
Beam-Stack Search: Integrating Backtracking with Beam Search

Rong Zhou and Eric A. Hansen
Department of Computer Science and Engineering

Mississippi State University, Mississippi State, MS 39762
{rzhou,hansen}@cse.msstate.edu

Abstract

We describe a method for transforming beam search into
a complete search algorithm that is guaranteed to find an
optimal solution. Called beam-stack search, the algorithm
uses a new data structure, called a beam stack, that makes
it possible to integrate systematic backtracking with beam
search. The resulting search algorithm is an anytime algo-
rithm that finds a good, sub-optimal solution quickly, like
beam search, and then backtracks and continues to find im-
proved solutions until convergence to an optimal solution. We
describe a memory-efficient implementation of beam-stack
search, called divide-and-conquer beam-stack search, as well
as an iterative-deepening version of the algorithm. The ap-
proach is applied to domain-independent STRIPS planning,
and computational results show its advantages.

Introduction
Beam search is a widely-used approximate search algorithm.
By focusing its search effort on the most promising paths
through a search space, beam search can find a solution
within practical time and memory limits – even for problems
with huge search spaces. Although the idea is simple, beam
search works very well in a wide variety of domains, includ-
ing planning (Zhou & Hansen 2004), scheduling (Habenicht
& Monch 2002), speech recognition (Huang, Acero, & Hon
2001), and many others.

Despite its wide use, beam search has a serious drawback
– it is incomplete. Because the technique that beam search
uses to prune the search space is inadmissible, it is possi-
ble for it to prune paths that lead to an optimal solution, or
even to prune all paths that lead to any solution. As a result,
there is no guarantee that beam search will find an optimal
solution, or any solution at all, even when a solution exists.

In this paper, we describe a way to transform beam search
into a complete search algorithm that is guaranteed to find
an optimal solution. The key innovation is a new data
structure called abeam stackthat makes it possible to in-
tegrate beam search with systematic backtracking. Thus
we call the new algorithmbeam-stack search. We also
describe a memory-efficient implementation of beam-stack
search, calleddivide-and-conquer beam-stack search. The

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

new search algorithm is an anytime algorithm. Like conven-
tional beam search, it can find a good, sub-optimal solution
quickly. Then it backtracks and continues to search for im-
proved solutions until convergence to an optimal solution.
We use the new algorithm for domain-independent STRIPS
planning and report computational results that demonstrate
its advantages.

Background
We begin with a brief review of beam search and some re-
lated work.

Beam search
Beam search can be viewed as an adaptation of branch-and-
bound search that uses an inadmissible pruning rule in which
only the most promising nodes at each level of the search
graph are selected for further branching, and the remaining
nodes are pruned off permanently. The standard version of
beam search expands nodes in breadth-first order. In each
layer of a breadth-first search graph, it expands only thew
most promising nodes, and discards the rest, where the inte-
gerw is called thebeam width. A heuristic is used to select
the most promising nodes. Note that by varying the beam
width, it is possible to vary the search between greedy search
(with a width of 1) and complete search (with no limit on
width). By bounding the width, the complexity of the search
becomes linear in the depth of the search instead of expo-
nential; the time and memory complexity of beam search is
wd, whered is the depth of the search.

Although beam search is usually associated with a
breadth-first search strategy, the name “beam search” is
sometimes used in a more general sense. For example, Rich
and Knight (1991) suggest applying a beam to best-first
search; after a node’s children are added to the Open list,
the Open list is truncated so that it has at mostw nodes.
Bisiani (1987) proposes an even more general definition
in which any search algorithm that uses heuristic rules to
discard non-promising alternatives is an example of beam
search. Based on this definition, Zhang (1998) refers to
a depth-first branch-and-bound algorithm that uses a non-
admissible pruning rule as a beam-search algorithm.

The approach developed in this paper applies to a standard
beam-search algorithm that expands nodes in breadth-first
order.

Complete beam search with iterative weakening

Zhang (1998) describes how to transform beam search into
a complete (and anytime) search algorithm by usingitera-
tive weakening(Provost 1993).1 The idea is to perform a
sequence of beam searches in which a weaker inadmissible
pruning rule is used each iteration, until a solution of de-
sired quality is found, or until the last iteration, in which no
inadmissible pruning rule is used. This creates an anytime
algorithm that finds a sequence of improved solutions, and
eventually converges to an optimal solution.

In this approach to creating a complete beam search al-
gorithm, Zhang uses “beam search” in the general sense in
which it refers to any search algorithm that uses an inad-
missible pruning rule. He points out that this technique can
be used to transform a best-first or depth-first beam-search
algorithm into a complete algorithm. In fact, all the ex-
perimental results he reports are for depth-first branch-and-
bound search applied to tree-search problems. In theory, his
approach can be used to make best-first (or breadth-first)
beam search complete. In practice, this creates a memory
bottleneck that limits the scalability of the complete beam-
search algorithm that results.

The reason for this is that iterative weakening only guar-
antees completeness in the last iteration in which no inad-
missible pruning rule is used. At that point, the memory
requirement is the same as for the underlying search algo-
rithm. If this approach is used with a depth-first search algo-
rithm, the memory requirement of the complete beam search
is linear in the depth of search (the same as for depth-first
search). But if it is used with a best-first (or breadth-first)
search algorithm, the memory requirement of the complete
beam search is the same as that of best-first (or breadth-first)
search – typically,exponentialin the depth of search.

In the rest of this paper, we describe a very different ap-
proach to making beam search complete. The approach
applies to a standard beam-search algorithm that uses a
breadth-first strategy of node expansion. But the memory
complexity of the complete algorithm is the same as that of
traditional beam search (and depth-first search) – linear in
the depth of the search.

Beam-stack search
Like beam search, beam-stack search – which we introduce
in this paper – can be viewed as a modification of breadth-
first branch-and-bound (BFBnB) search in which no layer
of the breadth-first search graph is allowed to grow greater
than the beam width. It expands nodes in breadth-first or-
der, and, like BFBnB, uses upper and lower bounds to prune
the search space. For any noden, a lower-bound estimate
of the cost of an optimal path through that node is given by
the node evaluation functionf(n) = g(n) + h(n), where
g(n) is the cost of a best path from the start node to noden,
andh(n) is an admissible heuristic that never over-estimates
the remaining cost from noden to a goal node. An initial

1A closely-related technique called iterative broadening (Gins-
berg & Harvey 1992) could also be used to make beam search com-
plete in the way suggested by Zhang.

upper boundU can be found by using an approximation al-
gorithm to find a sub-optimal solution. Like BFBnB, each
time beam-stack search finds an improved solution, it up-
dates the upper bound. Use of upper and lower bounds to
prune the search space is calledadmissible pruning. Prun-
ing nodes based on memory limitations, as in beam search,
is inadmissible pruning.

To compensate for inadmissible pruning, beam-stack
search can backtrack to a previously-explored layer in order
to generate nodes that were not generated when the layer was
previously visited. To allow systematic backtracking, beam-
stack search uses a novel data structure called abeam stack,
which generalizes the conventional stack used in depth-first
search. A beam stack contains one item for each layer of the
breadth-first search graph (with the exception of the deepest
layer, which does not need to be backtracked to). The item
contains a high-level record of search progress in that layer.

The beam stack supplements the search graph in keeping
track of the progress of the search. Each layer of a breadth-
first search graph consists of a set of stored nodes, and, for
any node in one layer, all of its possible successor nodes are
in the next layer. But in beam search, if the beam width is
not large enough, there is not room for all successor nodes
in the next layer. Only some can be stored in the next layer,
and the algorithm must backtrack to consider the rest.

To allow backtracking, the beam stack keeps track of
which nodes have been considered so far, and which have
not. It does so by leveraging the fact that the nodes in a
layer can be sorted uniquely. In the simple case in which
every node has a uniquef -cost, they can be sorted by their
f -cost. (We consider this case first, in order to explain the
idea, and consider the possibility of ties later.) In this simple
case, an item of the beam stack describes a range off -costs,
[fmin, fmax), which indicates that only successor nodes with
anf -cost in this range are stored in the next layer.

When expanding nodes in a layer associated with an item
with range[fmin, fmax), the algorithm prunes any successor
node (generated for the next layer) with anf -cost less than
fmin, or greater than or equal tofmax. The item associated
with layer 0, which contains a single start node, is stored at
the bottom of the beam stack, and the item associated with
the currently-expanding layer is stored at the top of the beam
stack. The first time the algorithm expands (a node in) a
layer, it initializes the layer’s corresponding beam-stack item
to be[0, U), whereU is the current upper bound.

When memory is full (or the size of a layer reaches a pre-
determined bound, i.e., the beam width), then beam-stack
searchinadmissiblyprunes nodes with the highestf -cost in
order to make room for new nodes. It prunes nodes in the
next layer, as our pseudocode will show. (It could be imple-
mented to prune nodes in other layers also.) When beam-
stack search prunes nodes in a layer, it changes thefmax of
the previous layer’s beam-stack item to the lowestf -cost of
the nodes that have just been pruned. This ensures that the
search algorithm will not generate any successor node with
an f -cost greater than or equal to the lowestf -cost of the
just-pruned nodes, before backtracking to this layer.

Beam-stack search backtracks once it reaches a layer for
which all successor nodes have anf -cost greater than the up-

per boundU , which we call anempty layer. (Note that this
generalizes the condition under which depth-first branch-
and-bound search backtracks, since it backtracks as soon as
all successors of the node on the top of the stack have anf -
cost greater than the upper bound.) When beam-stack search
backtracks, it removes from the top of the beam stack con-
secutive items with anfmax greater than or equal toU , the
upper bound. Note that the layer associated with the item left
on the top of the beam stack after beam-stack search back-
tracks corresponds to the deepest layer that contains some
node(s) with one or more inadmissibly pruned successors.

Every time beam-stack search backtracks to a layer, it
forces the search beam to admit a different set of successor
nodes by systematically shifting the range of[fmin, fmax)
stored in the beam-stack item associated with the layer. That
is, the algorithm uses the currentfmax as the newfmin, and
the upper boundU as the newfmax when it backtracks to
a layer. The search is continued by re-expanding all nodes
in this layer. Note that this requires re-expanding the same
nodes that were expanded the last time this layer was visited,
in order to generate successor nodes that may have been in-
admissibly pruned in the previous visit.

A layer is said to bebacktracking-completeif and only
if the fmax of its beam-stack item is greater than or equal
to the upper boundU after all nodes in the layer have been
expanded. This indicates that no successor node with anf -
cost greater than or equal tofmin but less thanU has been
pruned since the last time the algorithm backtracked to that
layer. Therefore, all successor nodes with anf -cost within
range[0, U) must have been generated for the layer.

Beam-stack search does not stop as soon as it finds a so-
lution, but continues to search for improved solutions. It
terminates when the beam stack is empty, which means that
all layers are backtracking-complete. It is easily proved that
the best solution found must be optimal. Thus beam-stack
search is an anytime algorithm that finds an initial solution
relatively quickly, and continues to search for improved so-
lutions until convergence to an optimal solution. (Note that
each time beam-stack search finds an improved solution, it
updates its upper bound.)

So far we have assumed that successor nodes all have dif-
ferent f -costs, which allows use of theirf -costs to deter-
mine the order in which to prune nodes when memory is full.
An important advantage of ordering nodes byf -cost is that
beam-stack search explores nodes with the leastf -cost first,
which means it explores the most promising nodes first. But
if some nodes have the samef -cost, a tie-breaking rule is
needed to impose a total ordering on nodes. There are many
possibilities. Beam-stack search can break ties based on the
state encoding of a node, which is guaranteed to be unique.
Or domain-specific information can be used. For multiple
sequence alignment, a total ordering can be based on the
coordinate of a node in ann-dimensional hypercube (Ho-
hwald, Thayer, & Korf 2003), wheren is the number of
sequences being aligned. For STRIPS planning problems,
our implementation of beam-stack search uses the admissi-
ble max-pair heuristic(Haslum & Geffner 2000) as thef -
cost, and theadditive heuristic(Bonet & Geffner 2001) to
break ties. Note that beam-stack search does not require all

ties to be broken. It allows some unbroken ties, as long as
the beam width is greater than the number of ties in a layer.

It is interesting to note that beam-stack search includes
both breadth-first branch-and-bound search and depth-first
branch-and-bound search as special cases. When the beam
width is greater than or equal to the size of the largest layer,
beam-stack search is equivalent to breadth-first branch-and-
bound search, and no backtracking occurs. When the beam
width is one, beam-stack search is equivalent to depth-first
search branch-and-bound search. In all other cases, it em-
ploys a hybrid search strategy that combines breadth-first
and depth-first branch-and-bound search and offers a flex-
ible tradeoff between available memory and the time over-
head of backtracking. It is also interesting to note that the
first phase of beam-stack search, before backtracking begins,
is equivalent to traditional beam search, and often finds an
initial solution very quickly. From that point on, beam-stack
search is an anytime algorithm that finds a sequence of im-
proved solutions before converging to optimality.

Theorem 1 Beam-stack search is guaranteed to find an op-
timal solution if one exists.

Proof: First we show that beam-stack search always termi-
nates. To show this, we make the following two assump-
tions; each operator costs at leastδ, which is a positive con-
stant, and the number of applicable operators at any state is
finite. Let U be the upper bound on the cost of an optimal
solution. Because each operator costs at leastδ, the maxi-
mum length of a path is at mostdU

δ e, which also bounds the
maximum depth of the beam stack.

Let w be the beam width and letb be the maximum num-
ber of applicable operators at any state. Every time beam-
stack search backtracks to a layer, it generates a new set of
successor nodes that have been inadmissibly pruned and in-
serts no more thanw of them into the Open list for the next
layer. Thus, in order to fully generate all successors of a
layer, the algorithm backtracks to the layer at mostb times.
Since the maximum depth of the beam stack is bounded by
dU

δ e and in the worst case all layers (except for the deepest
layer) have some inadmissibly pruned successors, it follows
that the maximum number of backtrackings in beam-stack
search is bounded byO(bd

U
δ e), which is finite. The algo-

rithm is guaranteed to terminate after this many backtrack-
ings, because the beam stack must be empty by then.

Next we show that beam-stack search always terminates
with an optimal solution. Recall that beam-stack search sys-
tematically enumerates all successors of a layer by shifting
the range off -costs of nodes that are admitted in the next
layer. Only the deepest, consecutive backtracking-complete
layers are removed from the top of the beam stack. This
ensures that no path will be ignored forever in beam-stack
search, unless it contains

1. a node with anf -cost greater than or equal toU , or

2. a node to which a lower-cost path has already been found.

Because in either case, the path is sub-optimal and can be
safely pruned without affecting the optimality of the solution
found, it follows that by the time beam-stack search finishes

enumerating all (admissible) paths, as indicated by an empty
beam stack, it must have found an optimal solution.2

Memory efficiency
The memory complexity of beam-stack search, like that of
beam search, isdw, whered is the depth of the search and
w is the beam width. For any fixedw, this is linear memory
complexity. But the deeper the search, the smaller the beam
width w must be, in order for the stored nodes in all layers
to fit in a fixed amount of available memory.

Zhou and Hansen (2004) describe an implementation of
breadth-first branch-and-bound search that uses divide-and-
conquer solution reconstruction to reduce memory require-
ments, and a related implementation of beam search, called
divide-and-conquer beam search, that achieves memory re-
duction in a similar way. The memory complexity of divide-
and-conquer beam search is4w, which is independent of the
depth of the search. This allows much larger beam widths,
and, experimental results show, much stronger performance.

We begin this section with a brief review of divide-and-
conquer beam search. Then we describe how the same
divide-and-conquer technique can be used to improve the
memory efficiency of beam-stack search. Because this al-
lows much wider beam widths, it significantly improves the
performance of beam-stack search and reduces the amount
of expensive backtracking. We also describe how to use ex-
ternal memory to improve the time efficiency of divide-and-
conquer beam-stack search.

Divide-and-conquer beam search
Divide-and-conquer solution reconstruction is a technique
for reducing the memory requirements of best-first (or
breadth-first) graph search without incurring (significant)
node re-expansion overhead. Introduced to the heuristic
search community by Korf (1999), several variations have
since been developed (Korf & Zhang 2000; Zhou & Hansen
2003a; 2003b; 2004). The strategy is based on the recog-
nition that it is not necessary to store all explored nodes in
memory in order to perform duplicate detection, that is, in
order to detect when any newly-generated node is a dupli-
cate of an already-explored node. Often, it is only neces-
sary to store nodes that are on or near the search frontier.
This allows nodes in the search interior to be removed from
memory. But since removing interior search nodes from
memory prevents recovery of the solution path by the tradi-
tional traceback methodof tracing pointers backwards from
the goal node to the start node, search algorithms that use
this memory-saving technique rely on a divide-and-conquer
technique of solution recovery. Each node stores informa-
tion about an intermediate node along the best path from
the start node. Once the search problem is solved, informa-
tion about this intermediate node is used to divide the search
problem into two subproblems: the problem of finding an
optimal path from the start node to the intermediate node,
and the problem of finding an optimal path from the inter-
mediate node to the goal node. Each of these subproblems
is solved by the original search algorithm, in order to find
an intermediate node along their optimal paths. The process

continues recursively until primitive subproblems (in which
the optimal path consists of a single edge) are reached, and
all nodes on an optimal solution path for the original search
problem have been identified.

Algorithms that use this memory-saving technique must
address two key issues; how to perform duplicate detection,
and how to recover a solution path. Different algorithms
address these issues differently. Zhou and Hansen (2004)
describe a simple method of duplicate detection for algo-
rithms that use a breadth-first search strategy, calledlayered
duplicate detection. Because a breadth-first search graph di-
vides into layers, one for each depth, and all the nodes in
one layer are expanded before considering nodes in the next
layer, they show that storing only the previous layer, the
currently-expanding layer, and the next layer is sufficient to
prevent re-generation of closed nodes in undirected graphs.
In directed graphs, the same technique guarantees that the
number of times a node can be re-generated is at most linear
in the depth of an optimal path.

To allow divide-and-conquer solution reconstruction,
Zhou and Hansen (2004) describe a technique in which each
node (past the midpoint) stores a pointer to an intermediate
node, called arelay node, that is retained in memory. (Nodes
that come before the midpoint, store a pointer to the start
node.) For simplicity, all relay nodes are stored in the same
layer, which is called therelay layerof the search graph. It
could be the middle layer of the search graph, although mak-
ing it the3/4 layer is usually more efficient, since that layer
is usually smaller. As a result, divide-and-conquer beam
search stores four layers; the currently-expanding layer, its
successor layer, its previous layer, and the relay layer.

Although BFBnB can use the technique of divide-and-
conquer solution reconstruction to significantly reduce its
memory requirements, it can still run out of memory if the
number of nodes in any layer becomes too large. If the
largest layer (or adjacent layers) in a breadth-first search
graph does not fit in memory, one way to handle this is to
use beam search. Instead of considering all nodes in a layer,
a beam-search variant of BFBnB search considers the most
promising nodes until memory is full (or reaches a predeter-
mined bound). At that point, the algorithm recovers memory
by pruning the least-promising nodes from memory. Then it
continues the search.

Aside from pruning the least-promising open nodes when
memory is full, this algorithm is identical to BFBnB with
layered duplicate detection. The difference from traditional
beam search is that divide-and-conquer solution reconstruc-
tion is used to reduce memory requirements. This brings
some significant advantages. First, it allows a beam-search
algorithm to use a much larger beam width in order to im-
prove performance. The memory complexity of divide-and-
conquer beam search is4w instead ofdw, that is, it is con-
stant instead of linear. Whereas conventional beam search
must use a smaller beam width for deeper searches, in order
to ensure that it does not run out of memory, divide-and-
conquer beam search can use the same beam width no mat-
ter how deep it searches. Second, once the beam-search al-
gorithm finds an initial, sub-optimal goal node, it performs
divide-and-conquer solution reconstruction. In recursively

solving subproblems of the original problem, it often im-
proves the quality of the solution, as follows: given two
nodes along a solution path that is sub-optimal, it often finds
a shorter path between the two nodes, improving the overall
solution.

Zhou and Hansen (2004) show that divide-and-conquer
beam search (DCBS) outperforms weighted A* in solving
STRIPS planning problems. But like beam search, DCBS is
incomplete – not only is it not guaranteed to find an optimal
solution, it is not guaranteed to find any solution at all.

Divide-and-conquer beam-stack search
In most respects, the divide-and-conquer technique can be
combined with beam-stack search in the same way as with
beam search, creating an algorithm that we calldivide-and-
conquer beam-stack search. But there are two complica-
tions to consider. The first results from the combination of
the divide-and-conquer technique with backtracking. Since
divide-and-conquer beam-stack search (DCBSS) only keeps
four layers of the search graph in memory, the layer to which
it backtracks may not be in memory. In this case, the algo-
rithm must recover the missing layer. It is possible to re-
cover any previously-explored layer by using the informa-
tion stored in the beam stack. To recover a missing layer,
the algorithm goes back to the start node and generates suc-
cessor nodes at each layer according to the layer’s beam-
stack item, until all nodes in the layer preceding the miss-
ing layer have been expanded – which recreates the missing
layer. Then the algorithm follows the backtracking proce-
dure described previously.

Another closely-related question is when to perform
divide-and-conquer solution reconstruction, and how to con-
tinue the search afterwards. If the algorithm wants to use all
available memory for solution reconstruction, all search in-
formation accumulated before solution reconstruction may
be lost. In this case, DCBSS can use a technique we callde-
layed solution reconstruction, in which the algorithm keeps
track of the best goal node expanded so far, but does not re-
construct a solution until it begins to backtrack. Divide-and-
conquer solution reconstruction is delayed until then since
backtracking will delete search layers anyway. In the mean-
time, the algorithm uses the improved upper bound to reduce
the number of node expansions before beginning to back-
track. Because nodes at the same layer often have similar
g-costs, the improved upper bound often makes it possible
to prune many or most nodes in the current or subsequent
layer. Thus the time between expanding a goal node and
beginning to backtrack is often short.

Note that delayed solution reconstruction is only neces-
sary for planning problems with non-unit action costs, in
which theg-cost of a node is not the same as its layer index
(i.e., depth). For problems with unit (or uniform) edge costs,
the algorithm can reconstruct a solution each time a goal
node is generated. For these problems, all nodes at the same
layer have the sameg-cost. So when a goal node is gener-
ated, it must be the node with the minimumg-cost in this
layer or any successor layer. Thus, the algorithm can recon-
struct a solution immediately after generating a goal node,
because it is impossible to find any better solution without

ProcedurepruneLayer (Integer̀)
1 Keep← the bestw nodes∈ Open[`]
2 Prune← {n | n∈ Open[`] ∧ n /∈ Keep}
3 beam-stack.top().fmax ← min {f (n) | n∈ Prune}
4 for eachn ∈ Prunedo /* inadmissible pruning */
5 Open[`] ← Open[`] \ {n}
6 deleten
7 end for

Function search (Nodestart, Nodegoal, RealU, Integerrelay)
8 Open[0]← {start}
9 Open[1]← ∅
10 Closed[0] ← ∅
11 best-goal← nil
12 ` ← 0 /* ` = index of layer */
13 while Open[]̀ 6= ∅ or Open[`+ 1] 6= ∅ do
14 while Open[`] 6= ∅ do
15 node← arg minn{ f (n) | n∈ Open[`]}
16 Open[]̀ ← Open[`] \ {node}
17 Closed[`] ← Closed[`] ∪ {node}
18 if nodeis goal then
19 U ← g(node)
20 best-goal← node
21 node.generateAdmittedSuccessors(beam-stack.top())
22 if layerSize(̀ + 1) > w then pruneLayer(̀ + 1)
23 end while
24 if 1 < ` ≤ relay or ` > relay + 1 then
25 for eachn ∈ Closed[`− 1] do /* delete previous layer */
26 Closed[`− 1] ← Closed[`− 1] \ {n}
27 deleten
28 end for
29 ` ← ` + 1 /* move on to next layer */
30 Open[` + 1] ← ∅
31 Closed[`] ← ∅
32 beam-stack.push([0, U)) /* new beam-stack item */
33 end while
34 if best-goal6= nil then /* delayed solution reconstruction */
35 return solutionReconstruction(best-goal)
36 else
37 return nil

Algorithm DCBSS(Nodestart, Nodegoal, RealU, Integerrelay)
38 beam-stack← ∅
39 beam-stack.push([0, U)) /* initialize beam stack */
40 π∗ ← nil /* initialize optimal solution path */
41 while beam-stack.top() 6= nil do
42 π ← search(start, goal, U, relay) /* π = solution path */
43 if π 6= nil then
44 π∗ ← π
45 U ← π.getCost()
46 while beam-stack.top().fmax ≥ U do
47 beam-stack.pop()
48 end while
49 if beam-stack.isEmpty()then return π∗

50 beam-stack.top().fmin ← beam-stack.top().fmax

51 beam-stack.top().fmax ← U
52 end while

Figure 1:Pseudocode for divide-and-conquer beam-stack search.
The Open and Closed lists are indexed by the layer of the breadth-
first search graph, and sorted byf -cost within each layer.

backtracking. Since we do not assume that problems have
unit edge costs in this paper, we use delayed solution re-
construction in the pseudocode in Figure 1. As mentioned
previously, a benefit of performing divide-and-conquer so-
lution reconstruction each time a new goal node is found
is that divide-and-conquer solution reconstruction often im-
proves the solution by finding better solutions to subprob-
lems, further improving the upper bound. Details of divide-
and-conquer solution reconstruction are not shown in the
pseudocode. For these details, see (Zhou & Hansen 2004).

Using external memory
Instead of discarding previous layers and regenerating them
as needed, we can create an external-memory version of
DCBSS that copies previously-explored layers to disk and
copies them back to internal memory as needed, when
DCBSS backtracks to a missing layer. This can reduce the
time overhead of the algorithm significantly. Note that if
DCBSS backtracks to a layer that is missing from internal
memory, both this layer and its immediate previous layer
must be copied from disk, since the previous layer is needed
for duplicate detection.

One issue to be careful about when using pointers and
relay nodes is that once a relay node is saved to disk, all
pointers to that relay node are no longer valid. The way
we implement this is that when we copy nodes to disk, we
write all state information about the relay node, instead of
its pointer. Later, when we copy layers from disk back into
internal memory, we copy the relay layer first. Once all relay
nodes are inserted in the hash table that contains nodes in
memory, we use the state information about the relay node
to index the hash table and extract the current pointer, when
copying nodes in other layers into internal memory. (Note
that only nodes that come after the relay layer need to worry
about this. Nodes that come before have astaticpointer to
the start node.)

Beam-stack iterative-deepening A*
Recall that beam-stack search uses an upper bound on the
cost of an optimal solution to prune the search space. So far,
we have assumed the upper bound corresponds to the cost
of an actual solution. But if it is difficult to find a good ini-
tial upper bound, it is possible to define a version of beam-
stack search that does not need a previously-computed up-
per bound. Instead, it uses an iterative-deepening strategy to
avoid expanding nodes that have anf -cost greater than a hy-
pothetical upper bound. The algorithm first runs beam-stack
search using thef -cost of the start node as an upper bound.
If no solution is found, it increases the upper bound by one
(or to the lowestf -cost of any unexpanded nodes from the
last iteration) and repeats the search. This continues until
a solution is found. Because of the similarity of this algo-
rithm to depth-first iterative-deepening A* (DFIDA*) (Korf
1985), as well as to the more recent breadth-first iterative-
deepening A* (BFIDA*) (Zhou & Hansen 2004), we call it
beam-stack iterative-deepening A*(BSIDA*). In fact, it can
be viewed as a generalization of DFIDA* and BFIDA* that
includes each as a special case. BSIDA* with a beam width

of one corresponds to DFIDA*, and BSIDA* with an un-
limited beam width corresponds to BFIDA*. Intermediate
beam widths create a spectrum of algorithms that use a hy-
brid strategy that combines elements of breadth-first search
(expanding nodes on a layer-by-layer basis) and depth-first
search (stack-based backtracking).

Computational results
We tested the performance of divide-and-conquer beam-
stack search in solving problems from eight unit-cost plan-
ning domains from the Planning Competition that is hosted
by the ICAPS conference series (Long & Fox 2003). The
problems used in the competition provide a good test set for
comparing graph-search algorithms since they give rise to
a variety of search graphs with different kinds of structure,
and memory is a limiting factor in solving many of the prob-
lems. As an admissible heuristic function, we used themax-
pair heuristic(Haslum & Geffner 2000), and to break ties,
we used theadditive heuristic(Bonet & Geffner 2001). All
experiments were performed on a Pentium IV 3.2 GHz pro-
cesser with 1 GB of RAM and 512 KB of L2 cache.

Divide-and-conquer beam-stack search is able to find
provably optimal solutions for problem instances that cannot
be solved optimally by the best previous algorithm, divide-
and-conquer BFBnB (Zhou & Hansen 2004). For example,
an external-memory version of DCBSS proves that a 30-step
solution to an instance oflogistics-9is optimal after expand-
ing some 261 million nodes in 6739 CPU seconds, and it
proves that a 45-step solution to an instance ofElevator-14
is optimal after expanding some 984 million nodes in 55,243
CPU seconds. However, in the experiments reported in the
rest of this section, we consider the performance of DCBSS
in solving the most difficult problem instances that divide-
and-conquer BFBnB can also solve. This makes it easier to
analyze the tradeoff between memory and time that back-
tracking allows.

Memory-time tradeoff When available memory is ex-
hausted, beam-stack search relies on inadmissible pruning
and backtracking to continue the search without exceeding
the memory limit. But inadmissible pruning and backtrack-
ing lead to node re-expansions, for two reasons. When the
beam width is not large enough to store all nodes in a layer,
not all duplicate nodes are detected. And when the search
backtracks to a layer, nodes in that layer are re-expanded in
order to generate successors that were inadmissibly pruned
in the previous visit. The smaller the beam width, and the
more extensive backtracking, the more node re-expansions
there will be. Thus there is a tradeoff between available
memory and time overhead for node re-expansions.

Table 1 illustrates the memory-time tradeoff in eight dif-
ferent planning domains from the Planning Competition.
For each domain, the problem instance is among the largest
that can be solved optimally using one gigabyte of RAM by
breadth-first heuristic search (Zhou & Hansen 2004) (i.e.,
BFBnB with divide-and-conquer solution reconstruction).
Table 1 was created by running BFBnB to see how much
memory it uses, and then running divide-and-conquer beam-

No backtracking 75% Memory 50% Memory 25% Memory
Problem Len Stored Exp Stored Exp Stored Exp Stored Exp
logistics-6 25 96,505 301,173 72,379 734,170 48,253 1,608,139 24,127 12,789,413
blocks-14 38 79,649 258,098 59,737 478,797 39,825 593,377 19,913 991,460
gripper-6 41 580,009 2,124,172 435,007 - 290,005 - 145,003 -
satellite-6 20 1,592,097 2,644,616 1,194,073 3,928,235 796,049 10,179,757 398,025 43,281,817
elevator-11 37 977,554 3,975,419 733,166 223,579,495 488,777 - 244,389 -
depots-3 27 3,185,570 5,233,623 2,389,178 9,255,319 1,592,785 12,343,501 796,393 29,922,080
driverlog-10 17 2,255,515 4,071,392 1,691,636 6,704,007 1,127,758 8,995,166 563,879 22,005,534
freecell-4 27 3,130,328 9,641,354 2,347,746 27,530,551 1,565,164 62,985,231 782,582 261,093,196

Table 1: Memory-time tradeoff for divide-and-conquer beam-stack search (using an upper bound computed by divide-and-conquer beam
search) on STRIPS planning problems. Columns show optimal solution length (Len); peak number of nodes stored (Stored); and number of
node expansions (Exp). The− symbol indicates that divide-and-conquer beam-stack search could not solve the problem after 24 hours of
CPU time under the given memory constraint.

No external memory External memory
Problem Len Stored in RAM Exp Secs Stored on disk Exp Secs
logistics-6 25 48,253 1,608,139 16.4 127,451 770,187 13.8
blocks-14 38 39,825 593,377 17.3 100,528 363,199 17.4
gripper-6 41 290,005 - - 1,365,890 775,639,416 6,907.7
satellite-6 20 796,049 10,179,757 448.9 1,333,076 5,210,030 225.9
elevator-11 37 488,777 - - 2,213,275 129,645,271 3,873.0
depots-3 27 1,592,785 12,343,501 232.7 2,256,128 7,460,470 150.4
driverlog-10 17 1,127,758 8,995,166 306.9 1,922,041 6,635,998 233.3
freecell-4 27 1,565,164 62,985,231 4,767.1 3,640,367 30,426,421 2,312.9

Table 2: Comparison of divide-and-conquer beam-stack search with and without using external memory, and under the same internal-
memory constraints, on STRIPS planning problems. Columns show optimal solution length (Len); peak number of nodes stored in internal
memory (Stored in RAM); number of node expansions (Exp); and running time in CPU seconds (Secs). For the external-memory algorithm,
the peak number of nodes stored on disk is shown in the column labelled “Stored on disk”. The− symbol indicates that the internal-memory
algorithm could not solve the problem after 24 hours of CPU time under a given memory constraint.

stack search with artificial limits on available memory equal
to 3/4 of the memory used by BFBnB, half of the memory
used by BFBnB, and1/4 of the memory used by BFBnB.
As smaller limits on available memory force the beam width
to be smaller, Table 1 shows that the number of node re-
expansions (and therefore the time overhead) increases. Al-
though the tradeoff can be seen in every domain, the sharp-
ness of the tradeoff is domain-dependent, since it depends
on the number of duplicate paths in the search space of the
domain. The Gripper domain has the most duplicate paths,
and cannot be solved optimally in24 hours by divide-and-
conquer beam-stack search within these artificial memory
constraints – unless external memory is used to reduce the
time overhead of backtracking, as described next.

External-memory algorithm Although most of the time
overhead of divide-and-conquer beam-stack search is due to
node re-expansions, some of it results from combining back-
tracking with the divide-and-conquer memory-saving tech-
nique. When layers are removed from memory as part of
the divide-and-conquer algorithm, they must be re-generated
when the algorithm backtracks to them. To reduce this over-
head, we suggested that layers can be copied to disk when
they are removed from internal memory, and then copied
back from disk to internal memory when they are needed
again. Table 2 shows how much this can reduce the time
overhead of divide-and-conquer beam-stack search. For

each of the problem instances in the table, we first show re-
sults for divide-and-conquer beam-stack search using half
the memory it would need to converge to optimality without
backtracking. (These results are the same as those reported
in Table 1.) Restricting memory in this way forces the algo-
rithm to backtrack. Then we show results for the external-
memory version of divide-and-conquer beam-stack search,
given the same limit on internal memory. (The column la-
belled “Stored in RAM” shows the limit on the number of
nodes stored in internal memory.) The results show that us-
ing disk can significantly reduce the time overhead of the
algorithm. For example, whereasgripper-6andelevator-11
could previously not be solved optimally in24 hours of CPU
time, now they are solved optimally in less than2 hours and
less than65 minutes, respectively.

Iterative-deepening algorithm It is well-known that
the performance of depth-first iterative-deepening A*
(DFIDA*) can be improved by using extra memory for
a transposition table (Sen & Bagchi 1989; Reinefeld &
Marsland 1994). The transposition table is used to de-
tect and eliminate duplicate nodes, which helps reduce the
number of node re-expansions. We compared beam-stack
iterative-deepening A* to Haslum’s (2000) implementation
of DFIDA* using a transposition table, to see which uses
the same amount of extra memory more effectively. (The
transposition table implemented by Haslum is similar to the

Problem Len Stored DFIDA* BSIDA*
logistics-4 20 1,662 Exp 55,112,968 16,808

Secs 568.0 0.2
blocks-12 34 3,683 Exp 207,684 33,256

Secs 46.0 1.0
gripper-2 17 985 Exp 7,992,970 10,329

Secs 119.4 0.1
satellite-3 11 520 Exp 24,026 6,144

Secs 0.5 0.2
driverlog-7 13 31,332 Exp 4,945,377 454,559

Secs 417.3 11.8
depots-2 15 1,532 Exp 332,336 8,060

Secs 35.4 0.2

Table 3: Comparison of DFIDA* (using transposition table) and
BSIDA* under the same memory constraints on STRIPS planning
problems. The table shows optimal solution length (Len); peak
number of nodes stored by DFIDA*, which is the memory limit for
BSIDA* (Stored); number of node expansions (Exp); and running
time in CPU seconds (Secs).

one used by MREC (Sen & Bagchi 1989).) To obtain the
results in Table 3, we first ran DFIDA* with a transposi-
tion table, and recorded the number of nodes stored in the
transposition table. Then we ran BSIDA* with an artificial
memory constraint equal to the number of nodes stored in
the transposition table of DFIDA*. (This is actually a little
less memory than used by DFIDA*, since it does not include
the stack memory used by DFIDA*.)

Table 3 shows that BSIDA* consistently outperforms
Haslum’s implementation of DFIDA* that uses a transpo-
sition table, and often dramatically outperforms it – without
using more memory. Recall that BSIDA* keeps only four
layers of the search graph in memory. Disregarding the relay
layer, the other three layers “move” together with the search
frontier, and keep the most recent part of the explored state
space in memory for duplicate elimination. This seems re-
sponsible for the improved performance since it uses avail-
able memory more effectively for duplicate elimination. The
problems shown in Table 3 are the largest that DFIDA* can
solve in each domain. (They are smaller than problems that
can be solved by beam-stack search.)

Anytime performance Beam-stack search and divide-
and-conquer beam-stack search are anytime algorithms that
find a solution relatively quickly (since their initial phase is
beam search), and then continue to improve the solution un-
til convergence to optimality. A solution can be improved in
two ways. One is to find a solution that has lower cost. The
other is to improve the error bound, which is the difference
between the cost of the best solution found so far (an upper
bound) and the leastf -cost of any generated but unexpanded
node (which is a lower bound on optimal solution cost).

Figure 2 shows how these upper and lower bounds con-
verge in solving theblocks-14problem. For this problem,
an optimal solution is usually found quickly, but it takes a
great deal of additional search effort to prove the solution
is optimal. As reported in the paper that introduced divide-
and-conquer beam search (Zhou & Hansen 2004), it is very

Figure 2: Convergence of bounds for divide-and-conquer beam-
stack search in solvingblocks-14. The upper bound is the cost of
the best solution found so far; an optimal solution is found quickly
for this problem. The lower bound is the leastf -cost of any gen-
erated but unexpanded node; it increases in a few discrete steps
because this is a unit edge cost problem with many ties.

effective for domain-independent STRIPS planning. In par-
ticular, even if the first goal node found by beam search
is not optimal, the process of divide-and-conquer solution
reconstruction usually improves it by solving subproblems
optimally, and often results in an optimal solution. For the
problem in Figure 2, divide-and-conquer beam search finds a
solution after expanding less than 3% of the nodes expanded
by beam-stack search. Figure 2 shows how the lower bound
(and thus the error bound) continues to improve after the first
solution is found, until convergence.

Conclusion

We have described an approach to integrating systematic
backtracking with beam search, and showed how to com-
bine this approach with a memory-saving technique that
uses divide-and-conquer solution reconstruction. Although
beam-stack search itself is not difficult to implement, divide-
and-conquer beam-stack search presents more of a chal-
lenge. But when implemented, it provides a very effective
search algorithm with many attractive properties.

We demonstrated the advantages of this approach in solv-
ing domain-independent STRIPS planning problems. It
finds optimal solutions for planning problems that cannot
be solved optimally by any other method (within reasonable
time limits). It also offers a flexible tradeoff between mem-
ory and time, and creates an anytime algorithm that finds a
good solution relatively quickly, like beam search, and then
continues to search for improved solutions until convergence
to an optimal solution.

Acknowledgements

We thank the anonymous reviewers for helpful comments.
This work was supported in part by NSF grant IIS-9984952
and NASA grant NAG-2-1463.

References
Bisiani, R. 1987. Beam search. In Shapiro, S., ed.,En-
cyclopedia of Articial Intelligence. John Wiley and Sons.
56–58.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search.Artificial Intelligence129(1):5–33.
Ginsberg, M., and Harvey, W. 1992. Iterative broadening.
Artificial Intelligence55:367–383.
Habenicht, I., and Monch, L. 2002. A finite-capacity
beam-search-algorithm for production scheduling in semi-
conductor manufacturing. InProceedings of the 2002 Win-
ter Simulation Conference, 1406–1413.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. InProceedings of the 5th Interna-
tional Conference on AI Planning and Scheduling, 140–
149.
Hohwald, H.; Thayer, I.; and Korf, R. 2003. Compar-
ing best-first search and dynamic programming for opti-
mal multiple sequence alignment. InProceedings of the
18th International Joint Conference on Artificial Intelli-
gence (IJCAI-2003), 1239–1245.
Huang, X.; Acero, A.; and Hon, H. 2001.Spoken language
processing: A guide to theory, algorithm, and system devel-
opment. Prentice Hall.
Korf, R. 1985. Depth-first iterative deepening: An optimal
admissible tree search.Artificial Intelligence27:97–109.
Korf, R. 1999. Divide-and-conquer bidirectional search:
First results. InProc. of the 16th International Joint Con-
ference on Artificial Intelligence (IJCAI-99), 1184–1189.
Korf, R., and Zhang, W. 2000. Divide-and-conquer frontier
search applied to optimal sequence alignment. InProceed-
ings of the 17th National Conference on Artificial Intelli-
gence (AAAI-00), 910–916.
Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis.Journal of Artifi-
cial Intelligence Research20:1–59.
Provost, F. 1993. Iterative weakening: Optimal and near-
optimal policies for the selection of search bias. InPro-
ceedings of the 11th National Conference on Artificial In-
telligence (AAAI-93), 769–775.
Reinefeld, A., and Marsland, T. 1994. Enhanced iterative-
deepening search.IEEE Trans. on Pattern Analysis and
Machine Intelligence16:701–710.
Rich, E., and Knight, K. 1991.Artificial Intelligence.
McGraw-Hill.
Sen, A., and Bagchi, A. 1989. Fast recursive formulations
for BFS that allow controlled use of memory. InProceed-
ings of the 11th International Joint Conference on Artificial
Intelligence (IJCAI-89), 297–302.
Zhang, W. 1998. Complete anytime beam search. InPro-
ceedings of the 15th National Conference on Artificial In-
telligence (AAAI-98), 425–430.
Zhou, R., and Hansen, E. 2003a. Sparse-memory graph
search. InProceedings of the 18th International Joint Con-
ference on Artificial Intelligence (IJCAI-03), 1259–1266.

Zhou, R., and Hansen, E. 2003b. Sweep A*: Space-
efficient heuristic search in partially ordered graphs. In
Proceedings of the 15th IEEE International Conf. on Tools
with Artificial Intelligence, 427–434.
Zhou, R., and Hansen, E. 2004. Breadth-first heuristic
search. InProceedings of the 14th International Confer-
ence on Automated Planning and Scheduling, 92–100.

