Asia-Pacific Journal of Operational Research
Vol. 26, No. 3 (2009) 319-339
© World Scientific Publishing Co. & Operational Research Society of Singapore

BEAM SEARCH HEURISTICS FOR THE SINGLE
MACHINE SCHEDULING PROBLEM WITH LINEAR
EARLINESS AND QUADRATIC TARDINESS COSTS

JORGE M. S. VALENTE

LIAAD, Faculdade de Economia
Universidade do Porto, Portugal
Jualente@fep.up.pt

Received 9 October 2007
Accepted 30 May 2008

In this paper, we consider the single machine scheduling problem with linear earliness
and quadratic tardiness costs, and no machine idle time. We present heuristic algorithms
based on the beam search technique. These algorithms include classic beam search pro-
cedures, as well as the filtered and recovering variants. Several dispatching rules are

considered as evaluation functions, to analyze the effect of different rules on the effec-
tiveness of the beam search algorithms.

The computational results show that using better rules improves the performance
of the beam search heuristics. The detailed, filtered beam search (FBS) and recovering
beam search (RBS) procedures outperform the best existing heuristic. The best results
are given by the recovering and detailed variants, which provide objective function values
that are quite close to the optimum. For small to medium size instances, either of these
procedures can be used. For larger instances, the detailed beam search (DBS) algorithm

requires excessive computation times, and the RBS procedure then becomes the heuristic
of choice.

Keywords: Scheduling; single machine; linear earliness; quadratic tardiness; beam search;
heuristics.

1. Introduction

In this paper, we consider a single machine scheduling problem with linear earliness
and quadratic tardiness costs, and no machine idle time. Formally, the problem
can be stated as follows. A set of n independent jobs {J1,J2,...,J,} has to be
scheduled on a single machine that can handle at most one job at a time. The
machine is continuously available from time zero onwards, and preemptions are not
allowed. Job J;,7 =1,2,...,n, requires a processing time p; and should ideally be
completed on its due date d;. For a given schedule, the earliness and tardiness of J;
are defined as E; = max{0,d; — C;} and T; = max{0, C; — d;}, respectively, where
C} is the completion time of J;. The objective is to find a schedule that minimizes
the sum of linear earliness and quadratic tardiness costs Z;;l (Ej +T7), subject to
the constraint that no machine idle time is allowed.

319

320 J. M. S. Valente

Single machine scheduling environments actually occur in many practical oper-
ations. Moreover, the performance of many production systems is frequently deter-
mined by the quality of the schedules for a single bottleneck machine. Also, the
analysis of single machine problems provides results and insights that can often be
applied to more complex scheduling environments.

Scheduling models with both earliness and tardiness costs have received consid-
erable attention from the scheduling community, due to their practical importance.
Indeed, early/tardy scheduling problems are compatible with the concepts of just-in-
time production and supply chain management. These production strategies, which
have been adopted by many organizations, view both early and tardy deliveries as
undesirable.

In this paper, a linear penalty is used for the early jobs, since early completions
result in unnecessary inventory, and the costs incurred with this inventory tend to
be proportional to the quantity held in stock. Late deliveries, on the other hand,
can result in lost sales and loss of goodwill. A quadratic tardiness penalty is used
for the tardy jobs, since a customer’s dissatisfaction tends to increase quadratically
with the tardiness, as proposed in the loss function of Taguchi (1986).

We assume that machine idle time is not allowed. This assumption is appro-
priate for many production settings. Indeed, idle time should be avoided when the
machine has limited capacity or high operating costs, as well as when starting a
new production run involves large set-up costs or times.

To the best of our knowledge, the complexity of the considered problem is still
open. However, from existing complexity results for related problems, it seems likely
that the considered problem is difficult. Indeed, Hall et al. (1991) established that
the linear earliness and tardiness problem Z;’=1(EJ~ +T}) with a common due date
d for all jobs is NP-hard. Moreover, the quadratic earliness and tardiness problem

;‘:1 (E? +T7?) with a common due date d was also shown to be NP-hard by Kubiak
(1993).

The linear earliness and quadratic tardiness problem with no idle time has
been previously considered by Valente (2008). Valente (2008) proposed a lower
bounding procedure based on a relaxation of the job completion times, as well as 3
branch-and-bound algorithm. In Valente (2007), several dispatching heuristics are
presented, and their performance is analyzed on a wide range of instance types.
The corresponding problem with inserted idle time has been considered by Schaller
(2004). He presented a timetabling procedure to optimally insert idle time in a
given sequence, as well as a branch-and-bound algorithm and simple and efficient
heuristics.

Some problems with related objective functions have also been considered. The
single machine problem with linear earliness and tardiness penalties Z;.;l (E; +T3)
has been studied by Garey et al. (1988), Kim and Yano (1994) and Schaller (2007).
‘The minimization of the quadratic lateness Z;;l L?, where the lateness of J; is
defined as L; = C; — d;, has also been considered by Gupta and Sen (1983), Su and
Chang (1998), Schaller (2002) and Sen et al. (1995). Baker and Scudder (1990) and

Beamn Search Heuristics for the Single Machine Scheduling Problem 321

Hoogeveen (2005) provide excellent surveys of scheduling problems with earliness
and tardiness penalties. Kanet and Sridharan (2000) give a review of scheduling
models with inserted idle time that complements our focus on a problem with no
machine idle time.

In this paper, we present several heuristic algorithms based on the beam search
technique. These algorithms include classic beam search procedures, with both pri-
ority and total cost evaluation functions, as well as the more recent filtered and
recovering variants. Beam search procedures require evaluation functions that are
usually provided by a dispatching rule. We consider four dispatching heuristics, to
analyze the effect of different rules on the performance of the beam search algo-
rithms. Extensive preliminary computational experiments were performed to deter-
mine appropriate values for the parameters required by the beam search procedures.
The performance of the four heuristic rules is also analyzed in these initial tests.
The best performing versions of the beam search algorithms are then compared
with the best existing heuristic, as well as with optimal solutions.

The remainder of this paper is organized as follows. In Sec. 2, we describe
the beam search approach and its several variations, and present the proposed
heuristic procedures and their implementation details. The computational results
are reported in Sec. 3. Finally, some concluding remarks are given in Sec. 4.

2. The Beam Search Heuristics
2.1. History and review

Beam search is a heuristic method for solving combinatorial optimization problems.
It consists of a truncated branch-and-bound procedure in which only the most
promising nodes at each level of the search tree are kept for further branching,
while the remaining nodes are pruned off. The classic or traditional beam search
algorithm was first used in artificial intelligence problems by Lowerre (1976) and
Rubin (1978).

Two variations of the classic beam search approach have since been proposed.
Ow and Morton (1988, 1989) developed a variation called FBS. Recently, Della
Croce and T’kindt (2002) and Della Croce et al. (2004) proposed an approach
denoted by RBS.

Beam search algorithms have been applied to several combinatorial optimization
problems, particularly in the scheduling field. Some recent applications of beam
search heuristics to scheduling problems include Della Croce and T’kindt (2002),
Della Croce et al. (2004), Valente and Alves (2005), Ghirardi and Potts (2005) and
Esteve et al. (2006).

In the following subsections, we first present the classic beam search technique.
Then, the more recent filtered and recovering approaches are described. The pro-
posed beam search procedures, and some implementation details, are then pre-

sented. Finally, we provide a numerical example to illustrate one of the proposed
procedures.

322 J. M. S. Valente

2.2. Classic beam search

The classic beam search method consists of a truncated branch-and-bound algo-
rithm in which only the most promising 3 nodes at each level of the search tree
are selected as nodes to branch from; 3 is the so-called beam width. The remaining
nodes are ignored, and backtracking is not allowed. Therefore, the node evaluation
process is crucial for the effectiveness of a beam search procedure. Two different
types of evaluation functions have been used in classic beam search procedures:
priority evaluation functions and total cost evaluation functions.

Priority evaluation functions calculate an urgency rating for the last job added
to the current partial sequence, typically by using the priority index of a dispatching
rule. Total cost evaluation functions calculate an estimate of the minimum total cost
of the best solution that can be reached from the current node. This is usually done
by using a dispatching rule to schedule the remaining jobs, to complete the existing
partial sequence. Priority evaluation functions have a local view of the problem (they
only consider the next decision to be made), while total cost evaluation functions
have a global view (they project from the current partial solution to a complete
schedule).

The priority evaluation functions can pose a slight problem. The priority index
that is used to calculate the urgency rating of the last scheduled job usually depends
on the current partial schedule, particularly on the current time. Therefore, the
priority values are context-dependent, meaning that the priorities calculated for the
offspring of one node cannot be legitimately compared with those obtained from
the branching of another node. This problem, however, can be solved by initially
selecting the best § children of the root node. Then, at lower levels of the search
tree, only the best descendant of each beam node is kept for further branching, so
the number of beam nodes is kept at 8. The total cost evaluation functions are not
affected by this problem, since total cost estimates can be compared.

The main steps of priority (PBS) and DBS algorithms are now presented. The
priority (detailed) beam search procedure uses a priority (total cost) evaluation
function. In the following, B is the set of beam nodes, C is a set of offspring nodes,
and ng is the root node.

PBS:

Step 1. Initialization:
Set B=g, C =0.
Branch ng, generating the corresponding children.
Calculate the priority of the last scheduled job for each child node.
Select the best 8 child nodes and add them to B.
Step 2. Node selection:
For each node in B:
(a) Branch the node, generating the corresponding children.

(b) Calculate the priority of the last scheduled job for each child node.
(c) Select the best child node and add it to C.

Set B=C and C = 2.

Beam Search Heuristics for the Single Machine Scheduling Problem 323

Step 3. Stopping condition:
If the nodes in B are leaf (i.e., they hold a complete sequence), select the

node with the lowest total cost as the best sequence found and stop.
Otherwise, go to Step 2.

DBS:

Step 1. Initialization:

Set B={ng} and C = @.
Step 2. Branching:

For each node in B:

(a) Branch the node, generating the corresponding children.
(b) Calculate an upper bound on the optimal solution value for each child
node.

(c) Select the best 3 child nodes and add them to C.

Set B=g.
Step 3. Node selection:
Select the best 8 nodes in C and add them to B.
Set C =g.
Step 4. Stopping condition:
If the nodes in B are leaf, select the node with the lowest total cost as the
best sequence found and stop.
Otherwise, go to Step 2.

2.3. Filtered and recovering beam search

The priority evaluation functions are quick, but are rather crude and potentially
inaccurate, and may result in discarding good solutions. Total cost evaluation func-
tions are more accurate, but much more time consuming. The FBS and RBS algo-
rithms try to combine crude and accurate evaluations, to provide a high quality
evaluation within a reasonable computation time. This is achieved by using a two-
stage approach. First, a computationally inexpensive filtering step is applied. In
this step, a crude evaluation is performed, to select only a reduced number of the
offspring of each beam node. The selected nodes are then accurately evaluated, and
the best B nodes are kept for further branching.

Two different types of filtering step have been proposed. In the approach devel-
oped by Ow and Morton (1988, 1989), a priority evaluation function is used to
calculate an urgency rating for each offspring. Then, the best o children of each
beam node are selected for accurate evaluation, where o is the so-called filter
width. The second type of filtering phase has been recently introduced by Della
Croce and T’kindt (2002) and Della Croce et al. (2004). In this approach, problem-
dependent dominance conditions (when available) are applied together with the
so-called pseudo-dominance conditions (which hold in a heuristic context only).
Whenever one of these conditions holds for a given node, that node is pruned.

324 J. M. S. Valente

The RBS approach differs from the FBS algorithm in two major ways. First, the
accurate evaluation in the FBS procedure relies on an upper bound on the total cost
of the best solution that can be reached from the current node. In the RBS approach,
on the other hand, each node is evaluated by both lower and upper bounds. More
specifically, each node is evaluated by the function V = (1 — v)LB + yU B, where
0 < v < 1is a user-defined upper bound weight parameter, and LB and UB are
the lower and upper bound values, respectively.

Second, the RBS algorithm includes a so-called recovering phase. In this phase,
the nodes that passed the filtering step are considered in non-decreasing order of
their evaluation function. For each node, the recovering step checks whether the
current partial solution ¢ is dominated by another partial solution & with the same
search tree level; this is typically done by applying neighborhood operators. If a
better partial solution does exist, then ¢ is replaced by &. If the possibly modified
node is not already in the set of beam nodes, then the node is added to B. This
process is repeated until either 8 nodes have been chosen, or no additional candidate
nodes remain.

Classic and FBS algorithms cannot recover from wrong decisions: if a node
leading to the optimal solution is pruned, there is no way to reach that solution
afterwards. The recovering step tries to overcome this problem, and often allows the
RBS procedure to correct previous incorrect decisions. We now present the main
steps of both FBS and RBS algorithms. In the RBS algorithm, let npes: and U Bpes:
denote the current best node and the current best upper bound, respectively.

FBS:

Step 1. Initialization:

Set B ={no} and C = &.
Step 2. Filtering step:

For each node in B:

(a) Branch the node, generating the corresponding children.

(b) Add to C all the child nodes that are not eliminated by the filtering
procedure.

Set B = @&.
Step 3. Node selection:
Calculate an upper bound on the optimal solution value for all nodes

in C.
Select the best 3 nodes in C and add them to B.
Set C = 2.

Step 4. Stopping condition:
If the nodes in B are leaf, select the node with the lowest total cost as the
best sequence found and stop.
Otherwise, go to Step 2.

RBS:
Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Beam Search Heuristics for the Single Machine Scheduling Problem 325

Initialization:

Set B = {no}, C = &, nyess = & and UBpest = 0.
Filtering step:

For each node in B:

(a) Branch the node, generating the corresponding children.

(b) Add to C all the child nodes that are not eliminated by the filtering
procedure.

Set B = &.

Accurate evaluation:

For all nodes ng, k= 1,...,|C| in C: 4

(a) Calculate a lower bound LB}, and an upper bound UBy, on the optimal
solution value of node ny.

(b) Compute the evaluation function V = (1 —~)LBy +~UB4.

(c) If UBy < UBpest, set Npest = ni and UBpes: = UBy.

Recovering step:

Sort all nodes in C in non-decreasing order of the evaluation function
value.
Set k= 1.

While |B| < 8 and k < |C|:

(a) Let o represent the partial solution associated with the current node k.

(b) Search for a partial solution 7 that dominates ¢ by means of neigh-
borhood operators.

(c) If 7 is found, set o = 7.
(d) If n, ¢ B
i. Set B =BU {ng}.
ii. If UBk < UBpest, set npess = ny and UBpest = UBy,.
(e) Set k =k +1.
Stopping condition:
If the nodes in B are leaf, stop with npes: and UBpest as the best node

and lowest total cost found, respectively.
Otherwise, go to Step 2.

2.4. Implementation details

The implementations details of the beam search heuristics will now be presented.
We considered both PBS and DBS classic beam search algorithms, as well as FBS
and RBS procedures. To apply these algorithms to the linear early/quadratic tardy

problem,

it is necessary to specify their main components, such as branching scheme,

evaluation functions, filtering procedure, and recovering step. In the following, we
first describe the branching scheme. Then, we present the dispatching rules that

326 J. M. S. Valente

were used as evaluation functions. Finally, some additional implementation details
are provided.

Branching scheme

The branching procedure is identical for all algorithms. A forward branching scheme
is used: the sequence is constructed by adding one job at a time starting from the
first position. Therefore, a branch at level | of the search tree indicates the job
scheduled in position I.

Dispatching rules

A dispatching rule is required by the several beam search variants, to provide a
priority evaluation function and/or to calculate an upper bound. Four dispatching
heuristics were considered, with the purpose of analyzing the effect of different rules on
the performance of the beam search procedures. More specifically, we used the EDD,
SPT.s;, CS_AS, and EQTP.EXP dispatching rules presented in Valente (2007).

The EDD rule sequences the jobs in non-decreasing order of their due dates.
The SPT_s; rule is derived from a local optimality condition for tardy jobs. This
dispatching rule calculates a priority index for each remaining job every time the
machine becomes available, and the job with the highest priority is selected to be
processed next. Let I;(t) denote the priority index of job J; at the current time t.
The SPT.s; rule uses the priority index I;(t) = (1/p;)[P + 2max(t + p; — d;,0)],
where P is the average processing time of the remaining unscheduled jobs.

The EDD (SPT_s;) heuristic performed well for instances where most jobs are
early (tardy). The CS_AS procedure tries to take advantage of the strengths of
the EDD and SPT_s; rules. At each iteration, the CS_AS heuristic uses one of
these rules to choose the next job, according to the characteristics of the current
workload. More specifically, the CS_AS procedure first calculates a critical slack
value crit_slack = slack_prop * ny * P, where ny is the number of unscheduled
jobs, and 0 < slack_prop < 1 is a user-defined parameter. Next, the average slack
5 of the remaining unscheduled jobs is determined (the slack of job J; is defined
as s; = dj —t — p;). The EDD (SPT_s;) rule is then selected if 3 > crit_slack
(5 < crit_slack).

The EQTP_EXP dispatching rule was the best performing of the heuristics
considered in Valente (2007). This procedure calculates a priority index for each
unscheduled job at each iteration, and selects the job with the largest priority.
More precisely, this heuristic uses the following priority index I;(t):

(1/p)[P+2(t + p; — dj)] ifs; <0
L) = (p/p;) exp[—(P + 1)s;/kp] if0<s; <[p/(P+ 1)]kp
i (1/pi)~2(®B/ps) — (1/p;) (@ + V)s;/kp)® if [B/(B+ 1)kP < s; < kP
—(1/pj) otherwise,

where k is a lookahead parameter.

Beam Search Heuristics for the Single Machine Scheduling Problem 327

At each iteration, the lookahead parameter k is set equal to the number of
critical jobs (i.e., jobs that are not yet tardy, but are about to become tardy).
First, a critical slack value crit_slack is calculated, just as previously described for
the CS_AS heuristic. Then, each job is classified as critical if 0 < s; < crit_slack.
Following the recommendations given in Valente (2007), the parameter slack_prop
is set at 0.15 and 0.6 for the CS_AS and EQTP_EXP heuristics, respectively.

For each type of beam search procedure, we therefore considered four versions,
corresponding to these four dispatching rules. In the following, the CS_AS and
EQTP_EXP rules will be denoted simply as CS and EQTP.

Priority beam search

PBS algorithms require a priority evaluation function. For each of the four versions
of the PBS procedure, the priority function is provided by the priority index of the
appropriate dispatching rule (EDD, SPT_s;, CS or EQTP). Therefore, the evalua-

tion value of a node is obtained by calculating the appropriate priority index of the
last scheduled job.

Detailed beam search

DBS algorithms require a total cost evaluation function, i.e., an upper bounding
procedure. For each DBS version, this upper bounding procedure is provided by the
appropriate dispatching heuristic. Therefore, and for a given node, the appropriate
rule is used to sequence the remaining unscheduled jobs, thereby completing the

existing partial schedule. The evaluation value of the node is then equal to the cost
of the complete schedule.

Filtered beam search

FBS algorithms require a filtering procedure and an upper bounding procedure.
The upper bounding procedure is provided by the relevant dispatching rule, just
as previously described for the DBS algorithms. The filtering step uses a priority
evaluation function filter, so a priority evaluation function is used to calculate an
urgency rating for each offspring of a given node. The best o children are then
chosen for the detailed evaluation step. The priority evaluation function is given

by the priority index of the appropriate dispatching heuristic, just as previously
described for the PBS algorithms.

Recovering beam search

RBS algorithms require a filtering procedure, upper and lower bounding procedures
for the accurate evaluation step, and an improvement procedure for the recovering
step. The filtering and upper bounding procedures are identical to those used in
the FBS algorithms. The lower bounding procedure is provided by the method
proposed in Valente (2008). For a given node, this procedure is used to calculate a

328 J. M. S. Valente

lower bound for the unscheduled jobs. The lower bound of the node is then equal
to the sum of the cost of the existing partial schedule and the lower bound for the
unscheduled jobs.

We considered three simple improvement procedures for the recovering step:
adjacent pair-wise interchange (API), 3-swaps (3SW), and largest cost insertion
(LCI). The API procedure considers in succession all adjacent job positions. A pair
of adjacent jobs is then swapped if such an interchange improves the objective
function value. This process is repeated until no improvement is found. The 3SW
procedure is similar, but it considers three consecutive job positions instead of
an adjacent pair of jobs. All possible permutations of these three jobs are then
analyzed, and the best configuration is selected. The LCI method selects the job
with the largest objective function value. This job is then removed from its position
i in the schedule, and inserted at position 7, for all j # i. The best insertion is

then performed if it improves the objective function value. This is repeated until
no improving move is found.

2.5. Numerical example

In this section, a numerical example is used to illustrate one of the proposed beam
search procedures. Consider an instance with four jobs, with processing times 8, 10,
3 and 5, and due dates 15, 10, 5 and 18, respectively. Let () represent the root node
no. Also, let (z,y,...) represent the node corresponding to the partial sequence
z-y-.... In the following, we describe the application of the EDD version of the
FBS procedure to this instance. A value of 2 is considered for both the beam and
filter width parameters.

In step 1, the root node () is assigned to the set of beam nodes B, while set C
is initialized as an empty set. In step 2, the only node in B is the root node. This
node is then branched in step 2(a), generating the four offspring nodes (1), (2), (3),
and (4). In the filtering step, a priority filter is used, and the two best nodes are
then added to set C in step 2(b). The EDD rule sequences jobs in non-decreasing
order of their due dates, i.e., it assigns a larger urgency rating to jobs with smaller
due dates. Therefore, the two best nodes that are added to set C are nodes (3) and
(2). In step 3, an upper bound is calculated for each of these nodes. This upper
bound is obtained by using the EDD rule to sequence the remaining unscheduled
jobs. For node (3), the sequence 3-2-1-4 is obtained, giving an upper bound value
of 111. For node (2), the upper bound is equal to 164. The nodes (3) and (2) are
then selected for further branching, and are assigned to set B.

Since the nodes in B do not correspond to a complete sequence, we return to
step 2. Node (3) is first expanded, and the children nodes (3,1), (3,2) and (34)
are obtained. The EDD filtering step then adds the nodes (3,2) and (3,1) to set C.
Similarly, node (2) is branched, and its two best offspring (2,3) and (2,1) are added
to C. In step 3, the EDD rule is used to calculate an upper bound for these nodes.

Beam Search Heuristics for the Single Machine Scheduling Problem 329

We then obtain upper bound values of 111, 191, 164, and 329 for nodes (3,2),
(3,1), (2,3) and (2,1), respectively. Nodes (3,2) and (2,3) have the lowest upper
bounds, and are assigned to set B. Repeating steps 2 and 3, we would obtain the
two leaf nodes (3-2-1-4) and (3-2-4-1), with objective function values 111 and 132,
respectively. The procedure then terminates with 3-2-1-4 as the best sequence found.

3. Computational Results

In this section, we first present the set of test problems used in the compu-
tational tests. The preliminary computational experiments are then described.
These experiments were performed, on the one hand, to select appropriate val-
ues for the parameters required by the several beam search heuristics. On the
other hand, these preliminary tests were also used to analyze the performance
of the beam search procedures under the alternative rules that were considered
(EDD, SPT_s;, CS, and EQTP), to select the best performing rule. Finally, we
present the computational results. The beam search procedures are first com-
pared with the best existing dispatching heuristic, and the heuristic results are
then evaluated against the optimum objective function values for the smaller
instance sizes. The instances used in the computational tests are available online at
http:/ /www.fep.up.pt/docentes/ jvalente/benchmarks.html. The objective function
value provided by the EQTP, DBS, and RBS heuristics, as well as the optimum
objective function value (when available), can also be obtained at this address.

3.1. Experimental design

The computational tests were performed on a set of problems with 10, 15, 20, 25,
30, 40, 50, 75, 100, 250, 500, and 750 jobs. These problems were randomly generated
as follows. For each job Jj, an integer processing time p; was generated from one of
the two uniform distributions [45,55] and [1,100], to obtain low (L) and high (H)
variability, respectively, for the processing time values. For each job J;, an integer
due date d; was generated from the uniform distribution [P1-T - R/2),P(1 —
T+ R/2)], where P is the sum of the processing times of all Jjobs, T is the tardiness
factor, set at 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, and R is the range of due dates, set at
0.2, 0.4, 0.6, and 0.8.

For each combination of problem size n, processing time variability (var), T and
R, 50 instances were randomly generated. Therefore, a total of 1200 instances were
generated for each combination of problem size and processing time variability. All
the algorithms were coded in Visual C++ 6.0, and executed on a Pentium IV —
2.8 GHz personal computer. Due to the large computational times that would be
required, the detailed beam search algorithm was only used on instances with up to

100 jobs, while the filtered and recovering procedures were not applied to the 750
job instances.

330 J. M. S. Valente

3.2. Preliminary tests

In this section, we describe the preliminary computational experiments. These
experiments were used to determine adequate values for the various parameters
required by the beam search algorithms. Moreover, these tests were also used to
analyze the performance of the four heuristic rules that were considered for each
beam search procedure, to select the best performing rule. A separate problem set
was used to conduct these preliminary experiments. This test set included instances
with 25, 50, 75, and 100 jobs, and contained five instances for each combina-
tion of instance size, processing time variability, 7" and R. The instances in this
smaller test set were generated randomly just as previously described for the full
problem set.

Extensive tests were first conducted to determine adequate values for the beam
width, filter width, and upper bound weight parameters. A trade-off exists between
solution quality and computation time, since increasing the beam or filter width
parameters usually improves the objective function value, at the cost of increased
computational effort. The following values were considered for these parameters:
a=1{L,2,...,10}, 8 = {1,2,...,8} and v = {0.1,0.2,...,0.9}. The preliminary
tests were also used to select an adequate improvement procedure for the recovering
step in the RBS algorithm. As mentioned before, we considered API, 3SW, and LCI
procedures.

The several versions of the beam search algorithms were applied to the test
instances for all combinations of the relevant parameter values (and improvement
procedures, for the RBS heuristics). We then calculated and plotted the mean objec-
tive function values and runtimes. A thorough analysis of these data showed a usual
behavior: the computation time increased linearly with the beam and filter width
parameters, while the solution quality improved, but with diminishing returns. We
then selected the parameter values and the improvement procedure that seemed to
provide the best trade-off between solution quality and computation time. For all
beam search versions, a value of 3 was chosen for both the beam and the filter width
parameters. In the four RBS versions, the upper bound weight was set at 0.8, and
the API procedure was chosen for the recovering step.

The performance of the alternative dispatching rules that were considered was
also analyzed in the preliminary computational tests, to determine the best per-
forming rule. Table 1 presents, for each beam search algorithm, the average of the
relative improvements in objective function value over the EDD rule (%imp), as well
as the percentage number of times a rule achieves the best objective function value
found when compared with the other rules (%best). More precisely, the relative
improvement over the EDD rule is calculated as (edd_ofv — rule_ofv)/edd_ofv x 100,
where edd ofv and ruleofv are the objective function values obtained by the
EDD rule and the appropriate rule (SPT_s;, CS or EQTP), respectively. These

values are omitted for the EDD rule, since they would all be necessarily
equal to 0.

Beam Search Heuristics for the Single Machine Scheduling Problem 331

Table 1. Preliminary results.

var heur rule n =25 n = 50 n =75 n = 100
%imp %best %imp Y%best Y%imp %best Yhimp Ybest
L PBS EDD — 5.00 — 5.83 — 5.00 — 1.67
SPT_Sj —172.54 30.00 -110.67 30.00 —451.52 31.67 —154.00 29.17
CS —~0.53 40.83 0.14 41.67 0.26 36.67 0.38 37.50
EQTP —0.10 94.17 —0.03 94.17 0.25 95.83 —0.33 95.00
DBS EDD — 23.33 — 7.50 — 6.67 — 5.00
SPT_Sj -2.08 35.00 —-3.29 33.33 —8.77 35.00 —1.83 30.83
CS 0.10 57.50 0.30 53.33 0.34 50.00 0.42 49.17
EQTP —0.95 90.83 —0.43 92.50 —0.62 93.33 —0.48 93.33
FBS EDD -— 20.83 —_ 5.00 — 5.00 —_ 4.17
SPT.s; —101.75 30.00 —90.30 30.00 -314.23 31.67 —123.62 929.17
(6] 0.01 45.83 0.17 48.33 0.13 45.00 0.21 42.50
EQTP —0.38 94.17 0.16 94.17 —0.07 95.83 —-0.11 95.00
RBS EDD — 60.83 — 59.17 — 60.00 — 58.33
SPT_SJ' —23.42 44.17 —14.05 38.33 —65.02 34.17 —17.85 34.17
CS 0.07 66.67 0.07 66.67 0.09 59.17 0.08 60.83
EQTP —0.21 90.83 —0.07 87.50 —0.65 94.17 —0.75 93.33
H PBS EDD — 3.33 — 1.67 — 3.33 — 2.50
SPT_S]' —137.62 17.50 —169.23 13.33 —-123.77 12.50 -—125.97 18.33
CS 16.02 33.33 18.47 26.67 19.568 23.33 20.42 26.67
EQTP 19.07 79.17 23.47 82.50 23.83 87.50 26.12 90.83
DBS EDD — 14.17 —_ 5.83 — 4.17 —_— 3.33
SPT_s; —4.21 33.33 —0.28 29.17 0.37 22.50 —0.85 25.00
CS 5.08 53.33 5.96 36.67 7.28 34.17 7.67 36.67
EQTP 4.19 60.00 4.01 72.50 5.53 80.00 6.10 79.17
FBS EDD — 6.67 — 4.17 —_ 0.00 — 0.83
SPT_SJ' —121.82 21.67 -—179.08 21.67 —129.20 20.00 —133.34 21.67
CS 5.64 30.00 10.15 35.83 12.73 29.17 14.62 30.83
EQTP 9.99 85.00 14.51 78.33 16.47 87.50 19.86 89.17
RBS EDD —_ 48.33 — 38.33 — 43.33 — 36.67
SPT_Sj —58.00 25.83 -—110.13 13.33 —102.29 9.17 -109.15 10.00
CS 0.70 40.83 1.01 25.00 1.25 16.67 1.41 15.00
EQTP 2.35 85.83 2.57 67.50 2.56 63.33 2.89 65.00

The SPT_s; rule provides the best objective function value for a larger percent-
age of instances than the EDD rule. However, the relative improvement values are
quite negative, so the SPT_s; rule gives, on average, an objective function value
that is much larger than the one achieved by the EDD heuristic. The quite negative
relative improvement values are essentially due to the inferior performance of the
SPT_s; heuristic for instances with a low tardiness factor (i.e., instances where most
jobs will be completed early). Indeed, the SPT_s; heuristic actually provides better
results than the EDD rule for instances with a high tardiness factor, but this is more
than offset by a quite poor performance for the low tardiness factor instances. This
is to be expected since, as we mentioned earlier, the EDD rule performs better for

332 J. M. S. Valente

instances with a larger number of early jobs, while the SPT_s; heuristic is instead
suited to instances where most jobs will be tardy.

For instances with low processing time variability, the objective function values
provided by the EDD, CS, and EQTP rules are quite close. Nevertheless, the CS
and EQTP rules provide the best results for a larger number of instances. This is
particularly clear for the EQTP rule, which provides the best results for over 90%
of the test instances. The CS and (especially) the EQTP rules clearly outperform
the EDD rule for the high variability instances. In fact, these rules provide a quite
significant relative improvement, and also give the best results for a much larger
number of instances.

For the high variability instances, the improvement provided by the CS and
EQTP rules over the EDD heuristic is higher for the PBS procedure, which relies
only on a priority evaluation. Therefore, it certainly seems that a high quality
priority function should be used in beam search algorithms. Even though the relative
improvement is smaller for the FBS procedure (which uses both priority and detailed
evaluations), and also for the DBS algorithm (which uses only a detailed evaluation),
the more sophisticated CS and EQTP rules nevertheless still provide a significant
improvement. Hence, a good rule should also be used to obtain an upper bound
estimate in beam search procedures. The objective function values provided by the
several rules are closer for the RBS procedure. This is to be expected, since the RBS
algorithm uses a recovering step that corrects previous wrong decisions. Therefore,
incorrect choices made previously by an inferior rule can later be corrected, and the
several rules then provide results that are much closer.

The EQTP rule is then selected, since it provides the best performance. In fact,
this rule not only achieves the best results for a quite large percentage of the test
instances, but it also provides a large relative improvement over the EDD heuristic
for the instances with a high processing time variability. In the following sections,

we will therefore present results only for the beam search versions that use the
EQTP rule.

3.3. Heuristic results

In this section, we compare the beam search algorithms with the best existing heuris-
tic, namely the EQTP dispatching rule. Table 2 gives the average of the relative
improvements in objective function value over the EQTP procedure {%imp), as well
as the percentage number of times a heuristic achieves the best result when com-
pared with the other heuristics (%best). The relative improvement over the EQTP
heuristic is calculated as (eqtp-ofv — heur_ofv)/eqtp-ofv x 100, where heur_ofv and
eqtp-ofv are the objective function values of the appropriate heuristic and the EQTP
dispatching rule, respectively. The relative improvement values are omitted for the
EQTP heuristic, since they are necessarily equal to 0.

The PBS algorithm fails to improve on the EQTP dispatching rule. Indeed, both
the objective function values and the percentage of best results are quite close for

Beam Search Heuristics for the Single Machine Scheduling Problem 333

Table 2. Heuristic results.

var heur n =25 n =50 n = 100 n = 500

%imp %best %imp Ybest %imp Ybest %imp %best

L EQTP — 24.42 — 14.83 — 16.33 — 45.25
PBS -0.39 2458 -0.30 14.50 —0.26 16.08 —0.21 43.75
DBS 0.56 81.50 0.73 88.25 0.57 91.50 — —
FBS 0.35 55.33 0.38 48.67 0.08 42.08 —0.05 47.42
RBS 112 73.33 0.99 56.42 0.58 48.50 0.25 99.67

H EQTP — 7.17 — 0.75 — 0.33 — 13.67
PBS 0.04 7.25 —-0.07 0.83 —0.05 0.33 —-0.04 13.67
DBS 4.33 44.33 3.73 54.17 3.49 65.58 — -
FBS 3.95 35.58 2.24 3217 1.22 32.83 0.33 42.50
RBS 5.51 77.42 4.00 4292 3.00 24.17 2.06 72.33

these two heuristics. The negative average relative improvement values for some
instance sizes may seem surprising, since it appears that the PBS algorithm should
generate the EQTP sequence, and therefore could not provide results inferior to
those of the EQTP dispatching rule. However, the PBS algorithm is only guaran-
teed to generate the EQTP sequence if there are no ties in the selection of jobs
during the various iterations, or if those ties are resolved in the same way. Due
to the nature of both the instance data and the EQTP priority index, ties may
indeed occur when a job is to be selected for the next position. Also, for compu-
tational efficiency concerns, these ties are not guaranteed to be solved identically
in the EQTP and PBS heuristics. Therefore, it is possible for the PBS heuris-
tic not to generate the EQTP sequence, and consequently to provide an inferior
result.

The DBS, FBS, and RBS procedures provide an improvement over the EQTP
dispatching heuristic, particularly for the high variability instances. The best results
are given by the RBS and DBS algorithms. The RBS procedure usually provides
a higher relative improvement, while the DBS heuristic generally achieves the best
results for a larger number of instances.

The FBS algorithm is also superior to the EQTP dispatching rule, but is outper-
formed by the DBS and RBS procedures. The DBS algorithm performs a thorough
evaluation for all nodes, which can explain its superior performance, since the FBS
procedure only calculates an upper bound estimate for the nodes that are not elim-
inated by the filtering step. The RBS heuristic, on the other hand, not only uses a
weighted average of both upper and lower bounds in the detailed evaluation step,
but also benefits from the recovering step, which uses local search to correct previous
wrong decisions.

The relative improvement given by the RBS, DBS, and FBS algorithms is much
larger for the high variability instances. Indeed, the improvement provided by the
RBS and DBS procedures is about 3-4% for instances with high variability. For the
low variability instances, however, the relative improvement is usually below 1%.

334 J. M. S. Valente

Table 3. Relative improvement over the EQTP heuristic, for instances with 50 jobs.

heur T Low var High var
R=02 R=04 R=06 R=08 R=02 R=04 R=06 R=038
PBS 0.0 0.00 0.00 0.00 —-0.01 —0.01 —0.02 —-0.01 —0.01
0.2 —2.98 -3.91 —-0.05 -0.07 -1.99 0.09 0.00 0.01
0.4 0.00 0.00 0.00 —0.21 0.18 0.00 0.02 0.12
0.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DBS 0.0 0.00 0.02 0.05 0.09 0.25 0.56 0.86 1.58
0.2 4.83 5.26 1.29 1.61 13.54 17.03 12.53 13.77
0.4 0.03 0.06 0.18 4.12 1.29 1.06 2.70 22.73
0.6 0.00 0.00 0.00 0.00 0.65 0.20 0.14 0.21
0.8 0.00 0.00 0.00 0.00 0.34 0.05 0.03 0.03
1.0 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
FBS 0.0 0.00 0.01 0.04 0.07 0.29 0.55 0.85 1.28
0.2 2.47 3.33 0.67 0.66 6.32 10.87 6.41 6.57
0.4 0.01 0.02 0.07 1.77 1.04 0.80 1.85 15.33
0.6 0.00 0.00 0.00 0.00 0.56 0.24 0.17 0.27
0.8 0.00 0.00 0.00 0.00 0.20 0.07 0.03 0.03
1.0 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
RBS 0.0 0.00 0.02 0.05 0.09 0.33 0.67 0.98 1.59
0.2 10.60 8.16 1.01 1.11 24.65 18.10 10.20 11.11
0.4 0.02 0.03 0.09 2.66 1.36 1.02 2.56 21.42
0.6 0.00 0.00 0.00 0.00 0.77 0.18 0.11 0.27
0.8 0.00 0.00 0.00 0.00 0.52 0.07 0.02 0.01
1.0 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00

In Table 3, we present the effect of the T and R parameters on the relative
improvement over the EQTP dispatching rule, for instances with 50 jobs. The
improvement given by the beam search algorithms is minor when a larger num-
ber of jobs are completed after their dates (7" > 0.6). In fact, when most jobs are
tardy (T' = 1.0), the objective function values are quite close for all the heuris-
tics. The improvement provided by the RBS, DBS, and FBS algorithms, however,
is quite significant for instances with T < 0.4, where a larger proportion of jobs
are completed early. Indeed, the relative improvement given by the RBS and DBS
algorithms is about 10-20% for some of the parameter combinations with T = 0.2
or T =04.

The heuristic runtimes (in seconds) are presented in Table 4. The DBS procedure
is computationally demanding, and therefore can only be used for small to medium
size instances. The FBS and RBS algorithms are faster, and can be applied to larger
instances. The PBS procedure is the fastest of the beam search procedures. However,
the EQTP dispatching rule is more computationally efficient, and provides results
of similar quality.

The RBS or DBS procedures are then recommended for small to medium size
instances. For somewhat larger instances, the RBS heuristic is the procedure of

Beam Search Heuristics for the Single Machine Scheduling Problem 335

Table 4. Heuristic runtimes (in seconds).

var heur n=25 n=50 n=100 n=250 n=3500 n=750

L EQTP 0.000 0.000 0.001 0.004 0.015 0.034
PBS 0.002 0.007 0.036 0.509 5.408 32.398
DBS 0.021 0.295 4.553 — — —
FBS 0.004 0.029 0.206 3.369 28.250 —
RBS 0.006 0.033 0.227 3.473 28.567 —

H EQTP 0.000 0.000 0.001 0.004 0.016 0.036
PBS 0.002 0.008 0.047 0.536 5.430 32.747
DBS 0.022 0.316 4.938 — — —
FBS 0.005 0.031 0.232 3.613 29.943 c
RBS 0.006 0.035 0.250 3.711 30.282 —

choice, since it provides much better results than the FBS algorithm, and is only
slightly more computationally intensive. For quite large instance sizes, the EQTP

dispatching rule is the only procedure that can provide results in a reasonable
computation time.

3.4. Comparison with optimum results

In this section, the heuristic results are compared with the optimum objective func-
tion values, for instances with up to 20 jobs. In Table 5, we present the average of the
relative deviations from the optimum (%dev), calculated as (H —0)/O x 100, where
H and O are the heuristic and the optimum objective function values, respectively.
The percentage number of times each heuristic generates an optimum schedule
(%opt) is also given.

From Table 5, it can be seen that the heuristics are quite close to the optimum
when the variability is low. The RBS procedure, in particular, performs extremely
well. In fact, this heuristic provides objective function values that are less than
0.2% above the optimum, and also generates an optimum solution for a quite large

Table 5. Comparison with optimum objective function values.

var heur n =10 n=15 n =20
%dev %opt %dev %opt Ydev %opt

L EQTP 1.78 45.58 2.14 34.50 1.83 2817
PBS 1.44 50.33 2.51 35.83 2.33 29.25
DBS 0.10 89.50 0.45 76.08 0.69 68.08
FBS 0.22 83.67 0.63 64.67 1.10 60.00
RBS 0.02 97.00 0.03 83.17 0.13 73.25

H EQTP 2214 2225 16.45 11.92 11.96 8.67
PBS 17.99 24.08 1539 12.67 12.20 9.08
DBS 3.13 52.75 3.54 38.58 3.22 3317
FBS 2.73 51.92 2.91 38.08 3.79 32.58
RBS 0.46 88.83 0.89 75.83 0.81 56.83

336 J. M. S. Valente

number of instances. The DBS and FBS procedures also perform quite well. These
heuristics provide an optimum solution for a large number of instances, and their
average deviation from the optimum is usually less than 1%. Even the simpler PBS
and EQTP procedures perform well, providing results that are about 1-2% above
the optimum.

The performance of the heuristics, however, deteriorates when the variability of
the processing times increases, particularly for the simpler EQTP and PBS proce-
dures. The RBS procedure still performs quite well for instances with high variabil-
ity, since its average deviation from the optimum is less than 1%, and it provides
an optimum solution for over half of the test instances. The performance of the
DBS and FBS procedures is also quite good. Indeed, these procedures give results
that are about 3% above the optimum. The EQTP and PBS heuristics, however,
perform poorly for the high variability instances, since they are 10-20% above the
optimum.

These results are in line with those presented in the previous section for the
relative improvement provided by the beam search heuristics. In fact, the rela-
tive improvement over the EQTP dispatching heuristic was lower (higher) for the
instances with a low (high) variability. We can now see that there was indeed little
room for improvement in the low variability instances. When the variability is high,
however, the EQTP heuristic performs poorly, and therefore it is possible to obtain
a larger relative improvement.

The effect of the T' and R parameters on the relative deviation from the optimum
is presented in Table 6, for instances with 20 jobs. The heuristics are much closer
to the optimum when a larger number of jobs is tardy (T' > 0.6). Actually, when
most of the jobs complete after their due dates (T = 1.0), the heuristic procedures
are usually optimal or nearly optimal. The relative deviation from the optimum is

higher for instances with a larger proportion of early jobs (particularly instances
with T=0.2 or T = 0.4).

4. Conclusion

In this paper, we considered the single machine scheduling problem with linear ear-
liness and quadratic tardiness costs, and no machine idle time. Several heuristics
based on the beam search approach were presented. These algorithms included clas-
sic beam search procedures, as well as the filtered and recovering variants. Beam
search algorithms require evaluation functions, which are typically provided by dis-
patching rules. Four dispatching heuristics were considered, so as to analyze the
effect of different rules on the performance of the beam search algorithms.

We performed extensive preliminary experiments, to determine adequate values
for the parameters required by the several beam search procedures. The performance
of the alternative dispatching rules was also analyzed in these initial tests. The

results show that using better rules improves the performance of the beam search
heuristics.

Beam Search Heuristics for the Single Machine Scheduling Problem 337

Table 6. Relative deviation from the optimum for instances with 20 jobs.

heur Low var High var

T BR=02 R=04 R=06 R=08 R=02 R=04 R=06 R=0..38

EQTP 0.0 0.19 0.09 0.08 0.11 0.66 1.64 2.65 2.64

0.2 17.05 13.56 3.98 2.23 60.07 91.36 26.80 20.54

0.4 0.10 0.13 0.42 5.92 6.34 4.57 13.49 44.53

0.6 0.02 0.02 0.01 0.01 3.97 1.38 1.23 1.88

0.8 0.01 0.01 0.00 0.00 1.68 0.82 0.30 0.25

1.0 0.00 0.00 0.00 0.00 0.03 0.05 0.05 0.06

PBS 0.0 0.28 0.10 0.11 0.12 0.67 1.64 2.65 2.64

0.2 20.10 21.02 4.74 2.21 60.38 87.69 39.06 19.12

04 0.10 0.12 041 6.62 6.33 4.45 13.39 43.84

0.6 0.02 0.02 0.01 0.01 3.97 1.38 1.19 1.79

0.8 0.01 0.01 0.00 0.00 112 0.80 0.23 0.25

1.0 0.00 0.00 0.00 0.00 0.03 0.05 0.05 0.06

DBS 0.0 0.05 0.01 0.01 0.02 0.38 0.87 1.28 1.11

0.2 8.18 6.48 1.55 0.09 24.13 14.95 5.70 4.13

0.4 0.03 0.01 0.03 0.18 2.32 0.95 3.54 14.43

0.6 0.01 0.00 0.00 0.00 1.72 0.26 0.30 0.49

0.8 0.00 0.00 0.00 0.00 0.28 0.27 0.06 0.08

1.0 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.01

FBS 0.0 0.01 0.00 0.01 0.02 0.15 0.26 0.51 0.52

0.2 11.19 7.91 2.07 0.66 30.45 28.12 5.79 6.56

0.4 0.02 0.04 0.20 4.23 3.14 1.18 2.39 7.78

0.6 0.01 0.00 0.00 0.00 2.43 0.27 0.24 0.52

0.8 0.00 0.00 0.00 0.00 0.43 0.18 0.04 0.07

1.0 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01

RBS 0.0 0.00 0.00 0.00 0.01 0.04 0.11 0.28 0.15

0.2 1.86 0.21 0.23 0.27 3.97 4.52 2.31 1.42

0.4 0.01 0.03 0.08 0.50 0.68 0.34 0.72 3.79

0.6 0.00 0.00 0.00 0.00 0.67 0.13 0.06 0.04

0.8 0.00 0.00 0.00 0.00 0.04 0.06 0.00 0.01

1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The best performing versions of the beam search algorithms were then compared
with the best existing heuristic, as well as with optimal solutions. The best results
are given by the RBS and DBS algorithms, and the FBS procedure also provides
an improvement over the best existing heuristic. The relative improvement given by
the RBS, DBS, and FBS algorithms is much larger for the high variability instances.
The several heuristic procedures, particularly the RBS procedure, were quite close
to the optimum for instances with low variability. The RBS and DBS algorithms
still performed quite well for the high variability instances, giving results that are
about 1% and 3% above the optimum, respectively. The EQTP and PBS heuristics,
however, perform poorly for these instances.

The RBS or DBS procedures are recommended for small to medium size
instances. For somewhat larger instance sizes, the DBS heuristic requires exces-
sive computation times, and the RBS procedure is then the heuristic of choice.

338 J. M. S. Valente

For extremely large instances, however, dispatching rules are the only procedure
that can provide results within reasonable computation times.

Acknowledgments

The author would like to thank the anonymous referees and an associate editor for
several, and most useful, comments and suggestions that were used to improve this
paper.

References

Baker, KR and GD Scudder (1990). Sequencing with earliness and tardiness penalties: A
review. Operations Research, 38, 22-36.)

Della Croce, F, M Ghirardi and R Tadei (2004). Recovering beam search: Enhancing the
beam search approach for combinatorial problems. Journal of Heuristics, 10, 89—104.

Della Croce, F and V T’kindt (2002). A recovering beam search algorithm for the one-
machine dynamic total completion time scheduling problem. Journal of the Opera-
tional Research Society, 53, 1275-1280.

Esteve, B, C Aubijoux, A Chartier and V T’kindt (2006). A recovering beam search
algorithm for the single machine just-in-time scheduling problem. Furopean Journal
of Operational Research, 172, 798-813.

Garey, MR, RE Tarjan and GT Wilfong (1988). One-processor scheduling with symmetric
earliness and tardiness penalties. Mathematics of Operations Research, 13, 330-348.

Ghirardi, M and CN Potts (2005). Makespan minimization for scheduling unrelated parallel
machines: A recovering beam search approach. Furopean Journal of Operational
Research, 165, 457—467.

Gupta, SK and T Sen (1983). Minimizing a quadratic function of job lateness on a single
machine. Engineering Costs and Production Economics, 7, 187-194.

Hall, N, W Kubiak and S Sethi (1991). Earliness-tardiness scheduling problems, {II}:
Deviation of completion times about a restrictive common due date. Operations
Research, 39, 847-856.

Hoogeveen, H (2005). Multicriteria scheduling. European Jowrnal of Operational Research,
167, 592-623.

Kanet, JJ and V Sridharan (2000). Scheduling with inserted idle time: Problem taxonomy
and literature review. Operations Research, 48, 99-110.

Kim, YD and CA Yano (1994). Minimizing mean tardiness and earliness in single-machine
scheduling problems with unequal due dates. Naval Research Logistics, 41, 913-933.

Kubiak, W (1993). Completion time variance minimization on single machine is diffcult.
Operations Research Letters, 14, 49-59.

Lowerre, BT (1976). The HARPY Speech Recognition System. PhD Thesis, Carnegie-
Mellon University, USA.

Ow, PS and TE Morton (1988). Filtered beam search in scheduling. International Journal
of Production Research, 26, 35-62.

Ow, PS and TE Morton (1989). The single machine early/tardy problem. Management
Science, 35, 177-191.

Rubin, S (1978). The ARGOS Image Understanding System. PhD Thesis, Carnegie-Mellon
University, USA.

Schaller, J (2002). Minimizing the sum of squares lateness on a single machine. European
Journal of Operational Research, 143, 64-79.

Beam Search Heuristics for the Single Machine Scheduling Problem 339

Schaller, J (2004). Single machine scheduling with early and quadratic tardy penalties.
Computers & Industrial Engineering, 46, 511-532.

Schaller, J (2007). A comparison of lower bounds for the single-machine early/tardy prob-
lem. Computers & Operations Research, 34, 2279-2292.
Sen, T, P Dileepan and MR Lind (1995). Minimizing a weighted quadratic function

of job lateness in the single machine system. International Jowrnal of Production
Economics, 42, 237-243.

Su, L-H and P-C Chang (1998). A heuristic to minimize a quadratic function of job lateness
on a single machine. International Journal of Production Economics, 55, 169-175.

Taguchi, G (1986). Introduction to Quality Engineering. Asian Productivity Organization,
Tokyo, Japan.

Valente, JMS (2007). Heuristics for the single machine scheduling problem with early and
quadratic tardy penalties. European Journal of Industrial Engineering, 1, 431-448.
Valente, JMS (2008). An exact approach for the single machine scheduling problem

with linear early and quadratic tardy penalties. Asia-Pacific Journal of Operational
Research, 25, 169-186.

Valente, JMS and RAFS Alves (2005). Filtered and recovering beam search algorithms

for the early/tardy scheduling problem with no idle time. Computers & Industrial
Engineering, 48, 363-375.

Jorge M. S. Valente is Assistant Professor in the Management Department of
the Faculty of Economics, University of Porto (Portugal). He holds a PhD in Man-
agement Science from the University of Porto. He has published in Asia-Pacific
Journal of Operational Research, Computers & Industrial Engineering, Computers
& Operations Research, International Journal of Production Economics, Journal
of Manufacturing Systems and in the Journal of the Operational Research Society,
among others. His current research interests include production scheduling, heuristic
techniques, and agent-based computational economics.

