most one job at a time. The machine is assumed to be contin-

uously available from time zero onwards, and preemptions are not allowed.

Job j, j = 1, 2, · · · , n, requires a processing time pj and should ideally be

completed on its due date dj. Also, let hj and wj denote the earliness

and tardiness penalties of job j, respectively. For a given schedule, the

earliness and tardiness of job j are defined as Ej = max {0, dj − Cj} and

Tj = max {0, Cj − dj}, respectively, where Cj is the completion time of job

j. The objective is then to find a schedule that minimizes the sum of the

weighted quadratic earliness and tardiness costs
∑n

j=1

(
hjE

2

j + wjT
2

j

)
, sub-

ject to the constraint that no machine idle time is allowed.

This problem has been previously considered by Valente (2007a) and Va-

lente and Alves (2008). Valente (2007a) developed a lower bounding pro-

cedure and a branch-and-bound algorithm, while Valente and Alves (2008)

presented several dispatching heuristics, as well as simple improvement proce-

dures. The corresponding problem with linear costs
∑n

j=1 (hjEj + wjTj) has

also been considered by several authors, and both exact and heuristic ap-

proaches have been proposed. Among the exact approaches, lower bounds

4

and branch-and-bound algorithms were presented by Abdul-Razaq and Potts

(1988), Li (1997), Liaw (1999) and Valente and Alves (2005c). Among the

heuristics, several dispatching rules and beam search algorithms were pre-

sented by Ow and Morton (1989) and Valente and Alves (2005a,b).

Problems with a related quadratic objective function have also been

previously considered. Schaller (2004) analysed the single machine prob-

lem with inserted idle time and a linear earliness and quadratic tardiness
∑n

j=1

(
Ej + T

2

j

)
objective function. The no idle time version of this problem

was considered by Valente (2007b). The minimization of the quadratic late-

ness, where the lateness of job j is defined as Lj = Cj − dj, has also been

studied by Gupta and Sen (1983), Sen et al. (1995), Su and Chang (1998) and

Schaller (2002). Baker and Scudder (1990) and Hoogeveen (2005) provide

excellent surveys of scheduling problems with earliness and tardiness penal-

ties, while Kanet and Sridharan (2000) give a review of scheduling models

with inserted idle time.

In this paper, we propose several beam search heuristic procedures. Clas-

sic beam search procedures are considered, as well as the more recent filtered

and recovering beam search approaches. Beam search heuristics require eval-

uation functions, which are often derived from dispatching rules. Several

dispatching rules have been considered, in order to analyse their effect on

the effectiveness of the beam search method. The best-performing beam

search versions are then compared with the best of the existing heuristics,

and with optimal solutions for some instance sizes. In the following, we first

describe the beam search approach, and present the proposed heuristics. The

computational results are then reported. Finally, we provide some concluding

5

remarks.

The beam search heuristics

Beam search versions and review

Beam search is a heuristic method for solving combinatorial optimization

problems. It consists of a truncated branch-and-bound procedure in which

only the most promising nodes at each level of the search tree are kept for

further branching, while the remaining nodes are pruned off. The classic

beam search algorithm was first applied to artificial intelligence problems by

Lowerre (1976) and Rubin (1978). Two variations of the traditional beam

search algorithm have since been developed. Ow and Morton (1988, 1989)

proposed a technique denoted by filtered beam search. Recently, the recover-

ing beam search approach was introduced by Della Croce and T’kindt (2002)

and Della Croce et al. (2004).

Beam search heuristics have been applied to several combinatorial opti-

mization problems, with a particular emphasis on the scheduling field. Some

recent applications of beam search procedures to scheduling include Della

Croce and T’kindt (2002), Della Croce et al. (2004), Valente and Alves

(2005a), Ghirardi and Potts (2005) and Esteve et al. (2006). In the fol-

lowing subsections, we present the classic beam search technique, as well as

the filtered and recovering variations. We also describe the proposed beam

search algorithms, and provide their implementation details.

6

Classic beam search

The classic beam search procedure consists of a truncated branch-and-bound

algorithm in which only the β most promising nodes are kept for further

branching at each level of the search tree; β is the so-called beam width. The

remaining nodes are discarded, and backtracking is not allowed. Therefore,

the node evaluation process is crucial for the effectiveness of a beam search

algorithm. Two different types of evaluation functions have been used in

classic beam search: priority evaluation functions and total cost evaluation

functions.

Priority evaluation functions simply calculate an urgency rating for the

last job added to the current partial schedule, typically by using the priority

index of a dispatching heuristic. Total cost evaluation functions calculate an

estimate of the minimum total cost of the best solution that can be reached

from the current node. This is usually done by using a dispatching rule

to sequence the unscheduled jobs. Priority evaluation functions have a local

view of the problem, because they only consider the next decision to be made,

while total cost evaluation functions have a global view, since they project

from the current partial solution to a complete schedule.

The priority evaluation functions can pose a slight problem. The priority

index that is used to calculate the urgency rating of the last scheduled job

usually depends on the current partial schedule (e.g. on the current time).

Therefore, the urgency ratings are context-dependent. This means that the

priorities calculated for the offspring of one node cannot be legitimately com-

pared with those obtained from the branching of another node. This problem

7

can be solved by initially selecting the β most promising children of the root

node. Then, at lower levels of the search tree, only the best descendant

of each beam node is retained for further branching. Total cost evaluation

functions are not affected by this problem, since total cost estimates are

context-independent and can be compared.

We now present the main steps of priority beam search (PBS) and de-

tailed beam search (DBS) algorithms. The priority (detailed) beam search

procedure uses a priority (total cost) evaluation function. In the following,

B is the set of beam nodes, C is a set of offspring nodes and n0 is the root

node of the search tree. That is, n0 is a node that contains only unscheduled

jobs, and hence an empty partial sequence. Therefore, all the beam search

procedures will start their search from node n0 (i.e. from an empty schedule).

Priority Beam Search:

Step 1. Initialization:

Set B = ∅, C = ∅.

Branch n0, generating the corresponding children.

Calculate the priority of the last scheduled job for each child node.

Select the β most promising child nodes and add them to B.

Step 2. Node selection:

For each node in B:

(a) Branch the node, generating the corresponding children.

(b) Calculate the priority of the last scheduled job for each child node.

(c) Select the best child node and add it to C.

Set B = C and C = ∅.

8

Step 3. Stopping condition:

If the nodes in B are leaf (i.e., they hold a complete sequence), select

the node with the lowest total cost as the best sequence found and stop.

Otherwise, go to step 2.

Detailed Beam Search:

Step 1. Initialization:

Set B = {n0} and C = ∅.

Step 2. Branching:

For each node in B:

(a) Branch the node, generating the corresponding children.

(b) Calculate an upper bound on the optimal solution value for each

child node.

(c) Select the β most promising child nodes and add them to C.

Set B = ∅.

Step 3. Node selection:

Select the β most promising nodes in C and add them to B.

Set C = ∅.

Step 4. Stopping condition:

If the nodes in B are leaf, select the node with the lowest total cost as

the best sequence found and stop.

Otherwise, go to step 2.

9

Filtered and recovering beam search

The priority evaluation functions are quick, but are rather crude and poten-

tially inaccurate, so they may lead to the elimination of good solutions. Total

cost evaluation functions, on the other hand, are more accurate, but much

more time consuming. The filtered and recovering beam search algorithms

combine crude and accurate evaluations, in order to try to achieve high qual-

ity evaluations within reasonable computation times. This is done by means

of a two-stage approach. First, a computationally inexpensive filtering step is

applied. In this step, a crude evaluation is performed, and a reduced number

of the offspring of each beam node is selected. These chosen nodes are then

accurately evaluated, and the best β are kept for further branching.

Two different types of filtering step have been used. In the approach

proposed by Ow and Morton (1988, 1989), a priority evaluation function

is used to calculate an urgency rating for each offspring. The best α chil-

dren of each beam node are then selected for accurate evaluation; α is the

so-called filter width. The second type of filtering phase was recently in-

troduced by Della Croce and T’kindt (2002) and Della Croce et al. (2004).

In this approach, problem-dependent dominance conditions (when available)

are applied together with so-called pseudo-dominance conditions (which hold

in a heuristic context only). Whenever one of these conditions holds for a

given node, that node is eliminated.

The recovering beam search (RBS) approach differs from the filtered beam

search (FBS) algorithm in two major ways. First, the accurate evaluation

in the filtered beam search procedure relies on an upper bound on the total

10

cost of the best solution that can be reached from the current node. In RBS

algorithms, on the other hand, the accurate evaluation uses both lower and

upper bounds. More specifically, each node is evaluated by the function V =

(1− γ)LB + γUB, where 0 ≤ γ ≤ 1 is the upper bound weight parameter

and LB and UB are the lower and upper bound values, respectively.

Second, the RBS procedure includes a so-called recovering phase. In

this phase, the nodes that passed the filtering step are considered in non-

decreasing order of their evaluation function. For each node, the recovering

step then checks if the current partial schedule σ is dominated by another

partial schedule σ with the same level of the search tree. This is typically

done by applying neighbourhood operators. If a better partial schedule σ

exists, then σ is replaced by σ. If the possibly modified node is not already

in the set of beam nodes, then the node is added to B. This is repeated until

either β nodes have been selected, or no additional candidate node remains.

Classic and filtered beam search algorithms cannot recover from wrong

decisions: if a node leading to the optimal solution is pruned, there is no way

to reach that solution afterwards. The recovering phase seeks to overcome

this problem, and often allows the RBS procedure to recover from previous

incorrect decisions. We now present the main steps of both filtered and re-

covering beam search algorithms. In the RBS algorithm, let nbest and UBbest

denote the current best node and the current best upper bound, respectively.

Filtered Beam Search:

Step 1. Initialization:

Set B = {n0} and C = ∅.

11

Step 2. Filtering step:

For each node in B:

(a) Branch the node, generating the corresponding children.

(b) Add to C all the child nodes that are not eliminated by the filtering

procedure.

Set B = ∅.

Step 3. Node selection:

Calculate an upper bound on the optimal solution value for all nodes

in C.

Select the β most promising nodes in C and add them to B.

Set C = ∅.

Step 4. Stopping condition:

If the nodes in B are leaf, select the node with the lowest total cost as

the best sequence found and stop.

Otherwise, go to step 2.

Recovering Beam Search:

Step 1. Initialization:

Set B = {n0}, C = ∅, nbest = ∅ and UBbest =∞.

Step 2. Filtering step:

For each node in B:

(a) Branch the node, generating the corresponding children.

(b) Add to C all the child nodes that are not eliminated by the filtering

procedure.

Set B = ∅.

12

Step 3. Accurate evaluation:

For all nodes nk, k = 1, . . . , |C| in C:

(a) Calculate a lower bound LBk and an upper bound UBk on the

optimal solution value of node nk.

(b) Compute the evaluation function Vk = (1− γ)LBk + γUBk.

(c) If UBk < UBbest, set nbest = nk and UBbest = UBk.

Step 4. Recovering step:

Sort all nodes in C in non-decreasing order of the evaluation function

value Vk.

Set k = 1.

While |B| < β and k ≤ |C|:

(a) Let σ represent the partial solution associated with the current

node nk.

(b) Search for a partial solution σ that dominates σ by means of neigh-

bourhood operators.

(c) If σ is found, set σ = σ.

(d) If nk /∈ B

i. Set B = B ∪ {nk}.

ii. If UBk < UBbest, set nbest = nk and UBbest = UBk.

(e) Set k = k + 1.

Step 5. Stopping condition:

If the nodes in B are leaf, stop with nbest and UBbest as the best node

and lowest total cost found, respectively.

Otherwise, go to step 2.

13

Implementation details

In this paper, we consider both priority and detailed classic beam search algo-

rithms, as well as filtered and recovering beam search procedures. In order to

apply these algorithms to the quadratic earliness and tardiness problem, it is

necessary to specify their main components, such as branching scheme, eval-

uation functions, filtering procedure and recovering step. In the following,

we provide the implementation details of the beam search heuristics.

Branching scheme

The branching scheme used to generate the children of a parent node is

identical for all algorithms. A forward branching procedure is used, so the

sequence is constructed by adding one job at a time, starting from the first

position. Therefore, a branch at level l of the search tree indicates the job

scheduled in position l. More specifically, each child of a parent node cor-

responds to adding one of the parent node’s unscheduled jobs to the end of

the parent’s partial sequence.

As an example, consider an instance with four jobs. Suppose the parent

node that is currently being branched corresponds to a partial sequence that

contains only job 1 (and, consequently, jobs 2, 3 and 4 are still unscheduled

in this parent node). Each of this node’s children is obtained by adding one

unscheduled job to the end of the current partial sequence. Consequently, the

branching of this parent node would lead to the three children corresponding

to the partial sequences 1-2, 1-3 and 1-4, respectively.

14

Dispatching rules

Beam search heuristics require a dispatching rule to calculate upper bounds

and/or to provide a priority evaluation function. We considered three alter-

native dispatching heuristics, in order to analyse their effect of the perfor-

mance of the beam search procedures. These three heuristics were previously

considered in Valente and Alves (2008). The Earliest Due Date (EDD) rule

sorts the jobs in non-decreasing order of their due dates. This rule is not

only quite well-known, but also widely used in practice.

The Early-Critical-Tardy Load procedure, in its Average Slack version

(denoted by ECTL_AS), combines the EDD rule with two other simple

heuristics, and provides a significant improvement over these three simple

rules. The two other heuristics used in the ECTL_AS procedure are de-

noted by WPT_sj_E and WPT_sj_T. At each iteration, the WPT_sj_E

heuristic selects the unscheduled job with the largest priority index Ij (t) =

(hj/pj) [p− 2max (dj − t− pj , 0)], where t is the current time, and p is the

average processing time of the remaining unscheduled jobs. The WPT_sj_T

rule, on the other hand, chooses the unscheduled job with the largest priority

index Ij (t) = (wj/pj) [p+ 2max (t+ pj − dj, 0)].

The identifiers of the WPT_sj_E and WPT_sj_T heuristics reflect the

fact that the priority index of these rules includes both a weighted processing

time (WPT) component, and a slack (sj) component, where the slack of job

j is defined as sj = dj − t − pj. Also, the WPT_sj_E and WPT_sj_T

heuristics are derived from local optimality conditions for two adjacent jobs

that are respectively always early and tardy, regardless of their order, hence

15

the "_E" and "_T" parts of the identifiers.

The WPT_sj_E and WPT_sj_T heuristics are therefore particularly

suited to problems where most jobs will be early and tardy, respectively, while

the EDD heuristic is superior to both the WPT_sj_E andWPT_sj_T rules

when there is a greater balance between the number of early and tardy jobs.

The ECTL_AS heuristic tries to take advantage of the strengths of these

three rules. At each iteration, the ECTL_AS heuristic then selects the next

job using the rule that is expected to perform better, given the characteristics

of the current set of unscheduled jobs (or workload). Indeed, at each iteration

the ECTL_AS heuristic classifies the current workload as either early (most

jobs have large slacks), tardy (most jobs are already late) or critical (most

jobs have relatively low slacks, and are at risk of becoming late). Then, the

next job is selected using the WPT_sj_E, EDD or WPT_sj_T rule if the

workload is early, critical or tardy, respectively.

In order to classify the current workload, a critical interval of slack val-

ues [0,max_slack] is first calculated. The upper limit in this interval is

calculated as max_slack = slack_prop ∗ nU ∗ p, where nU is the number

of unscheduled jobs, and 0 < slack_prop < 1 is a user-defined parameter.

The ECTL_AS heuristic then calculates the average slack s of the remaining

unscheduled jobs. The current workload is finally classified as early, critical

or tardy if s > max_slack, s ∈ [0,max_slack] or s < 0, respectively.

The third heuristic that has been considered is the second version of the

Early/Tardy Priority procedure, denoted by ETP_v2. This procedure pro-

vided the best result of the heuristics analysed in Valente and Alves (2008).

At each iteration, the ETP_v2 heuristic also selects the unscheduled job

16

with the largest value of a priority index. This priority index is equal to the

WPT_sj_T priority index when a job is tardy or on time (i.e. sj ≤ 0).

When sj > 0, however, the ETP_v2 priority value is set equal to the mini-

mum of the WPT_sj_E and WPT_sj_T priority indexes.

Three versions (corresponding to these three rules) were then considered

for each type of beam search algorithm. In the following, the ECTL_AS and

ETP_v2 rules will be denoted simply as ECTL and ETP, respectively.

Priority beam search

Priority beam search algorithms require a priority evaluation function to

calculate the urgency rating of the last scheduled job. This priority function

is provided by the priority index of the appropriate dispatching rule (EDD,

ECTL or ETP).

Detailed beam search

Detailed beam search algorithms require a total cost evaluation function,

i.e., an upper bounding procedure. This procedure is used to sequence the

remaining jobs, in order to obtain an upper bound on the total cost of the

current partial schedule. The upper bounding procedure is provided by the

appropriate dispatching heuristic.

Filtered beam search

Filtered beam search algorithms require a filtering procedure and an upper

bounding procedure. Just as previously mentioned for the DBS algorithms,

the upper bounding procedure is provided by the relevant dispatching rule.

17

The filtering step uses a priority evaluation function filter, so a priority eval-

uation function is needed to calculate an urgency rating for the offsprings of

a given node. This priority evaluation function is given by the priority index

of the appropriate dispatching heuristic, just as previously described for the

PBS algorithms.

Recovering beam search

Recovering beam search algorithms require a filtering procedure, upper and

lower bounding procedures for the accurate evaluation step, and an improve-

ment procedure for the recovering phase. The filtering and upper bounding

procedures are identical to those used in the FBS algorithms. The lower

bounding procedure is provided by the method proposed in Valente (2007a).

This procedure is used to calculate a lower bound for the unscheduled jobs,

and the lower bound of the node is then equal to the sum of the cost of the

existing partial schedule and the lower bound calculated for the unscheduled

jobs.

The lower bounding procedure proposed in Valente (2007a) actually uses

two lower bounds. The first is based on a relaxation of the earliness/tardiness

penalties and the completion times, and is then denoted by LB_ET (where

the ET stands for Earliness/Tardiness). This lower bound is calculated as

LB_ET= hmin
∑n

j=1

[
max

(
dEDDj − CLPTj , 0

)]2
+wmin

∑n

j=1

[
max

(
CSPTj − dEDDj , 0

)]2
.

In this expression, hmin = min {hj ; j = 1,n}, wmin = min {wj; j = 1,n},

dEDDj is the due date of the jth job when the jobs are ordered in EDD order,

CLPTj is the completion time of the jth job when the jobs are ordered in

Longest Processing Time (LPT) order (i.e. in non-increasing order of pro-

18

cessing times) and CSPTj is the completion time of the jth job when the jobs

are ordered in Shortest Processing Time (SPT) order (i.e. in non-decreasing

order of processing times).

The second lower bound is based on a conversion to a weighted quadratic

lateness problem, and is then denoted by LB_L (where the L stands for

Lateness). In this lower bound, the original problem is first converted into

the weighted quadratic lateness problem
∑n

j=1w
′

j

(
E2j + T

2

j

)
=
∑n

j=1w
′

jL
2

j ,

where w′j = min {hj, wj}. Any lower bounding procedure for this weighted

quadratic lateness problem also provides a lower bound for the original

quadratic early/tardy problem.

Valente (2007a) used the lower bounding procedure proposed by Sen et al.

(1995). In order to calculate this lower bound, the jobs are first arranged in

what is called their "primary ordering". In this primary ordering, the jobs

are arranged in non-decreasing order of pj/wj (with ties broken by selecting

the job with the lowest value of (wj/pj) (2dj − pj)). The objective function

value of this primary ordering, denoted by Z, is also calculated. Then, a so

called "secondary" ordering of the jobs is also considered. In this secondary

ordering, the jobs are ordered in non-decreasing order of (wj/pj) (2dj − pj).

In order to obtain a lower bound, Sen et al. (1995) pass from the primary

ordering to the secondary ordering by performing adjacent interchanges. For

instance, to reach the secondary ordering 4-2-3-1 from the primary ordering

1-2-3-4, we would have to perform adjacent interchanges that would lead us

to passing successively by the sequences 2-1-3-4, 2-3-1-4, 2-3-4-1 and 2-4-3-1,

before finally reaching the secondary ordering 4-2-3-1. Sen et al. (1995) show

that the maximum potential reduction (MPR) in the objective function value

19

that can result from each of these interchanges of two adjacent jobs i and j

is equal to

max

{
0, pipj

[
(pi + pj)

(
wj
pj
−
wi
pi

)
+
wi
pi
(2di − pi)−

wj
pj
(2dj − pj)

]}
.

The lower bound LB_L is then equal tomax {0, Z −
∑
MPR}, where

∑
MPR

is the sum of the MPRs for each of the interchanges required to pass from

the primary ordering to the secondary ordering.

The preliminary experiments performed by Valente (2007a) showed that

the relative performance of the lower bounds LB_ET and LB_L was sig-

nificantly influenced by the tardiness factor T . The tardiness factor of an

instance (or set of unscheduled jobs) is defined as T = 1−
[(
d− t

)
/
∑
pj
]
,

where d is the average due date of the unscheduled jobs. When the tardiness

factor was either quite high or quite low, the two lower bounds were compet-

itive with each other. However, lower bound LB_ET clearly outperformed

the LB_L procedure for the more intermediate values of T . Therefore, the

lower bound used in Valente (2007a) was then calculated as follows. When

T < 0.1 or T > 0.9, both LB_ET and LB_L are calculated, and the lower

bound is then set equal to the largest of the two values. For the remaining

values of the tardiness factor, only the lower bound LB_ET is used.

Several simple improvement steps for the single machine quadratic earli-

ness and tardiness problem were analysed in Valente and Alves (2008). The

adjacent pairwise interchange (API) and 3-swap (3SW) methods were recom-

mended, since they were both effective and computationally efficient. There-

fore, these two improvement procedures were considered for the recovering

20

step in the recovering beam search heuristics.

Both the API and the 3SW procedures start at beginning of the schedule,

and terminate when the end of the sequence is reached. The API procedure

interchanges a pair of adjacent jobs. If such an adjacent swap improves the

objective function, the swap is retained and we move one position backward

(when possible) in the sequence. Otherwise, the swap is reversed so the jobs

are again scheduled in the original order, and we move one position forward

in the schedule.

The 3SW procedure is similar, but it considers three consecutive jobs.

All the possible permutations of the three jobs are then analysed, and the

best configuration is determined. If the best configuration is different from

the original order of the jobs, the jobs are scheduled according to that best

configuration, and we move two positions backward (when possible) in the

sequence. Otherwise, the original order of the jobs is retained, and we move

one position forward in the schedule.

Improvement step

In the next section, the beam search procedures are compared with the best

existing heuristic, as well as with optimum objective function values. In

Valente and Alves (2008), the ETP dispatching rule, followed by a 3SW or

API improvement step, is recommended as the heuristic procedure of choice.

Therefore, we decided to compare the beam search algorithms with the ETP

rule with a 3SW improvement step. Consequently, the 3SW method was

also applied, as an improvement step, to the beam search procedures (i.e.,

the 3SW method is used to improve the schedule generated by the beam

21

search heuristics).

Computational results

In this section, we first present the set of test problems used in the computa-

tional tests. Then, the preliminary computational experiments are described.

These initial experiments were conducted for two reasons. First, these exper-

iments were performed to determine appropriate values for the parameters

required by several beam search heuristics. Second, these preliminary tests

were used to study the performance of the beam search procedures under

the EDD, ECTL and ETP rules, in order to select the best-performing rule.

Finally, the computational results are presented. We first compare the beam

search heuristics with the best existing procedure, and the heuristic results

are then evaluated against optimum objective function values for some in-

stance sizes.

The instances used in the computational tests are available online at

http://www.fep.up.pt/docentes/jvalente/benchmarks.html. The objective func-

tion values provided by the ETP and RBS heuristics (after the application

of the 3SW improvement step), as well as the optimum objective function

value (when available), can also be obtained at this address. Throughout

this section, and in order to avoid excessively large tables, we will sometimes

present results only for some representative cases.

22

Experimental design

The computational tests were performed on a set of problems with 10, 15, 20,

25, 30, 40, 50, 75, 100, 250, 500 and 750 jobs. These problems were randomly

generated as follows. For each job j, an integer processing time pj, an integer

earliness penalty hj and an integer tardiness penalty wj were generated from

one of the two uniform distributions [45, 55] and [1, 100], to create low (L)

and high (H) variability, respectively. For each job j, an integer due date dj is

generated from the uniform distribution [P (1− T −R/2) , P (1− T +R/2)],

where P is the sum of the processing times of all jobs, T is the tardiness

factor, set at 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, and R is the range of due dates,

set at 0.2, 0.4, 0.6 and 0.8.

For each combination of problem size n, processing time and penalty vari-

ability (var), T and R, 50 instances were randomly generated. Therefore, a

total of 1200 instances were generated for each combination of problem size

and variability. All the algorithms were coded in Visual C++ 6.0, and ex-

ecuted on a Pentium IV - 2.8 GHz personal computer. Due to the large

computational times that would be required, the filtered and recovering pro-

cedures were not applied to the 750 job instances, and the detailed beam

search algorithm was only used on instances with up to 100 jobs.

Preliminary tests

In this section, we describe the preliminary computational experiments. These

experiments were conducted, on the one hand, to determine adequate values

for the various beam search parameters and, on the other hand, to select the

23

best-performing of the three alternative heuristic rules. A separate problem

set was used to conduct these preliminary experiments. This test set included

instances with 25, 50, 75 and 100 jobs, and contained 5 instances for each

combination of instance size, processing time and penalty variability, T and

R. The instances in this smaller test set were generated randomly just as

previously described for the full problem set.

We first performed extensive tests to determine appropriate values for the

beam width, filter width and upper bound weight parameters. The following

values were considered for these parameters, respectively: α = {1, 2, . . . , 10},

β = {1, 2, . . . , 8} and γ = {0.1, 0.2, . . . , 0.9}. As previously mentioned, the

API and 3SW improvement procedures were also considered for the recov-

ering step in the RBS algorithms. The several beam search versions were

then applied to the test instances for all combinations of the relevant param-

eters and improvement procedures. The mean objective function values and

runtimes were then calculated and plotted.

A thorough analysis of these results showed usual behaviour in beam

search algorithms: the computation time increases linearly with α and β,

while the solution quality improves, but with diminishing returns. Therefore,

increasing the value of these two parameters eventually leads to little or

virtually no improvement in the objective function value. Figure 1 provides

an example chart with the average objective function value (ofv) and runtime

for the DBS algorithm (with the ETP rule), for instances with 50 jobs and

high variability. This chart illustrates the linear behaviour of the runtime,

as well as the diminishing returns in solution quality, as the beam width β

increases.

24

The parameter values and improvement procedure that provided the best

trade-off between solution quality and computation time were then selected.

A value of 3 was chosen for both the beam and filter width parameters, for

all beam search versions. In the RBS algorithms, the upper bound weight

was set at 0.8, and the API method was selected for the recovering phase.

The performance of the three alternative dispatching heuristics (EDD,

ECTL and ETP) were also analysed in these initial experiments, in order

to select the best-performing rule. Table 1 presents, for each beam search

algorithm, the average of the relative improvements in objective function

value over the EDD rule (%imp), as well as the percentage number of times

a rule achieves the best objective function value found when compared with

the other rules (%best). The relative improvement over the EDD rule is

calculated as (edd_ofv - rule_ofv) / edd_ofv × 100, where edd_ofv and

rule_ofv are the objective function values obtained by the EDD rule and the

appropriate rule (ECTL or ETP), respectively. These values are omitted for

the EDD rule, since they would all be necessarily equal to 0.

The objective function values provided by the EDD, ECTL and ETP rules

are close for instances with low variability. Indeed, the relative improvements

given by the ECTL and ETP heuristics are less than 1% for the DBS and FBS

procedures, and negligible for the RBS algorithm. For the PBS procedure,

the relative improvement is a little higher (around 1.5%). Nevertheless, the

ECTL and ETP rules provide the best results for a much larger number of

instances. The ETP rule, in particular, provides the best results for over 90%

of the test instances, and in some cases for actually all of those instances.

For the high variability instances, the ECTL and (especially) the ETP rules

25

are greatly superior to the EDD heuristic. In fact, the ECTL and ETP rules

provide a quite large relative improvement, and also give the best results for

a much higher percentage of the test instances.

The relative improvements provided by the ECTL and ETP rules are

high for the PBS algorithm, which only uses priority evaluation. The im-

provement is small for the FBS (both priority and detailed evaluations) and

DBS (detailed evaluation only) procedures, but the more advanced ECTL

and ETP rules still provide a quite large improvement for the instances with

high variability. Therefore, it certainly seems that high quality rules should

be used to provide both priority evaluation functions and upper bounding

procedures in beam search heuristics for the considered scheduling problem.

The objective function values given by the three rules are close for the RBS

algorithm, which is most likely due to the recovering phase. Indeed, incorrect

choices made by an inferior rule can later be corrected by the recovering step,

and so the results provided by the alternative rules are close.

The ETP rule was then selected, since it proved superior to its alterna-

tives, particularly for the instances with a high variability. Therefore, in the

following sections we will present results only for the ETP versions of the

beam search heuristics.

Heuristic results

In this section, beam search algorithms are compared with the best of the

existing procedures, namely the ETP dispatching rule. As previously men-

tioned, the 3SW method is used as an improvement step, in order to improve

26

the schedules generated by several heuristics. In table 2, we provide the av-

erage of the relative improvements in objective function value over the ETP

procedure (%imp), as well as the percentage number of times a heuristic

achieves the best result when compared with the other heuristics (%best).

The relative improvement over the ETP heuristic is calculated as (etp_ofv

- heur_ofv) / etp_ofv × 100, where heur_ofv and etp_ofv are the objec-

tive function values of the appropriate heuristic and the ETP dispatching

rule, respectively. The relative improvement values are omitted for the ETP

heuristic, since they are necessarily equal to 0.

The performance of several beam algorithms and the ETP dispatching

rule is virtually identical for instances with low variability. Indeed, the ob-

jective function values are quite close, and all the heuristics provide the best

results for over 90% of the test instances. For instances with high variabil-

ity, however, the DBS, FBS and RBS procedures are clearly superior to the

dispatching heuristic. In fact, these procedures give a relative improvement

that ranges from 1% to 3%, and provide the best results for a larger number

of instances.

The best results are given by the DBS procedure, closely followed by

the RBS algorithm. The FBS algorithm, though clearly superior to the ETP

heuristic, is outperformed by the DBS and RBS procedures. On one hand, the

DBS algorithm applies a detailed evaluation to all nodes, which can account

for its superior performance. On the other hand, the RBS heuristic not only

uses a weighted average of lower and upper bounds in its detailed evaluation,

but also benefits from the local search that is performed in the recovering

phase. The PBS procedure only provides a minor relative improvement over

27

the ETP dispatching rule, and the percentage of best results is also quite

close for these two heuristics.

Table 3 presents the effect of T and R parameters on the relative improve-

ment over the ETP dispatching rule, for instances with 50 jobs. The relative

improvement is quite minor when T = 0.0 or T = 1.0. However, the improve-

ment is large for the intermediate values of the tardiness factor (and also for

instances with T = 0.8 and a small due date range). This result is to be

expected, since the heuristics are more likely to be close to the optimum for

extreme values of the tardiness factor T . Indeed, when T = 0.0 and T = 1.0,

most jobs will be early and late, respectively, and the early/tardy scheduling

problem is quite easy. For intermediate values of the tardiness factor, there

is a greater balance between the number of early and tardy jobs, and the

problem then becomes a bit hard.

The heuristic runtimes (in seconds) are presented in table 4. The DBS

procedure is computationally quite demanding, and can only be used for

small or medium size instances. The FBS and RBS algorithms are fast, and

can be applied to somewhat large instances. The PBS procedure is faster

than the other beam search algorithms. However, the ETP dispatching rule

is even more computationally efficient, and provides results of similar qual-

ity. The DBS procedure is then recommended for small to medium instance

sizes. For medium to large instances, the RBS heuristic is the procedure of

choice. The ETP dispatching rule is quite computationally efficient, and is

the only procedure that can provide results in reasonable times for very large

instances.

28

Comparison with optimum results

In this section, we compare the heuristic results with optimum objective func-

tion values, for instances with up to 20 jobs. The optimum objective function

values were obtained using the branch-and-bound algorithm developed by

Valente (2007a). Table 5 presents the average of the relative deviations from

the optimum (%dev), calculated as (H −O) /O × 100, where H and O are

the heuristic and the optimum objective function values, respectively. The

percentage number of times each heuristic generates an optimum schedule

(%opt) is also given.

The heuristic procedures perform extremely well for instances with low

variability. Indeed, all the heuristics provide the optimal solution value for

over 96% of these instances. The differences in performance are much clearer

for the high variability instances. The DBS and RBS algorithms still perform

quite well, since they give results that are about 1% above the optimum, and

provide an optimum solution for over 80% of the instances. The performance

of the FBS algorithm is also quite good, as its average deviation from the

optimum is around 1-2%. The PBS and ETP heuristics perform adequately,

but are clearly outperformed by the DBS, RBS and FBS procedures. In fact,

the PBS and ETP heuristics provide results that are about 3-4% and 5-6%

above the optimum, respectively.

These results are in accordance with those presented in the previous sec-

tion. In fact, as previously mentioned, the performance of heuristic proce-

dures was virtually identical for the low variability instances. For instances

with high variability, however, the DBS, FBS and RBS heuristics were clearly

29

superior to the ETP dispatching heuristic. We can now see that the ETP

heuristic is nearly always optimal for the low variability instances, so there

was nearly no room for improvement. For instances with high variability,

however, the performance of the ETP heuristic deteriorates, and the beam

search algorithms can therefore achieve a large improvement.

The effect of the T and R parameters on the relative deviation from the

optimum is presented in table 6, for instances with 20 jobs. The heuristic

procedures are quite close to the optimum for the extreme values of T , but

their performance deteriorates for the intermediate values of the tardiness

factor. Therefore, the heuristics are nearly optimal when most jobs are early

or tardy, and their performance worsens as the number of early and tardy

jobs becomes more balanced. Again, these results are in line with those

reported in the previous section.

Conclusion

In this paper, we proposed several beam search heuristics for the single ma-

chine scheduling problem with quadratic earliness and tardiness costs, and

no machine idle time. These heuristics included classic procedures, and also

filtered and recovering algorithms. Beam search procedures require evalua-

tion functions, and these are usually derived from dispatching heuristics. We

considered three alternative dispatching rules, in order to analyse their effect

on the performance of beam search algorithms.

Preliminary computational experiments show that using better dispatch-

ing rules indeed improves the performance of beam search algorithms, es-

30

pecially for the instances with high processing time and penalty variability.

The best-performing beam search versions were then compared with the ETP

dispatching rule (the best existing heuristic) and with optimal solutions. The

computational results show that all heuristic procedures perform extremely

well when the variability is low, generating an optimal solution for over 96%

of these instances. The difference in performance is much clear for the dif-

ficult high variability instances, where the DBS, RBS and FBS algorithms

are clearly superior than the best existing procedure. The DBS heuristic

performs quite well, and is recommended for small to medium size instances.

For large instances, however, this procedure requires excessive computation

times, and the RBS algorithm is then the heuristic of choice.

Beam search is a technique that can enhance the performance of its un-

derlying dispatching heuristic, i.e. the dispatching rule that provides the

priority and total cost evaluation functions. One possibility for future re-

search on the quadratic earliness and tardiness problem is to consider other

approaches that also enhance the performance of an underlying constructive

heuristic, such as the greedy randomization of the ETP dispatching rule.

Additionally, metaheuristic algorithms also offer an interesting research op-

portunity.

References

Abdul-Razaq T and Potts C N (1988). Dynamic programming state-space

relaxation for single machine scheduling. Journal of the Operational Re-

search Society 39: 141—152.

31

Baker K R and Scudder G D (1990). Sequencing with earliness and tardiness

penalties: A review. Operations Research 38: 22—36.

Della Croce F, Ghirardi M and Tadei R (2004). Recovering beam search:

Enhancing the beam search approach for combinatorial problems. Journal

of Heuristics 10: 89—104.

Della Croce F and T’kindt V (2002). A recovering beam search algorithm

for the one-machine dynamic total completion time scheduling problem.

Journal of the Operational Research Society 53: 1275—1280.

Esteve B, Aubijoux C, Chartier A and T’kindt V (2006). A recovering beam

search algorithm for the single machine just-in-time scheduling problem.

European Journal of Operational Research 172: 798—813.

Ghirardi M and Potts C N (2005). Makespan minimization for scheduling un-

related parallel machines: A recovering beam search approach. European

Journal of Operational Research 165: 457—467.

Gupta S K and Sen T (1983). Minimizing a quadratic function of job lateness

on a single machine. Engineering Costs and Production Economics 7: 187—

194.

Hoogeveen H (2005). Multicriteria scheduling. European Journal of Opera-

tional Research 167: 592—623.

Kanet J J and Sridharan V (2000). Scheduling with inserted idle time:

Problem taxonomy and literature review. Operations Research 48: 99—

110.

32

Korman K (1994). A pressing matter. Video : 46—50.

Landis K (1993). Group technology and cellular manufacturing in the West-

vaco Los Angeles VH department. Project report in IOM 581, School of

Business, University of Southern California.

Li G (1997). Single machine earliness and tardiness scheduling. European

Journal of Operational Research 96: 546—558.

Liaw C F (1999). A branch-and-bound algorithm for the single machine earli-

ness and tardiness scheduling problem. Computers & Operations Research

26: 679—693.

Lowerre B T (1976). The HARPY Speech Recognition System. Ph.d. thesis,

Carnegie-Mellon University, USA.

Ow P S and Morton T E (1988). Filtered beam search in scheduling. Inter-

national Journal of Production Research 26: 35—62.

Ow P S and Morton T E (1989). The single machine early/tardy problem.

Management Science 35: 177—191.

Rubin S (1978). The ARGOS Image Understanding System. Ph.d. thesis,

Carnegie-Mellon University, USA.

Schaller J (2002). Minimizing the sum of squares lateness on a single machine.

European Journal of Operational Research 143: 64—79.

Schaller J (2004). Single machine scheduling with early and quadratic tardy

penalties. Computers & Industrial Engineering 46: 511—532.

33

Sen T, Dileepan P and Lind M R (1995). Minimizing a weighted quadratic

function of job lateness in the single machine system. International Journal

of Production Economics 42: 237—243.

Su L H and Chang P C (1998). A heuristic to minimize a quadratic function

of job lateness on a single machine. International Journal of Production

Economics 55: 169—175.

Valente J M S (2007a). An exact approach for single machine scheduling with

quadratic earliness and tardiness penalties. Working Paper 238, Faculdade

de Economia, Universidade do Porto, Portugal.

Valente J M S (2007b). Heuristics for the single machine scheduling problem

with early and quadratic tardy penalties. European Journal of Industrial

Engineering 1: 431—448.

Valente J M S and Alves R A F S (2005a). Filtered and recovering beam

search algorithms for the early/tardy scheduling problem with no idle time.

Computers & Industrial Engineering 48: 363—375.

Valente J M S and Alves R A F S (2005b). Improved heuristics for the

early/tardy scheduling problem with no idle time. Computers & Opera-

tions Research 32: 557—569.

Valente J M S and Alves R A F S (2005c). Improved lower bounds for the

early/tardy scheduling problem with no idle time. Journal of the Opera-

tional Research Society 56: 604—612.

34

Valente J M S and Alves R A F S (2008). Heuristics for the single ma-

chine scheduling problem with quadratic earliness and tardiness penalties.

Computers & Operations Research 35: 3696—3713.

35

1049500000

1050000000

1050500000

1051000000

1051500000

1052000000

1052500000

1053000000

1 2 3 4 5 6 7 8

Beam Width

o
fv

0.000

0.100

0.200

0.300

0.400

0.500

0.600

r
u
n
ti
m
e

ofv runtime

Figure 1: Objective function value and runtime for the DBS heuristic with
the ETP rule on instances with 50 jobs and high variability

36

n = 25 n = 50 n = 100
var heur rule %imp %best %imp %best %imp %best

L PBS EDD – 0.83 – 0.00 – 0.00

ECTL 1.37 71.67 1.45 54.17 1.26 47.50

ETP 1.41 96.67 1.65 99.17 1.65 99.17

DBS EDD – 14.17 – 0.83 – 0.00

ECTL 0.44 92.50 0.67 71.67 0.81 58.33

ETP 0.44 98.33 0.70 99.17 0.91 100.00

FBS EDD – 18.33 – 0.00 – 0.00

ECTL 0.32 95.00 0.60 73.33 0.76 56.67

ETP 0.32 99.17 0.63 100.00 0.90 100.00

RBS EDD – 95.00 – 89.17 – 79.17

ECTL 0.00 99.17 0.00 92.50 0.00 92.50

ETP 0.00 100.00 0.00 95.00 0.00 95.83

H PBS EDD – 0.00 – 0.00 – 0.00

ECTL 50.42 43.33 51.71 33.33 53.53 40.00

ETP 54.65 90.00 56.68 98.33 58.78 96.67

DBS EDD – 2.50 – 0.00 – 0.83

ECTL 17.59 54.17 22.18 44.17 25.70 44.17

ETP 19.07 88.33 24.96 93.33 28.01 93.33

FBS EDD – 0.00 – 0.00 – 0.00

ECTL 35.68 52.50 43.05 45.00 49.49 42.50

ETP 37.40 90.83 45.56 92.50 52.83 97.50

RBS EDD – 48.33 – 31.67 – 29.17

ECTL 3.64 70.83 6.19 50.83 6.17 44.17

ETP 5.50 85.83 7.93 75.83 7.71 67.50

Table 1: Preliminary results

37

n = 25 n = 50 n = 100 n = 500
var heur %imp %best %imp %best %imp %best %imp %best

L ETP – 96.25 – 92.33 – 91.50 – 95.42

PBS 0.000 96.33 0.000 92.33 0.000 91.50 0.000 95.42

DBS 0.002 98.92 0.001 97.75 0.000 96.67 – –

FBS 0.002 98.92 0.001 97.08 0.000 95.92 0.000 98.17

RBS 0.002 99.67 0.001 98.42 0.000 96.67 0.000 97.67

H ETP – 61.75 – 48.17 – 38.00 – 37.33

PBS 0.423 63.00 0.109 48.08 0.010 37.92 0.004 37.33

DBS 3.092 86.17 2.311 79.17 1.626 72.25 – –

FBS 2.233 76.50 1.350 63.08 0.795 52.50 0.160 67.67

RBS 2.973 88.25 2.089 74.58 1.389 62.17 0.396 66.42

Table 2: Heuristic results

38

low var high var

heur T R=0.2 R=0.4 R=0.6 R=0.8 R=0.2 R=0.4 R=0.6 R=0.8

PBS 0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.247 0.475

0.8 0.000 0.000 0.000 0.000 1.279 0.609 0.000 0.000

1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DBS 0.0 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.003

0.2 0.001 0.000 0.000 0.000 0.137 0.068 0.082 0.032

0.4 0.006 0.001 0.000 0.000 4.083 1.906 2.685 1.263

0.6 0.001 0.002 0.001 0.000 8.095 9.205 9.919 6.654

0.8 0.002 0.000 0.000 0.000 10.000 1.243 0.048 0.038

1.0 0.000 0.000 0.000 0.000 0.006 0.002 0.003 0.002

FBS 0.0 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.003

0.2 0.001 0.000 0.000 0.000 0.078 0.056 0.061 0.003

0.4 0.005 0.001 0.000 0.000 2.169 1.383 1.616 0.831

0.6 0.001 0.002 0.001 0.000 4.094 3.516 6.383 4.770

0.8 0.001 0.000 0.000 0.000 6.530 0.832 0.033 0.022

1.0 0.000 0.000 0.000 0.000 0.005 0.002 0.003 0.001

RBS 0.0 0.000 0.000 0.000 0.000 0.000 0.003 0.001 0.003

0.2 0.001 0.000 0.000 0.000 0.147 0.127 0.104 0.022

0.4 0.006 0.001 0.000 0.000 4.196 2.150 3.217 2.277

0.6 0.006 0.002 0.001 0.000 7.632 7.906 8.105 6.102

0.8 0.003 0.000 0.000 0.000 7.194 0.838 0.046 0.050

1.0 0.001 0.000 0.000 0.000 0.004 0.001 0.000 0.000

Table 3: Relative improvement over the ETP heuristic, for instances with 50
jobs

39

var heur n = 25 n = 50 n = 75 n = 100 n = 250 n = 500
L ETP 0.000 0.000 0.001 0.001 0.004 0.013

PBS 0.002 0.006 0.014 0.026 0.209 2.919
DBS 0.015 0.206 1.022 3.197 – –
FBS 0.004 0.023 0.068 0.154 2.472 20.803
RBS 0.007 0.037 0.104 0.225 3.240 25.866

H ETP 0.000 0.000 0.001 0.001 0.004 0.014
PBS 0.002 0.007 0.015 0.027 0.208 2.820
DBS 0.016 0.214 1.041 3.302 – –
FBS 0.004 0.024 0.072 0.166 2.545 21.678
RBS 0.007 0.038 0.109 0.240 3.381 27.547

Table 4: Heuristic runtimes (in seconds)

n = 10 n = 15 n = 20
var heur %dev %opt %dev %opt %dev %opt
L ETP 0.007 98.50 0.002 97.92 0.002 96.58

PBS 0.005 98.58 0.002 98.00 0.002 96.67
DBS 0.001 99.42 0.000 99.50 0.000 99.17
FBS 0.001 99.33 0.000 99.58 0.001 98.83
RBS 0.000 99.92 0.000 100.00 0.000 99.67

H ETP 4.690 80.75 5.168 70.67 5.892 64.83
PBS 2.862 83.92 3.878 72.17 4.832 65.75
DBS 0.366 95.33 0.737 86.50 1.103 80.67
FBS 0.378 93.42 1.380 83.08 2.309 76.00
RBS 0.221 95.67 0.907 88.00 1.397 82.50

Table 5: Comparison with optimum objective function values

40

low var high var

heur T R=0.2 R=0.4 R=0.6 R=0.8 R=0.2 R=0.4 R=0.6 R=0.8

ETP 0.0 0.000 0.000 0.000 0.000 0.005 0.054 0.014 0.000

0.2 0.032 0.000 0.000 0.000 0.538 0.251 0.277 0.091

0.4 0.003 0.000 0.000 0.000 13.353 14.822 9.408 10.565

0.6 0.011 0.000 0.003 0.000 33.873 20.353 12.395 10.053

0.8 0.003 0.000 0.000 0.001 10.274 3.765 0.852 0.356

1.0 0.001 0.000 0.000 0.000 0.040 0.030 0.030 0.011

PBS 0.0 0.000 0.000 0.000 0.000 0.005 0.054 0.014 0.000

0.2 0.032 0.000 0.000 0.000 0.538 0.251 0.277 0.091

0.4 0.003 0.000 0.000 0.000 13.353 14.822 8.397 6.341

0.6 0.011 0.000 0.000 0.000 30.740 14.926 9.637 9.941

0.8 0.003 0.000 0.000 0.001 3.394 1.894 0.824 0.356

1.0 0.001 0.000 0.000 0.000 0.040 0.030 0.030 0.011

DBS 0.0 0.000 0.000 0.000 0.000 0.000 0.034 0.000 0.000

0.2 0.004 0.000 0.000 0.000 0.289 0.085 0.148 0.033

0.4 0.000 0.000 0.000 0.000 3.969 6.137 1.835 1.097

0.6 0.002 0.000 0.000 0.000 7.645 3.212 1.235 0.349

0.8 0.001 0.000 0.000 0.000 0.222 0.152 0.018 0.005

1.0 0.000 0.000 0.000 0.000 0.001 0.001 0.011 0.000

FBS 0.0 0.000 0.000 0.000 0.000 0.000 0.034 0.000 0.009

0.2 0.005 0.000 0.000 0.000 0.336 0.085 0.153 0.038

0.4 0.000 0.000 0.000 0.000 8.706 7.928 2.762 2.155

0.6 0.006 0.000 0.000 0.000 16.040 6.592 5.176 1.135

0.8 0.001 0.000 0.000 0.000 2.760 1.337 0.026 0.129

1.0 0.000 0.000 0.000 0.000 0.001 0.002 0.008 0.000

RBS 0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.2 0.000 0.000 0.000 0.000 0.105 0.004 0.000 0.005

0.4 0.000 0.000 0.000 0.000 3.880 6.219 0.681 0.804

0.6 0.000 0.000 0.000 0.000 10.943 3.634 2.638 0.735

0.8 0.000 0.000 0.000 0.000 2.614 1.053 0.031 0.171

1.0 0.001 0.000 0.000 0.000 0.005 0.002 0.006 0.000

Table 6: Relative deviation from the optimum for instances with 20 jobs

41

