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Abstract

With traditional beamforming methods, ultrasound B-mode images contain speckle noise caused 

by the random interference of subresolution scatterers. In this paper, we present a framework for 

using neural networks to beamform ultrasound channel signals into speckle-reduced B-mode 

images. We introduce log-domain normalization-independent loss functions that are appropriate 

for ultrasound imaging. A fully convolutional neural network was trained with simulated channel 

signals that were co-registered spatially to ground truth maps of echogenicity. Networks were 

designed to accept 16 beamformed subaperture radiofrequency signals. Training performance was 

compared as a function of training objective, network depth, and network width. The networks 

were then evaluated on simulation, phantom, and in vivo data and compared against existing 

speckle reduction techniques. The most effective configuration was found to be the deepest (16 

layer) and widest (32 filter) networks, trained to minimize a normalization-independent mixture of 

the ℓ1 and multi-scale structural similarity losses. The neural network significantly outperformed 

delay-and-sum and receive-only spatial compounding in speckle reduction while preserving 

resolution and exhibited improved detail preservation over a non-local means methods. This work 

demonstrates that ultrasound B-mode image reconstruction using machine-learned neural 

networks is feasible and establishes that networks trained solely in silico can be generalized to 

real-world imaging in vivo to produce images with significantly reduced speckle.

I. Introduction

In brightness mode (B-mode) ultrasound imaging, the echoes from an ultrasonic pulse are 

used to reconstruct images according to their magnitude (i.e. brightness). Thus, B-mode 

images are a map of the echogenicity of the insonified medium. The echo magnitudes are 

measured using an array of sensors via a process referred to as beamforming. The classical 

beamformer is delay-and-sum (DAS), which forms a point-wise estimate of echogenicity 
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based on the magnitude of the summed array signals. However, in medical ultrasound 

imaging, echoes are generated by scattering sources that are smaller than the resolution of 

the imaging system. These echoes interfere stochastically, producing a strong multiplicative 

noise in the measured DAS output referred to as speckle. Speckle manifests as a temporally 

stationary grainy texture in regions with homogeneous echogenicity. Speckle is commonly 

used to infer the scattering properties of tissue [1] and can be used for tracking blood flow 

and tissue displacements [2]. However, for the task of echogenicity estimation, speckle 

reduces the perceived resolution of the target [3] and is largely treated as an undesirable 

noise that degrades diagnostic B-mode imaging [4], [5].

Speckle reduction can be accomplished using beamforming methods that operate on the 

radiofrequency signals received by an array of transducer elements. Common beamforming 

techniques for speckle reduction include spatial and frequency compounding, in which the 

aperture or the bandwidth are subdivided, respectively. These subdivisions are used 

independently to reconstruct images that are subsequently averaged. The overall speckle is 

reduced because the speckle patterns observed by each subdivision are decorrelated from 

one another [6], [7]. However, beamforming has historically been viewed as a method of 

suppressing off-axis noises or improving resolution, rather than a means for speckle 

reduction. Examples of other beamformers include minimum variance beamforming [8], in 

which the channels are weighted to suppress off-axis noises, as well as a newly proposed 

machine learning method in which deep fully connected networks are used to filter signals 

arriving from outside of the main lobe [9]. In these cases, beamforming is used to preserve 

speckle, rather than to remove it. We propose that, in addition to suppressing noise from 

outside the intended focus, an ideal beamformer for B-mode imaging should be an estimate 

of the average echogenicity of the scatterers. In particular, the backscatter from a 

homogeneous region of tissue of constant echogenicity should produce a uniform response 

(as opposed to a speckle response) while preserving the structure and echogenicity of the 

medium.

Speckle reduction has been studied far more extensively in the context of post-processing 

filters, which are applied to images that have already been beamformed. Popular techniques 

include anisotropic diffusion [10], [11] and discrete wavelet transforms [12], [13]. A 

stochastic iterative technique to remove pixel outliers, called the squeeze box filter, has also 

been proposed [14]. More recently, non-local means methods have demonstrated excellent 

speckle reduction capabilities [15]–[17]. These techniques selectively smooth pixels 

originating from speckle while preserving other structures and details. However, a 

disadvantage to purely post-processing techniques is that they rely entirely on fully-formed 

images of demodulated and envelope detected data, and are thus unable to take advantage of 

channel and phase information that are irreversibly lost in the summation and image 

formation process, respectively.

Previous speckle-reduction methods were designed according to the underlying physics and 

statistics of speckle. By contrast, supervised learning with artificial neural networks has 

recently demonstrated extraordinary success in image recognition, segmentation, and 

denoising by utilizing a data-driven approach [18]. Supervised learning with neural networks 

is a class of machine learning techniques in which a cascade of transformations are applied 
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to an input in order to eventually produce a desired output. The parameters of the 

transformation are “learned” via a gradient descent algorithm designed to minimize the error 

between the output of the network and the known ground truth. Neural networks can be 

trained to beamform speckle-reduced B-mode images by being presented with many 

instances of channel data and corresponding ground truth echogenicity, and are especially 

attractive for ultrasound imaging because they can easily be deployed in real-time [18]. 

Unfortunately, ground truth echogenicity is virtually unavailable in vivo. Ground truth can 

be obtained in simulations, but it has not yet been demonstrated whether a network trained 

entirely in silico can generalize to real-world imaging conditions such as in vivo, where 

ultrasound signals face additional challenges via image degradation such as phase 

aberration, acoustical noise, and electronic noise.

In this work, we use simple linear simulations of ultrasound imaging [19], [20] in 

conjunction with deep convolutional neural networks to empirically learn a speckle-reducing 

beamformer. We demonstrate how neural networks can be trained to transform channel data 

into B-mode images, and analyze performance as a function of network architecture and 

training objectives. Deep networks are trained using simulated ultrasound channel data that 

are co-registered with a reference ground truth map of echogenicity. The imaging 

performance of the trained networks are then compared against existing despeckling 

techniques in simulations, a calibrated phantom, and in vivo human liver and kidney.

II. Ultrasound Image Reconstruction

A. Problem Formulation

Consider a vectorized grid of P × Q field points (also referred to as “pixels”) with true 

echogenicities y ∈ ℝPQ. Let X ∈ ℂPQ × N denote the demodulated analytic signals captured 

by the N elements of a transducer array after applying the appropriate time delays to focus 

the array at each of the field points. In B-mode image reconstruction, y is estimated from X 
using some function f (X) = y. For instance, the traditional delay-and-sum (DAS) technique 

estimates y as the absolute value of the channel sum:

f DAS(X) = X1 , (1)

where 1 is an N-vector of ones and | | denotes an element-wise absolute value. Let us denote 

a beamforming neural network as fNN(X; θ), where θ are the parameters of the network. The 

goal of B-mode image reconstruction with neural networks is to find the optimal parameters 

θ⋆ that minimize the error between an estimated image y and the true image y, as quantified 

by some loss function ℒ(y, y):

θ
⋆ =  argmin 

θ
ℒ y, f NN(X; θ) . (2)

The minimization problem is typically solved using some form of gradient descent, an 

approach in which each of the parameters is iteratively updated to reduce the error:
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θ j: = θ j − α
∂

∂θ j

ℒ y, f NN(X; θ) , (3)

where α denotes the step size, also called the “learning rate”.

B. Standard Loss Functions

The choice of loss function significantly affects the training process. The ℓ1 and ℓ2 norms are 

often used to quantify the reconstruction error [21]:

ℒℓ1
(y, y) =

1
PQ

∑
p = 1

PQ

yp − y p (4)

ℒℓ2
(y, y) =

1
PQ

∑
p = 1

PQ

yp − y p

2

1
2
, (5)

where the p-th pixels of y and y are respectively denoted as yp and y
p
. Alternative metrics 

such as structural similarity (SSIM) and multi-scale structural similarity (MS-SSIM) have 

also been proposed [21]–[23]. The SSIM between pixels yp and y
p
 is computed as

SSIM yp, y p =

2μy
p
μ

y
p

+ C1

μy
p

2 + μ
y

p

2 + C1

2σ
y

p
y

p
+ C2

σy
p

2 + σ
y

p

2 + C2

, (6)

where C1 and C2 are empirically selected scalar parameters to enhance numerical stability, 

μ
y

p
 and μ

y
p
 are the mean values of a neighborhood around yp and y

p
, respectively, σ

y
p

2  and 

σ
y

p

2  are their variances, and σ
y

p
y

p
 is their covariance. The means, variances, and covariance 

are obtained using Gaussian filters [22], [23]. SSIM values range from −1 to 1, where 1 

indicates perfect correspondence between the images. Therefore, a loss function can be 

defined as

ℒSSIM(y, y) = 1 −
1

PQ
∑

p = 1

PQ

 SSIM yp, y p . (7)

The ℒMS‐SSIM metric extends SSIM by combining ℒSSIM measurements using several 

neighborhood sizes in order to compare the images at multiple resolution scales. The 

different scales can be achieved either by downsampling the image [22] or by changing the 

standard deviation parameter of the Gaussian filter [21]. In this work, we adopt the latter 

approach.
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C. Loss Functions for Ultrasound B-mode Imaging

In B-mode imaging, it is important to accurately reconstruct hypoechoic targets such as 

blood vessels and heart chambers, whose signals can be more than 40 dB (100 times) weaker 

than the background tissue. B-mode images are typically compressed prior to being viewed 

in order to visualize the wide dynamic range. However, the large discrepancy in signal 

strengths may cause standard loss functions to over-emphasize errors in strongly echogenic 

targets and to under-emphasize errors in hypoechoic targets. Therefore, we propose to 

compute losses using logarithmically compressed images, i.e., ℒ(log y, log y). This allows the 

errors to be measured in the same domain that the images are viewed in.

Another challenge is that B-mode images and their ground truth echogenicity maps are both 

defined in arbitrary units, making it unclear how to compare the two images. One approach 

is to normalize each respective image, (e.g., by their maximum values). Unfortunately, the 

standard loss functions are highly sensitive to the normalization, whereas an ideal loss 

function for images with arbitrary units should be independent of their normalization.

We propose a new loss function that is intrinsically independent of normalization and is 

suitable for comparing two images with arbitrary units. Let ℒ⋆ define the minimum 

achievable loss ℒ when y is scaled by some positive weight parameter w:

ℒ⋆(log y, log y) = min
w > 0

ℒ(log y, log wy) . (8)

Closed form expressions for the ℒℓ1

⋆ , ℒℓ2

⋆ , and ℒMS‐SSIM
⋆  loss functions are provided in the 

Appendix. These loss functions apply precise normalization to each image such that the 

ℒℓ1
, ℒℓ2

, and ℒMS‐SSIM losses are minimized, respectively, allowing the images to be 

compared according to their relative contrasts and structures rather than their absolute 

magnitudes.

III. Methods

A. Field II Simulation Training Dataset

The Field II Pro simulation package [19], [20], [24] was used to simulate ultrasound channel 

data from 128 elements of a Verasonics L12–3v linear array transducer. A full synthetic 

aperture data set was simulated using single-element transmits at 8 MHz with 60% 

bandwidth. Speckle was simulated with random uniformly distributed scatterers in a 10 

mm×10 mm×3 mm phantom centered at the elevation focus of 2 cm. The scatterer density 

was selected to be 60 scatterers per resolution cell, and the scattering amplitudes were 

normally distributed and weighted according to ground truth echogenicity maps.

To provide the network with a wide range of features and contrasts, real photographic 

images were used as the ground truth echogenicity. The images were taken from publicly 

available image databases: 512 images from a Places2 [25] test set and 512 images from an 

ImageNet [26] validation set were selected for a total of 1024 images. These images were 

used solely for their patterns and contrasts; their corresponding classification labels were not 
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used. The images were converted to grayscale and cropped into a 224 pixel ×224 pixel 

square patch. The patch was then mapped onto the lateral and axial extent of the phantom 

(10 mm×10 mm) to serve as the ground truth echogenicity map, and the pixel intensities 

were used to weight the scattering amplitudes of the simulated scatterers according to their 

positions via bilinear interpolation. This approach was chosen as a convenient alternative to 

custom-designing a wide variety of ground truth echogenicity maps.

For each of the 1024 images, an independent set of random scatterers was weighted and used 

in a full synthetic aperture simulation. For each simulation, the received radiofrequency (RF) 

channel signals were demodulated and focused into the same 224 pixel×224 pixel grid as the 

ground truth echogenicity map, with dynamic focusing applied on both transmit and receive. 

The dimensions of the resulting data cube were 224 pixels×224 pixels×128 channels.

The set of 1024 simulations was then resampled to generate an augmented training dataset 

comprised of 5000 co-registered pairs of focused channel data and reference ground-truth 

echogenicity. The resampled data/reference pairs were selected to have a smaller patch size 

of 64 pixels×64 pixels and each was drawn randomly from one of the 1024 simulations. 

While the number of pixels was held constant, the lateral and axial positions and sizes of the 

patches were allowed to vary independently of one another, resulting in rectangular patches. 

The resulting 64×64 patches were then treated as though they were square patches with 

stretched speckle patterns, enabling the emulation of a wide variety of imaging 

configurations from a limited number of simulations. Each channel dataset was corrupted by 

a random amount of white thermal noise and band-limited acoustical reverberation noise, 

specified in decibels (dB) relative to the RMS of the channel signals. Each attribute was 

selected randomly from a uniform distribution over the range of values listed in Table I.

B. Image Reconstruction Quality Metrics

The quality of image reconstruction was measured using several metrics. The ℒℓ1

⋆ , ℒℓ2

⋆ , and 

ℒMS‐SSIM
⋆  errors were computed between the reconstructed log-image and the ground truth 

echogenicity log-image when available. The ℒℓ2

⋆  and ℒℓ1

⋆  errors were obtained in units of 

dB, whereas the ℒMS‐SSIM
⋆  error was bounded from 0 to 2, with 0 being achieved when 

y = y. The reconstruction quality was also measured using the contrast and contrast-to-noise 

ratio (CNR) of cyst targets and using the signal-to-noise ratio (SNR) of the tissue 

background:

Contrast = 20 log10

μt

μb

(9)

CNR =
μt − μb

σt
2 + σb

2 (10)
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SNR =
μb

σb

, (11)

where μt and μb denote the means and σt and σb the standard deviations of the target and 

background, respectively. Contrast, CNR, and SNR were computed on the linear scale 

images, prior to log-compression. The CNR essentially combines the contrast and SNR 

metrics into a single measure of lesion detectability [27]. In the simulations and the 

phantom, the cyst contrasts and CNRs were measured in concentric regions of interest 

(ROIs). The target ROI was selected as a circle with a radius of 0.8 times the cyst radius, and 

the background ROI as a ring with inner and outer radii of 1.1 and 1.5 times the cyst radius, 

respectively. The background SNR was measured in a homogeneous region of speckle. For 

DAS beamforming, the measured pixel values in a region of homogeneous echogenicity are 

classically expected to follow the Rayleigh distribution, resulting in an SNR of 1.91.

Image resolution was measured using a methodology similar to Dahl et al. [28]. First, the 

system response to a transition between two regions of different echogenicities was 

measured, referred to as the edge spread function (ESF). Field II Pro was used to simulate a 

target wherein half the azimuthal field of view was a speckle region of constant echogenicity 

and the other half was an anechoic region. The resulting images were averaged axially and 

over 16 independent scatterer realizations to reduce noise. Next, the ESF was differentiated 

in the azimuthal dimension to produce a line spread function (LSF). Finally, the FWHM of 

the LSF was measured to obtain the image resolution.

C. Deep Convolutional Neural Networks

Convolutional neural networks were used to estimate echogenicity from the focused and 

demodulated channel signals. Analysis was restricted to a maximum of 16 channels per pixel 

due to computational and memory constraints. To achieve this, the 128 element array was 

subdivided into 16 equal subapertures of 8 elements each, and the signals from each 

subaperture were beamformed into a single signal, yielding a total of 16 complex signals per 

pixel. The real and imaginary components were then concatenated in the channel dimension 

prior to being input into the neural network, resulting in 32 distinct channels per pixel, i.e., 

for a pixel grid of size P × Q, the resulting data was P × Q × 32.

The network architecture is illustrated in Fig. 1. The network consisted of repeated 

convolution “blocks”, with each block applying a 2D convolution, batch normalization [29], 

and rectified linear unit activation [30]. This motif was repeated for M blocks. Each 2D 

convolution layer was composed of F machine-learned filters, and the size of each filter was 

7 × 7 × 32 for the first layer, 5 × 5 × F for the second layer, and 3 × 3 × F for subsequent 

layers, with the convolution occurring over the first two dimensions of each. Each 

convolution was zero-padded in the first two dimensions such that the input and output were 

the same size, making the size of the output of each convolutional layer P × Q × F.

An uncompressed B-mode image was separately formed from the input data using equation 

(1) and concatenated to the output of the M-th block, yielding a data array of size P × Q × (F 

+ 1). One final convolution filter of size 1 × 1 × (F + 1) was used to produce an output image 
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of size P × Q × 1 that was subsequently squared on a pixel-wise basis to yield positive 

values of echogenicity. The fully convolutional nature of the network allowed echogenicity 

estimation on a pixel-wise basis. Unless otherwise specified, the default parameters for the 

networks were M = 16 convolution blocks with F = 32 filters per layer. Pooling layers and 

dropout were not utilized.

The neural networks were implemented in Python using TensorFlow [31] using the Adam 

[32] optimizer with a single NVIDIA GeForce GTX 1080 Ti GPU, which has 11 GB of 

memory. We performed hyperparameter tuning of the learning rates, batch size, and both ℓ1 

and ℓ2 regularization of filter weights to achieve optimal performance using an independent 

validation dataset that was separate from all other datasets. The final hyperparameters used 

are tabulated in Table II.

D. Neural Network Training and Analysis

Neural network training performance was analyzed as a function of training objective. A 

network with 16 convolution blocks and 32 filters per layer was trained to minimize either 

ℒℓ1

⋆ , ℒℓ2

⋆ , ℒMS‐SSIM
⋆ , or a mixture of ℓ1 and MS-SSIM, defined as:

ℒMix
⋆ (y, y) = ℒℓ1

⋆ (y, y) + βℒMS−SSIM
⋆ (y, y), (12)

where β was set heuristically to 200 to equalize the contributions of each loss function. (This 

formulation is adapted from the mixed loss function given in [21].) Speckle reduction was 

evaluated on a validation dataset consisting of 32 new Field II Pro simulations, also based on 

photographs. Performance was quantified using the ℒℓ1

⋆ , ℒℓ2

⋆ , and ℒMS‐SSIM
⋆  loss functions. 

Similarly, speckle reduction performance was also analyzed as a function of depth using 

networks with 2, 4, 8, or 16 blocks and 32 filters per layer, as well as networks with 16 

blocks and 4, 8, 16, or 32 filters per layer, where all of the networks were trained to 

minimize ℒMix
⋆ . Finally, performance was compared with and without concatenating a B-

mode image after the M-th convolution block.

E. Testing of Speckle Reduction Methods

All testing was performed using a neural network with a depth of 16 blocks, a width of 32 

filters, and trained to minimize the ℒMix
⋆  loss function for 30 training epochs unless 

otherwise indicated. The speckle reduction performance of the network was compared 

against those of receive spatial compounding [6] and optimized Bayesian nonlocal means 

(OBNLM) [15], [16]. Spatial compounding was implemented on receive by performing 

DAS beamforming and envelope detection independently on four non-overlapping 

subapertures and summing the result. The OBNLM algorithm was applied to images that 

were beamformed according to equation (1) using the publicly available MATLAB 

implementation provided by the authors of this algorithm [15], [16]. The default parameter 

values provided by the authors were used (M = 7, α = 3, h = 0.7).
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Simulation, phantom, and in vivo test datasets were used to evaluate beamforming 

performance. A simulation test dataset was obtained with Field II Pro with the same imaging 

configuration as the training dataset. Hypoechoic cylindrical cysts with diameters of 1 mm 

and 3 mm and contrasts of −20 dB and −6 dB were centered at the elevation focus of 2 cm 

depth. The full synthetic aperture set of channel signals was retrospectively focused into a 1 

cm×1 cm pixel region also centered at the elevation focus, and the channels were delay-and-

summed into 16 subaperture IQ signals. The simulated results were assessed using the ℒℓ1

⋆ , 

ℒℓ2

⋆ , and ℒMS‐SSIM
⋆  loss functions, as well as contrast, CNR, and SNR.

Generalizability from simulations to real-world ultrasound data was tested on a CIRS Model 

040GSE calibrated phantom imaged using a Verasonics Vantage 256 research scanner with 

an L12–3v linear array transducer. Single element transmissions at 6 MHz sampled at 24 

MHz were used to obtain a full synthetic transmit aperture for dynamic focusing on both 

transmit and receive. The channel data were focused into a pixel grid of 4 cm in depth and 2 

cm in width, with a pixel spacing of λ/2 in both dimensions. Transmit and receive aperture 

growth were applied to achieve an f-number of 2. The phantom images were evaluated using 

contrast, CNR, and SNR.

Generalizability to clinical imaging conditions was assessed in vivo in the kidney of a 

healthy 58-year-old male volunteer and in the liver of a 68-year-old female who had a focal 

lesion with a surrounding fluid capsule. Both subjects provided written consent and imaging 

was performed under an IRB approved protocol. Channel datasets were acquired with a 

modified Siemens S2000 scanner using a Siemens 4C1 transducer. Pulse-inversion harmonic 

imaging was performed using focused transmissions at 1.82 MHz. Due to technical 

limitations, the channel signals were obtained for only 64 (out of 192) elements in a sector 

of 54 (out of 192) beams. The remaining beams were acquired using the full aperture using 

conventional DAS. The 64 receive channel signals were beamformed into 16 subaperture 

signals prior to being input into the neural network. For this particular dataset only, a 

partially-trained network (15 epochs rather than 30) was used to evaluate speckle reduction 

to avoid overfitting. Image quality was assessed using contrast, CNR, and SNR of the liver 

lesion vs. the surrounding fluid, with the ROIs selected to obtain a large region of speckle 

while avoiding obvious and significant changes in underlying echogenicity.

IV. Results

A. Neural Network Training and Analysis

Figure 2 plots the (a) ℒℓ1

⋆ , (b) ℒℓ2

⋆ , and (c) ℒMS‐SSIM
⋆  validation losses of neural networks 

over 50 training epochs for several training objectives, as computed on the validation 

dataset. Neural networks were trained to minimize either ℒMS‐SSIM
⋆ , ℒℓ1

⋆ ,ℒℓ2

⋆ , or ℒMix
⋆ . The 

networks trained to minimize ℒℓ1

⋆  and ℒMix
⋆  were found to yield the lowest ℒℓ1

⋆  losses. The 

networks trained to minimize ℒMS‐SSIM
⋆  and ℒMix

⋆  yielded the lowest ℒMS‐SSIM
⋆  and ℒℓ2

⋆
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losses. Minimizing ℒℓ2

⋆  resulted in unstable performance, with erratic increases in all three 

losses occurring partway through training.

Figure 3 shows the validation losses as a function of network depth and width for a network 

trained to minimize ℒMix
⋆  on the validation dataset. Given a fixed width of 32 filters, deeper 

networks converged to lower ℒℓ1

⋆ , ℒℓ2

⋆ , and ℒMS‐SSIM
⋆  losses after 50 epochs, and 

approached these values more rapidly as well. Similar results were observed when fixing the 

network depth to 16 layers and increasing the width. With the exception of the network with 

a width of 4 filters, all networks outperformed DAS beamforming by the ℒℓ1

⋆ , ℒℓ2

⋆ , and 

ℒMS‐SSIM
⋆  metrics.

Figure 4 plots the same validation losses for networks trained with and without a 

concatenated B-mode image after the M-th convolutional block. The network without B-

mode had significantly higher ℒℓ1

⋆  and ℒℓ2

⋆  losses than both DAS and the network with 

DAS.

Though not plotted here, the training errors closely followed the trends of the validation 

errors in all cases in Figs. 2, 3, and 4, indicating that the networks were not overfitting to the 

training data.

B. Image Resolution

The FWHM of the LSF was used to measure the azimuthal resolution of each imaging 

method. The resolutions were found to be: DASFWHM = 0.132 mm; SCFWHM = 0.156 mm; 

OBNLMFWHM = 0.186 mm; and NNFWHM = 0.129 mm, where the neural network was 

evaluated after being trained to minimize ℒMix
⋆  for 30 epochs.

C. Cyst Simulation Results

Images reconstructed using DAS, spatial compounding, OBNLM, and the neural network 

are pictured in Fig. 5, along with the reference images. Image quality metrics for each 

method in the test dataset of simulated cysts are presented in Table III. Overall, the ℒℓ1

⋆  and 

ℒℓ2

⋆  losses in the relatively simple test set were lower than those found in the more complex 

validation set used in Figs. 2 and 3, which was composed of photographic images. DAS 

accurately reproduced contrast in the 3 mm lesions, and was within 3 dB for the 1 mm 

lesions.

Qualitatively, spatial compounding exhibited moderate speckle reduction while preserving 

contrast and resolution throughout the images. Spatial compounding approximately halved 

the test loss values. The contrast measurements of the −20 dB cyst were slightly worse than 

DAS, but the SNR was improved by 34%, resulting in overall improvements in CNR. 

OBNLM applied considerable smoothing to the speckle (497% SNR increase) and produced 
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the lowest ℒℓ1

⋆  losses of all methods. However, OBNLM exhibited a visible loss in 

resolution, resulting in significantly degraded contrasts in the 1 mm cysts. Note that speckle 

artifacts are still visible in the background texture of the images, indicating that the 

smoothing parameter of OBNLM was set conservatively. We observed that relaxing the 

smoothing parameter resulted in worsened speckle texture without a gain in resolution, 

while more aggressive smoothing eliminated these artifacts but led to a further loss in 

resolution (not pictured). Both OBNLM and the neural network resulted in a 20-fold 

reduction in ℒMS‐SSIM
⋆  losses from DAS. The neural network additionally had the lowest 

ℒℓ2

⋆  loss of all methods, and increased the speckle SNR by 488%. The neural network 

resulted in higher CNR than DAS, SC, and OBNLM in all cysts except for the −6 dB 3 mm 

cyst.

D. Phantom Imaging

Images of the tissue mimicking phantom are shown in Fig. 6. The top images show a −12 dB 

hypoechoic cyst and a smaller anechoic cyst, while the bottom images show a +12 dB 

hyperechoic cyst and point targets at the top. Contrasts and CNRs for −12 dB, −6 dB (not 

pictured), +6 dB (not pictured), and +12 dB 8 mm cysts are included in Table IV, along with 

the speckle SNR. In the DAS images, some mild signal attenuation was visible in the lower 

half of each image resulting in darker textures. Additionally, both the +6 dB and +12 dB 

hyperechoic cysts exhibited unexpectedly low contrasts of +1 dB and +5 dB in the DAS 

image. The DAS speckle SNR of 1.90 matched the classical prediction. Spatial 

compounding preserved cyst contrasts while smoothing the speckle texture, improving the 

SNR by 35%. Over the four cysts, spatial compounding improved the CNR on average by 

67%. The OBNLM technique significantly smoothed the speckle and preserved the point 

targets, though the lateral edges of the hypoechoic and anechoic cysts were blurred. Overall, 

OBNLM improved SNR by 511% and CNR by 211%.

The neural network demonstrated excellent speckle reduction, improving the SNR by 306% 

over DAS. The contrasts were also preserved, resulting in higher CNRs than both DAS and 

spatial compounding in all cases. The neural network images also presented sharp high-

resolution outlines around the −12 dB and anechoic cysts, while the outlines around the +12 

dB cyst were less sharp. The images were subject to similar attenuation effects as DAS. 

Some dark textures and structures were visible around the deep cysts, and appeared to 

correspond to the speckle textures in the DAS image. The three point targets near the 

transducer surface were also preserved, but were slightly enlarged.

E. In Vivo Imaging

In vivo images of a kidney and a focal liver lesion are shown in Fig. 7 and image quality 

metrics are included in Table V. Both spatial compounding images exhibited significantly 

reduced speckle with marginal losses in resolution in both images. However, there was a 

visible loss in contrast throughout. The effects combined for a net increase in SNR of 60% 

and CNR of 56%. OBNLM preserved bright granular structures throughout the brighter 

regions of tissue but applied aggressive smoothing in darker image regions with gradual 
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changes in echogenicity. Overall, OBNLM increased SNR and CNR over DAS by 12% and 

by 10%, respectively. The neural network significantly reduced speckle while improving 

contrast. The structures within the kidney and the lobes of the liver lesion were well-

preserved, and the clutter within the surrounding fluid of the liver lesion was reduced. 

Shadowing effects visible in DAS were preserved in the neural network images. Overall, the 

SNR and CNR was increased by 90% and 93% over DAS, respectively.

V. Discussion

Beamforming with neural networks represents a fundamentally different paradigm for 

speckle reduction as compared to traditional techniques. Spatial compounding is a classical 

array processing technique that utilizes independently-beamformed subapertures to observe 

the target from multiple angles, reducing speckle at the cost of lateral resolution. However, 

improvements in speckle SNR are limited to N when spatial compounding with N 

uncorrelated images, with lesser improvements when the compounded images are correlated 

[6]. These effects were observed in the simulation, phantom, and in vivo results. OBNLM is 

a post-processing technique that excels at preserving sharp discontinuities and point targets. 

However, OBNLM struggled to maintain resolution and target structure for broader targets 

and gradual changes in echogenicity. OBNLM also utilizes three parameters which must be 

tuned precisely to achieve the desired speckle reduction. The default parameters provided by 

the authors of the method [16] were observed to be inadequate for the in vivo imaging cases 

shown here. Moreover, as a post-processing method, OBNLM is fundamentally subject to 

any noise artifacts that are present in the envelope-detected DAS image, such as clutter. By 

contrast, the proposed neural network is an array processing technique that performs 

beamforming and speckle reduction in tandem using parameters that are learned, nonlinearly 

transforming complex channel data into echogenicity estimates.

This study establishes the feasibility of using neural networks to perform ultrasound 

beamforming and speckle reduction. In simulations, the neural network was able to estimate 

the true echogenicity more accurately than DAS and spatial compounding, as measured by 

the ℒℓ1

⋆ , ℒℓ2

⋆ , and ℒMS‐SSIM
⋆  losses. The neural network beamformer outputted a 

homogeneous response in regions of constant echogenicity while mostly preserving the 

shapes of the cysts.

The results also demonstrate that a beamforming neural network trained entirely in silico can 

generalize to real-world imaging, including in vivo. The neural network reduced speckle 

more effectively than receive-only spatial compounding in both the phantom and in vivo. 

The in vivo results were particularly remarkable considering that the training and test 

datasets were acquired with a different transducer (L12–3v at 8 MHz vs. 4C1 at 3.6 MHz), 

imaging configuration (linear vs. curvilinear), and transmit focusing scheme (full synthetic 

aperture vs. focused transmits), and additionally contained reverberation clutter and 

inhomogeneities in sound speed leading to focusing errors. The robust performance may be 

attributed to the wide variety of speckle patterns observed in the randomly generated training 

dataset. By randomly selecting the physical width, height, and position of each 64×64 pixel 

training patch, the networks were provided with diverse examples of speckle shapes, which 
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was effectively equivalent to providing the networks with diverse examples of point spread 

functions [33]. Although the emphasis of this work was placed on the task of estimating 

echogenicity, the training dataset also contained simulated examples of both white electronic 

and band-limited acoustic noise, which may have further aided the networks in generalizing 

to real data.

However, the beamforming networks also exhibited several imaging artifacts. For example, 

the neural network resulted in slightly enlarged point targets throughout the phantom. 

Although this symptom implies a loss in resolution, the sharply preserved edges in the 

simulation, phantom, and in vivo indicate otherwise. The resolution measurements reported 

in Section IV-B further corroborate that the neural network preserves resolution in speckle 

targets, unlike spatial compounding and OBNLM. A potential explanation for these artifacts 

is that the network was trained entirely with diffuse scatterers and had never previously 

encountered a sharp point target. We hypothesize that providing the neural network with 

exposure to these sorts of targets in the training set would reduce the artifacts. Additionally, 

we observed that performance suffered when the neural network was provided with 

previously unseen speckle-to-pixel size ratios. For example, using a pixel spacing outside of 

the training range resulted in little to no speckle reduction. This suggests that the training 

data should be tailored to match the specific imaging parameters (e.g., transducer geometry, 

frequency, imaging depth, and focusing configuration) of the anticipated applications. 

Performance may also be improved by explicitly incorporating prior knowledge about the 

physics of ultrasound beamforming. For example, full spatial compounding on both transmit 

and receive is known to improve the edge definition of specular targets by interrogating the 

targets from multiple angles [6]; a hybridized approach with spatial compounding of neural 

network-beamformed images could potentially yield better visibility of specular boundaries 

while reducing speckle.

The networks trained to minimize ℒℓ1

⋆  achieved the best ℒℓ1

⋆  losses but also the worst ℒℓ2

⋆

and ℒMS‐SSIM
⋆  losses (Fig. 2). Conversely, the network trained to minimize ℒMS‐SSIM

⋆

achieved the best ℒℓ2

⋆  and ℒMS‐SSIM
⋆  losses, but gave the worst ℒℓ1

⋆  loss. By minimizing 

both ℒℓ1

⋆  and ℒMS‐SSIM
⋆  simultaneously, excellent performance was achieved across all 

three metrics. Notably, the ℒℓ2

⋆  training objective led to erratic training. These results imply 

that the ℒℓ2

⋆  loss function, which is more sensitive to outliers than ℒℓ1

⋆ , does not provide an 

efficient route for the gradient descent algorithm in its search for θ⋆. A similar conclusion 

was reached in [21], where a mixture of ℒℓ1
 and ℒMS‐SSIM was also found to outperform 

ℒℓ2
. Additionally, we observed in Fig. 4 that concatenating a B-mode image after the M-th 

convolutional block significantly enhanced training. Although the input channel data 

theoretically contain all of the raw information necessary to reconstruct a B-mode image, it 

appears that the concatenated B-mode image served as a good initial estimate of 

Hyun et al. Page 13

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



echogenicity for the network to improve upon, rather than learning the reconstruction from 

scratch.

Overall, the neural networks trained quickly and robustly. All of the presented networks 

were trained in under 30 minutes on a workstation equipped with a single NVIDIA GeForce 

GTX 1080 Ti GPU, and could process a single image frame in under 30 ms. The networks 

converged to nearly identically performing states for random filter weight initializations, 

indicating good repeatability. The networks were also observed to be insensitive to 

hyperparameters such as convolution filter weight regularization, which was set to values 

ranging from 10−4 to 10−1 with marginal differences in output.

Deeper and wider networks can represent a broader range of functions, a property called 

expressive power [18], [34], [35]. The benefits of expressive power were shown in Fig. 3, 

where the deeper and wider networks were able to lower the ℒℓ1

⋆ , ℒℓ2

⋆ , and ℒMS‐SSIM
⋆

losses in the validation dataset more rapidly and to a lower overall value. However, 

expressive networks are also more prone to overfitting the training data and generalizing 

poorly to new data. Overfitting can be detected by observing an increase in validation loss 

during training, and is often caused by a dataset that is too small relative to the expressive 

power of the network. This type of overfitting was not exhibited in Fig. 3, which showed 

stable improvements in validation loss with more training epochs, suggesting that our 

training dataset was large enough.

A second form of overfitting can occur when the training dataset distribution differs from the 

testing dataset distribution, as was the case in this study. The simulated training dataset was 

obtained using significantly different configurations and noise conditions from the phantom 

and in vivo test data. Unfortunately, the validation loss could not be used to observe this type 

of overfitting because the ground truth was unavailable in the phantoms and in vivo. Instead, 

we qualitatively observed that a network trained for 30 epochs led to less speckle reduction 

and an over-emphasis of small speckle troughs in vivo as compared to a network trained for 

just 15 epochs. This suggests that the second form of overfitting occurred, with the network 

learning to recognize features in the simulated environment that were not present in the in 

vivo data. We hypothesize that generalizability to in vivo imaging can be improved by 

training the network with more realistic simulations that model full wave propagation [36] to 

include the effects of phase aberration, reverberation, and attenuation, as well as diffuse, 

specular, and point reflectors.

In addition to using a new dataset and reducing the number of training epochs, overfitting 

can be mitigated by employing regularization. We used the ℓ1- and ℓ2-norms of the filter 

weights to enforce smaller weights. Furthermore, we utilized a priori knowledge that the 

backscatter from diffuse scatterers has high correlation coefficients between neighboring 

array elements [37] to reduce the full 128 element array into 16 beamformed subapertures. 

Although motivated by computational constraints, subaperture beamforming effectively 

applied a regularization by reducing the expressivity of the network. More sophisticated 

forms of regularization, such as total variation [38], can be included to further reduce the 

impact of overfitting.
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VI. Conclusion

We have presented a framework for speckle reduction in ultrasound B-mode imaging using 

artificial neural networks. Deep fully convolutional neural networks were trained to accept 

channel signals and to output speckle-reduced estimates of echogenicity. We introduced two 

ultrasound-appropriate modifications to the ℓ1, ℓ2, and MS-SSIM loss functions. First, the 

loss functions were measured on logarithmically compressed images to account for the large 

dynamic range of ultrasound signals and to match the log-domain in which the images were 

displayed. Second, we utilized a normalization-independent formulation to compare two 

images with arbitrary units. Speckle-reduction performance was analyzed as a function of 

training objective, network depth, and network width, with the best performance being 

achieved using the deepest (16 convolution layers) and widest (32 filters per layer) network, 

trained to minimize the ℒMix
⋆  loss. After training the neural network using 5000 simulations 

of channel data over 30 epochs, the network was evaluated on simulations, a phantom, and 

in vivo kidney and liver. The network outperformed spatial compounding and provided 

comparable speckle-reduction to OBNLM with improved detail preservation while 

preserving resolution. In particular, the neural network improved the speckle SNR to values 

of 7.73 and 3.09 in a phantom and in vivo, respectively.
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APPENDIX

A. The ℒℓ2

⋆  loss function

The optimal weight for the ℓ2-norm is found as:

wℓ2

⋆ =  argmin 
w > 0

y − wy
2

(13)

=  argmin 
w > 0

w
2yT y − 2wyT y . (14)

The optimum value can be found by taking the derivative with respect to w and solving for 

the zero point, giving

wℓ2

⋆ =
yT y

yT y
. (15)
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B. The ℒℓ1

⋆  loss function

The optimal weight for the ℓ1-norm is obtained as:

wℓ1

⋆ =  argmin 
w > 0

∑
p = 1

P

w −
yp

y p

. (16)

The minimum, where the derivative with respect to w is zero, can be found by using the 

relation

∂
∂w

w − u =  sign(w − u), (17)

yielding an optimal solution that is the median value of y
p

/y
p
:

0 = ∑
p = 1

P

 sign  wℓ1

⋆ −
yp

y p

(18)

wℓ1

⋆ =  median 
yp

y p p = 1

P

. (19)

C. The ℒ
MS − SSIM
⋆  loss function

The SSIM metric is the product of the differences in luminance, contrast, and structure [23], 

which correspond to differences in the mean, standard deviation, and the normalized signals, 

respectively. When computed on log-images, the optimal weight is additive. In the case of 

the SSIM, we find that the derivative with respect to w for one pixel p is

∂
∂w

 SSIM  log yp, w + log y p = (20)

4μlog y
p
σlog y

p
log y

p

2
μlog y

p

2 − w + μlog y
p

2

σlog y
p

2 + σlog y
p

2
μlog y

p

2 + w + μlog y
p

2 2
, (21)

where the stabilizing constants C1 and C2 are omitted. The optimal weight is obtained by 

solving for w over all pixels:

0 = ∑
p = 1

P
∂

∂w
 SSIM  log yp, w + log y p . (22)

Unfortunately, this equation is intractable for large P.
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We instead utilize a (potentially suboptimal) weight:

w
⋆ =

1
PQ

∑
p = 1

PQ

log yp −
1

PQ
∑

p = 1

PQ

log y p . (23)

This is equivalent to computing the SSIM without the luminance term:

SSIM ⋆(log y, log y) =
1

PQ
∑

p = 1

PQ 2σlog y
p

log y
p

+ C2

σlog y
p

2 + σlog y
p

2 + C2

. (24)

Similarly, the multi-scale luminance-independent MS-SSIM loss function is then defined as

ℒMS−SSIM
⋆ (log y, log y) = 1 − ∏

j

 SSIM j
⋆(log y, log y), (25)

where j indexes the scales over which the SSIM⋆ is computed.
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Fig. 1. 
The fully convolutional neural network architecture, consisting of M convolution “blocks”. 

Each block consisted of a 2D convolution, batch normalization, and a rectified linear unit. 

The input to the network was a 64×64×32 dataset, where the last dimension corresponded to 

real and imaginary components of 16 subaperture signals. A conventional envelope-detected 

image was also concatenated to the output of the M-th block. The speckle-reduced output 

was obtained by applying one final 2D convolution and squaring the result.
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Fig. 2. 
Validation losses versus training objectives. The neural network was trained to minimize 

ℒMS‐SSIM
⋆  (solid), ℒℓ1

⋆ . (dashed), ℒℓ2

⋆  (dot-dashed), or ℒMix
⋆  (dotted). Performance was 

measured using the (a) ℒℓ1

⋆ , (b) ℒℓ2

⋆ , and (c) ℒMS‐SSIM
⋆  losses after each training epoch, as 

measured on the validation dataset. The losses of the DAS reconstruction (thin line) are 

shown for reference. Minimizing ℒMS‐SSIM
⋆  and ℒℓ1

⋆  resulted in the lowest ℒMS‐SSIM
⋆  and 

ℒℓ1

⋆  losses, respectively, but minimizing ℒℓ2

⋆  led to unstable performance. Minimizing 

ℒMix
⋆  resulted in fast and smooth reduction in all three losses.
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Fig. 3. 
Validation losses versus network architecture. (Top row) Neural networks with 2, 4, 8, or 16 

layers of convolution blocks and 32 filters per layer were used. (Bottom row) Neural 

networks with 16 layers of convolution blocks and 4, 8, 16, or 32 filters per layer were used. 

All networks were trained to minimize ℒMix
⋆ . In general, it was observed that the deeper and 

wider networks trained more quickly and resulted in lower (a, d) ℒℓ1

⋆ , (b, e) ℒℓ2

⋆ , and (c, f) 

ℒMS‐SSIM
⋆  losses, as measured on the validation set.

Hyun et al. Page 23

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Validation losses with (+) and without (−) a concatenated B-mode (i.e., summed and 

envelope detected) image after the M-th convolution block. The networks were trained to 

minimize ℒMix
⋆ . The network with B-mode concatenation (solid) significantly outperformed 

the network without B-mode (dotted) as measured by (a) ℒℓ1

⋆ , (b) ℒℓ2

⋆ , and (c) ℒMS‐SSIM
⋆ . 

The network without B-mode outperformed DAS beamforming in only ℒMS‐SSIM
⋆ .
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Fig. 5. 
Field II simulation images of cysts were reconstructed using DAS, spatial compounding, 

OBNLM, and the neural network. The top two rows show 1 mm and 3 mm −20 dB cysts, 

while the bottom two rows show the same for −6 dB cysts. The ground truth echogenicity is 

shown in the leftmost column, overlaid with the circular ROIs used for contrast 

measurements and the square ROI used for SNR measurement.

Hyun et al. Page 25

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Phantom images were reconstructed using DAS, spatial compounding, OBNLM, and neural 

network. Each image is normalized and displays 40 dB of dynamic range. (a) A 2 mm 

anechoic cyst and a 8 mm −12 dB cyst are pictured. (b) A 8 mm +12 dB cyst and several 

bright point targets are pictured.
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Fig. 7. 
Harmonic B-mode images of a (top) kidney and (bottom) a complex focal lesion surrounded 

by an anechoic fluid are shown. The center sectors (bounded with black lines) were 

reconstructed using DAS, spatial compounding, OBNLM, and the neural network, and are 

overlaid on the full B-mode sector scan. The tick marks show 1 cm spacing. Each image 

displays 50 dB of dynamic range.
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TABLE I

Range of Parameters for Random Patches

Attribute Minimum Value Maximum Value

Simulation Index 1 1024

Lateral Position −1.9 mm (−10λ) 1.9 mm (10λ)

Axial Position 18.1 mm (94λ) 21.9 mm (114λ)

Lateral Size 0.4 mm (2λ) 6.2 mm (32λ)

Axial Size 0.4 mm (2λ) 6.2 mm (32λ)

Thermal Noise −40 dB +6 dB

Acoustical Noise −40 dB +6 dB
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TABLE II

Network Training Hyperparameters

Hyperparameter Value

Learning Rate 1 × 10−4

Filter ℓ1 Regularization 1 × 10−3

Filter ℓ2 Regularization 1 × 10−3

Batch Size 128
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TABLE III

Test Dataset 1: Cyst Simulation Reconstruction Metrics

Target Metric DAS SC OBNLM NN*

All simulations ℒℓ1

⋆
(dB) 28.09 12.49 4.17 4.88

All simulations ℒℓ2

⋆
(dB) 2.84 1.13 0.20 0.18

All simulations ℒMS‐SSIM
⋆

0.108 0.050 0.005 0.005

−20 dB 1 mm cyst Contrast −17 dB −15 dB −7 dB −13 dB

−20 dB 3 mm cyst Contrast −20 dB −19 dB −18 dB −20 dB

−6 dB 1 mm cyst Contrast −7 dB −7 dB −2 dB −3 dB

−6 dB 3 mm cyst Contrast −6 dB −6 dB −5 dB −5 dB

−20 dB 1 mm cyst CNR −1.8 −2.2 −3.6 −4.6

−20 dB 3 mm cyst CNR −1.6 −2.2 −6.5 −6.7

−6 dB 1 mm cyst CNR −1.0 −1.2 −2.4 −2.8

−6 dB 3 mm cyst CNR −0.8 −1.1 −3.1 −2.7

Background SNR 1.87 2.50 11.16 11.00

*
Trained to minimize ℒMix

⋆
 for 30 epochs
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TABLE IV

Test Dataset 2: Phantom Reconstruction Metrics

Target Metric DAS SC OBNLM NN*

−12 dB cyst Contrast −10 dB −10 dB −9 dB −11 dB

−6 dB cyst Contrast −5 dB −5 dB −5 dB −5 dB

+6 dB cyst Contrast +2 dB +2 dB +2 dB +2 dB

+12 dB cyst Contrast +5 dB +5 dB +5 dB +6 dB

−12 dB cyst CNR −1.2 −1.6 −2.9 −2.3

−6 dB cyst CNR −0.8 −1.1 −2.2 −1.6

+6 dB cyst CNR +0.2 +0.5 +0.7 +0.8

+12 dB cyst CNR +0.7 +1.2 +2.9 +2.2

Background SNR 1.90 2.57 11.60 7.73

*
Trained to minimize ℒMix

⋆
 for 30 epochs
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TABLE V

Test Dataset 3: In Vivo Reconstruction Metrics

Target Metric DAS SC OBNLM NN*

Liver lesion SNR 1.63 2.62 1.83 3.09

Surrounding fluid Contrast −20 dB −18 dB −19 dB −22 dB

Surrounding fluid CNR −1.5 −2.3 −1.6 −2.8

*
Trained to minimize ℒMix

⋆
 for 15 epochs
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