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Abstract. Beam sizes of the stored electron beam at the Advanced Photon Source storage ring were measured using zone- 
plate optics and undulator radiation. A gold Fresnel zone plate (3.5 pm thick) located 33.9 meters from the x-ray source 
focused radiation of 18 keV, selected by a cryogenically cooled Si(ll1) crystal in horizontal deflection, and formed a source 
image in a transverse plane 2.41 m downstream. The sizes of the source image were determined from measured intensity 
profiles of x-ray fluorescence from a smooth nickel edge (1.5 pm thick), fabricated using a lithographic technique, while 
the nickel edge was scanned across over the beam in the transverse plane. The measured vertical and horizontal sizes of the 
electron beam were 60k4.3 pm and 3W-13 pm, respectively, in reasonable agreement with the expected values. 

INTRODUCTION 

As the Advanced Photon Source (APS) begins operation, beam emittance measurements become an essential part of the 
commissioning process to diagnose the performance of the storage ring and insertion devices. In the center of the straight 
section, beam size and divergence are determined by the natural beam emittance, coupling between vertical and horizontal 
emittances, and the p functions characterizing the magnet lattice in the storage ring (1). Beam size measurements provide 
useful information about those values. When diagnosing undulator radiation, beam size is usually needed to convert the 
results obtained from absolute flux measurement to beam brilliance (2). Even after the APS enters the operational mode, 
beam size information will be desired for the experiments involving x-ray focusing. 

Usually, the divergence of the photon beam can be determined accurately by measuring the photon beam size a at a 
distance D from the source. That is 

where a, and a,. refer to the size and the divergence of the photon source, respectively. When the measurement takes place 

at a large D, a can be much larger than 0,. The uncertainty of the measurement can be well managed and limited at a 

relatively small value. For undulator radiation, however, the inherent divergence of the photon beam, which is comparable 
with the divergence of the particle beam in APS storage ring, prevents us from accurately determining the divergence of the 
particle beam. As such, accurate measurements of beam size become an important issue in the diagnostics of beam emittance. 
Especially because our diagnostics were focused not only on the particle beam but also on the undulator photon beams, the 
technique selected has to accommodate the requirement for portability of the diagnostic equipment. In the next section, a 
comparison of pinhole optics and zone-plate optics is given to explain our choice of zone-plate optics. 

ZONE-PLATE OPTICS AND PINHOLE OPTICS 

A phase zone plate is a diffractive focusing device made of a number of concentric circular zones. The thicknesses of the 
zones are determined so that a phase shift of K is obtained for a given radiation wavelength. The 
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depends on the refractive index of the zone material, the wavelength of the radiation, and the Fresnel half-period radii. Zone 
plates work like thin lenses, so that the thin lens formula, 
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applies for the formation of the source image (3). where 2, is the source-zone-plate distance, Z, is the source-image-plane 

distance, f is the focal length of the zone plate, and M is the magnification factor of the imaging system. A zone plate has 

a diffraction limit to its transverse resolution similar to that calculated by Rayleigh for a thin lens, which turns out to be 
about 122% of the outermost zone width of the zone plates (3). With currently available manufacturing techniques for hard x- 
ray zone plates, the diffraction-limited resolution can be smaller than 0.2 pm. 

Pinhole imaging has been used recently for source-size measurements during commissioning of several third-generation 
synchrotron radiation sources (4-7). The pinhole optics describing the relation between the measured size of the source image 

on the screen a and the source size a, can be expressed as (7) 

where a,, refers to the rms size of the pinhole, 2, and 2, are, respectively, the distances of the pinhole and the image screen 

from the source. The first term in Eq. (4) represents the size of the source image, and the second term reflects the size of the 
pinhole projected on the screen. Note that the image broadening given by the second term is evaluated with a point-source 

approximation. It is valid when as <c 2, os,. The Fraunhofer diffraction of x-rays from a pinhole results in an angular 

spreading of the x-ray beam and, thus, a broadening of the source image. The rms image broadening due to x-ray diffraction is 

about (2, - - 2, )A / 7up,  where A is the wavelength of the x-rays (8). 

For the APS, the radiation characteristics are dominated by the emittance of the stored particle beam. Given a natural 
beam emittance of 8.2 nm-rad. a horizontal p function of 14.2 m, and a vertical p function of IO m, the horizontal and 
vertical sizes of the electron beam in the storage ring would be 325 pm and 86 pm for a coupling constant of 10’36, and 333 
pm and 62 pm for a coupling constant of 5% (9). The vertical beam size becomes smaller as the coupling constant decreases. 
Consider an undulator radiation source with rms size of 60 pm. For measurements using pinhole optics, if a pinhole of 5 pm 

(a,,) is placed 10 meters from the source and the imaging screen is located 10 meters downstream, the rms sizes of the source 

image, the projection of the pinhole, and the broadening due to diffraction are, respectively, 60 pm, 10 pm, and 35 pm (for 
10 keV x-rays). The size of the image on the screen is a convolution of the three quantities. Note that the diffraction 
broadening is about 60% of the size of the source image. The uncertainty in pinhole size will generate a significant error 
when deconvolution of the image size from the diffraction broadening and the finite size of the pinhole is carried out. This 
error becomes severe when the source size is small like that of the APS.  In order to reduce the diffraction effect, one can either 

employ high energy radiation or make the distance Z2 - 2, small. However, small pinholes for high energy x-rays are 

difficult to manufacture, and one would also reduce the source-pinhole distance 2, if 2, -2, is reduced so that a 

magnification factor required for accurate measurement can be maintained. At the APS, this approach means that the 
measurement has to be conducted in the front end and a dedicated beamline is required for beam diagnostics. For the 
diagnostics of insertion devices, this approach is practically impossible because each device has to be installed in the section 
of the dedicated beamline once there is a need for the device to be diagnosed. 

For measurements using zone-plate optics, if a zone plate with a focal length of 2.5 m is located 30 meters from the 
source, the rms size of the source image on the image plane will be 5 pm, and the diffraction-limited transverse resolution 
(0.2 pm) is only a small fraction of the source-image size. Because the diffraction-limited resolution is small, the accuracy of 
the source size measurement is not sensitive to the source-zone-plate distance. In other words, the measurements can take 
place in stations located at various distances from undulator sources. We have developed a technique for source size 
measurement using x-ray zone-plate optics, in which the source was imaged at the imaging plane of the zone plate, and the 
image size was measured by scanning a nickel thin edge across the beam in the imaging plane and measuring its fluorescence. 



EXPERIMENTAL SETUP 

The experiment was performed in the first optical enclosure (FOE) of the 2-ID beamline of the APS. The x-ray source 
was the synchrotron radiation generated from undulator A (9). Fig. 1 is a schematic of the experimental setup. In order to 
reduce the thermal load on the monochromator, the radiation extracted from the storage ring was, first, filtered with a set of 
filters consisting of 500 pm carbon, 150 pm diamond, and 500 pm beryllium. Then, the power of the undulator radiation 
was further reduced substantially by a water-cooled grazing incidence conical pinhole (copper) with the exit hole 800 pm in 
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FIGURE 1. Schematic illustration of the experimental setup. 

diameter. X-rays of 18 keV were selected by a cryogenically cooled Si(ll1) crystal in horizontal deflection. The vacuum 
chamber for the monochromator was sealed with two 150-pm-thick beryllium windows capable of tuning the x-ray energy 
from 7 to 30 keV. The monochromatic beam .was apertured to a size of 600 pm before it illuminated the zone plate. A gold 
zone plate of 400 pm in diameter (3.5 pm thick) with a focal length of 2.25 m was located 33.89 m from the center of the 
straight section, and thus the x-ray source image was formed in a transverse plane 2.41 m downstream from the zone plate. A 
platinum order-sorting aperture (OSA) of size 30 pm was placed 100 mm upstream from the image plane to increase the 
contrast of the source image. An energy-dispersive detector (Si(Li), EG&G ORTEC SLP 06165PS) was located close to the 
imaging plane pointing in a direction normal to the x-ray beam to measure the x-ray fluorescence generated from a nickel thin 
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FIGURE 2. Fluorescence intensity profile of a horizontal knife-edge scan (dots). The solid line is the fitted curve to the experimental 
data, and the dashed line is the derivative of the fitted curve. The horizontal axis reflects the coordinates at the source location. 



edge (Ka line) placed in the imaging plane. The beam sizes were determined from the fluorescence intensity profiles measured 
when the nickel edge was being scanned across the beam. 

The FOE was chosen because the experimental stations downstream had not yet been commissioned when the 
measurements were made. The measurements were taken in the presence of a high radiation background because the detector 
had to be in the same station where radiation scattering components, such as the pinhole and the monochromator, were 
installed. Therefore, the conical pinhole was placed in a helium enclosure, and both the pinhole enclosure and the 
monochromator vacuum chamber were carefully shielded with lead and steel. 

RESULTS 

All measurements were performed with a beam of 7 GeV and less than 5 mA. For the natural emittance and the 
emittamce coupling of the beam in the storage ring, the f3 functions at the center of the straight section, and the experiment 
configuration, the source image on the image plane would be 6 pm vertically and 23 pm horizontally. The performance of 
the crystal monochromator and the energy bandwidth of the x-ray beam intercepted by the zone plate are critical to the 
accuracy of the measurement. 

Main concerns about the performance of the crystal monochromator arise from the possibility of distortion in the 
atomic planes of the crystal due to the high power of the undulator radiation that would shift the virtual source away from the 
point of the real source. The undulator gap was set at 14.8 mm so that its third harmonic peaked at 18 keV. With a 800 pm 
aperture located at 33 m, the total incident power of the undulator radiation was about 5 W with a current of 5 mA. The high 
thermal conductivity of the silicon at liquid-nitrogen temperature should be able to maintain the atomic planes without 
distortion. The width of the rocking curve of the monochromator measured with an analyzing crystal (Si( 11 1)) at beam 
current of 20 mA was found to be the same as the ideal value. Horizontal deflection takes advantage of less stringent 
requirements in slope error for avoiding image distortion in the vertical direction along which a small image size is expected. 

Because of single bounce, the monochromatic nature of the x-ray beam is determined by the intrinsic energy bandwidth 
of the crystal and the angular acceptance of the zone plate. Given the distance of the zone plate from the source, we found that 
the energy bandwidth of the x-ray beam picked up by the zone plate was about 5 eV, and image broadening due to the 
bandwidth can be neglected. 

We show the measured nickel (Ka) fluorescence intensity profile of a horizontal knife-edge scan in Figure 2. The 
experimental data were fitted with an error function and a uniform background was assumed. The horizontal intensity profile 
of the source image was then obtained by taking the derivative over the fitted fluorescence intensity profile. In the figure, the 
profiles are plotted versus the product of the dimension at the image plane with the demagnification factor of the zone-plate 
imaging system, representing the dimension at the source point. The beam intensity profile gives a horizontal source size of 
705 pm at the full width half maximum, or 300 pm in rms size. 

Figure 3 displays a similar fluorescence intensity profile for the vertical knife-edge scan. It provides a vertical source 
size of 141 pm at the full width half maximum, or 60 pm in rms size. The distance between the zone plate and the nickel 
edge was optimized so that the most narrow intensity profile of the source image was obtained. From the results of source- 
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FIGURE 3. Fluorescence intensity profile of a vertical knife-edge scan (dots). The solid line is the fitted curve to the experimental data, 
and the dashed line is the derivative of the fitted curve. The horizontal axis uses the coordinates at the source location. 



size measurements and beam-divergence measurements (2), we obtained a horizontal beam emittance of 7.5 nm-rad and a 
vertical beam emittance of 0.32 nm-rad, and, thus, the coupling constant is 0.043. 

DISCUSSION 

The accuracy of the measurement depends on the accuracies of the distances of the zone plate and the knife edge fi-om the 
source, the quality of the Ni thin edge, and the mechanical stability of the imaging system. The Ni thin edge was 
manufactured using a lithographic technique and was checked by a scanning electron microscope (SEM) before the 
experiment. Figure 4 is a photograph of the SEM backscattering image of the nickel edge used in the experiment. The 
smoothness of the edge is better than.0.1 pm. In order to evaluate the performance of the thin edge and the stability of the 
mechanical system, the same nickel edge was used to measure the spot size of an x-ray beam focused with a 6-cm-focal-length 
zone plate using the same setup and the same source-zone-plate distance. A 0.2 pm beam spot size (rms) was obtained, 
indicating the roughness of the nickel edge and the instability of the system almost have no effect on the source size 
measurement. 

FIGURE 1. SEM backscattering image of the nickel thin edge. 

In a summary, a zone-plate-optics-based, portable, and flexible beam diagnostics instrument for undulator source size 
(emittance) measurement has been developed. The instrument has been used for size measurement of the particle beam in the 
APS storage ring and for undulator photon beam diagnostics. Measured results were in reasonable agreement with expected 
values. 
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