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Abstract

This thesis studies the DOA estimation and beam pattern synthesis techniques

for wireless communications applications. In particular, three specific problems

have been investigated and novel algorithms have been proposed in this thesis.

In wireless communications systems, the information about directions of

signal of interests is very important for the subsequent signal processing proce-

dures. Many modulated communication signals exhibit a cyclostationary prop-

erty, which corresponds to the underlying periodicity arising from carrier fre-

quencies or baud rates. Utilizing this underlying property in the received sig-

nals, we propose a new DOA (Direction of Arrival) estimation algorithm for

cyclostationary signals. The proposed algorithm is very effective when the de-

sired signals do not share a common cycle frequency. We have also derived the

necessary conditions and provided a theoretical analysis on the choice of the pa-

rameters for making our proposed algorithm effective in coherent environment.

Next, we come to beam pattern design techniques for antenna arrays. We

classify the techniques into two categories: non-iterative beampattern synthesis

algorithms and iterative beampattern synthesis algorithms. For non-iterative

approaches, we propose an improved beampattern synthesis technique based

on the Generalized Sidelobe Canceller (GSC) structure. Constrained optimiza-
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tion algorithm is used to control the beampattern from the main beam. We

use the cyclostationary property of the transmitting signals to ensure that the

blocking matrix spans the interference-plus-noise subspace to get a better con-

trol of the beampattern, especially in the interference-limited and time-varying

environment and when the interference is close to the look direction. We also

consider the case when multipath exists in the desired signal, and put forward

an improved structure to solve this problem.

After that we shift to iterative approaches. Firstly, we reveal the relation-

ship between sidelobe level and the number and strength of interferences. Based

on this relationship, three iterative beampattern techniques for arbitrary array

geometry and arbitrary desired pattern were proposed by Olen [1], Bell [2] and

Zhou [3] respectively. However, all of them require the calculation of matrix

inverse in each iteration. In order to simplify the algorithms, we make an im-

provement based on Zhou’s algorithm to avoid matrix inverse calculation. More-

over, we consider combining the improved algorithm with Frost beamforming

algorithm. Taking advantages of the merits of both techniques, our proposed

algorithm has the ability of beam pattern control and adaptive beamforming at

the same time. In addition, Householder Transform (HT) is applied to further

reduce the computational load by constraining the weight vector update in each

iteration in a subspace with reduced dimension. Analysis and comparison on

the computational load between our proposed algorithm and several relevant al-

gorithms are provided as well to prove the computational efficiency of the new

algorithm.
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Chapter 1

Introduction

1.1 Motivation and Background

Wireless systems are now popular worldwide to help people and machines to

communicate with each other irrespectively of their location. So far, using a

cellular system is the most common wireless method to access data or to per-

form voice dialling. But in a near future, we will be surrounded by a number

of options to set up a wireless connection over the radio interface. One of the

objectives for the fourth generation wireless communication system (4G) is “al-

ways best connected”, meaning that your wireless equipment should connect

to the network or system that at the moment is the “best” for you. Various

connection systems range from satellites that provides low bit rates but global

coverage and cellular systems with continental coverage to high bit rate local

area networks and personal area networks with a maximum range of a few to

a hundred meters. If these systems should co-exist, then we would obtain a

crowded frequency spectrum, since there are many different “actors” who want
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1.1. Motivation and Background 2

their share of the limited frequency resource. However, due to the limitation

of spectrum allocation, the growth of services is expected soon to reach many

system’s capacity. In addition, several physical limitations such as time-variant

and dispersive nature of propagation environments induce many technical chal-

lenges for reliable and ubiquitous communications. Moreover, the requirements

of small size, light weight, and low power of personal communication devices

present additional challenges. Therefore, providing high spectrum efficiency,

high quality and robust wireless communications combined with complexity-

reduced signal processing algorithms have become prime challenges in university

and industrial worldwide research and development centers. The current trend

to achieve high spectral efficiency is by utilizing adaptivity in the ever changing

radio environment. Adaptivity on the physical layer can be used in all possible

dimensions: time, frequency, power and space. Adaptivity can also be used on

higher signalling layers to boost performance even further, such as multi-user

scheduling.

This thesis is devoted to the physical layer of wireless communication sys-

tems and will focus on the algorithms in spatial dimension. As was pointed out

in [5], time domain processing techniques have virtually been squeezed down to

their last one-tenth of a decibel in terms of performance improvement. Spatial

processing is truly the last frontier in terms of the rewards that can be achieved

in improving the performance of wireless communications systems. Space uti-

lization is made possible through the use of multiple antennas arranged in an

array for transmitting and receiving signals. Or in some cases, a single antenna

which has several polarizations or modes is used to obtain polarization or angle

diversity. In the mid-1990s, the terms smart antennas and adaptive antennas

were introduced because with signal processing algorithms, the antenna array
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1.2. Major Contributions 3

can be made adaptive and change its transmission or reception characteristics

in a smart manner according to the radio environment.

1.2 Major Contributions

This thesis contains some original contributions on algorithms used in adaptive

antenna processor. The main contributions can be classified into two parts–

DOA estimation and beam pattern synthesis algorithms. Now we will present

a brief summary of the main points of our work for each of these two parts.

DOA Estimation: In wireless communication systems, subscribers are usu-

ally spatially separated and the use of antenna arrays makes it possible to

locate the direction of arrival of each signal. Therefore, information about

the DOA of signals is required and important in most smart antenna tech-

niques where signals are transmitted and received in a directional man-

ner. Various techniques for DOA estimation have been proposed in the

past several decades [6–12], among which the most commonly used are

subspace-based techniques such as MUltiple SIgnal Classification (MU-

SIC) [8], Estimation of Signal Parameters via Rotational Invariance Tech-

nique (ESPRIT) [9, 10] and their variations. When the total number of

interference and target signals is larger than the number of antenna el-

ements, which is a common situation in current wireless communication

environment, these traditional algorithms fail to work. Other limitations

with MUSIC algorithm include inability of selective DOA estimation and

the spatial characteristics of noise must be known a priori, or be transfor-

mation invariable, etc.. Cyclic MUSIC algorithm [13] was later proposed
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1.2. Major Contributions 4

to solve some of the above mentioned problems by taking into considera-

tion a property called the cyclostationarity which is a common character-

istic shared by transmission signals in applications such as radar, sonar

or telecommunications. But disadvantages with Cyclic MUSIC exist in

situations when the signals of our interests do not share a common cycle

frequency. To overcome this problem, we propose a new cyclic MUSIC di-

rection finding algorithm which only requires single operation of direction

finding process in such a situation. Furthermore, to make our proposed

algorithm compatible with wireless multipath environment, we combine it

with spatial smoothing, a preprocessing technique which is very effective

in de-correlating the signals. Theoretical analysis and simulation results

are provided to show the effectiveness of our proposed algorithm. The

result of this work has been submitted to the IEEE Transaction on Signal

Processing.

Beam Pattern Synthesis: To synthesize array pattern is to find a set of

weights such that the array pattern has a desired shape, e.g. a maximum

at the desired angle with a certain beam-width and a certain sidelobe

rolloff. The second objective of this dissertation is to investigate and de-

velop algorithms on how to design weights of array elements to produce

the desired pattern, i.e. array pattern synthesis technique.

It is commonly believed that there are two types of pattern synthesis al-

gorithms: non-iterative and iterative. For the case of non-iterative beam

pattern synthesis algorithms, the array achieve its optimal pattern in one

step. Olen, Zhou, and Guo make use of adaptive theory to realize pattern

synthesis [1, 3, 14]; Tseng, Ng and Er use quadratic programming [15–17]
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1.2. Major Contributions 5

as the solution to pattern synthesis problem while Lebert and Wang uti-

lize second-order cone programming [18, 19]. The Generalized sidelobe

canceler (GSC) is an important structure for both theoretical and prac-

tical reason. As Griffiths and Jim explained in [20], the GSC can be

viewed as an alternative implementation and extension of Frost’s algo-

rithm [21]. Sim in [4] applied the quadratic programming in the main

beam of GSC structure to guarantee a highly directional quiescent pat-

tern with low sidelobe level. However, in determining the blocking matrix,

Sim did eigen-decomposition of the covariance matrix of received signal,

and chose the blocking matrix as the noise subspace which couldn’t reject

strong interferences effectively, especially in interference-limited environ-

ment. Equipped with the cyclostationary property of transmission signals,

we present a beam pattern synthesis algorithm for arbitrary array geom-

etry. Our algorithm determines the blocking matrix in the interference-

plus-noise subspace exactly so that deeper nulls can be achieved in the

interference directions. Not only can this approach suppress strong inter-

ference and raise the output SNR, it can also keep the sidelobe pattern

in control, and is very helpful when the interference is close to the look

direction of the array. Furthermore, we also make an improvement to en-

able it to work in wireless multipath environment. The result of this work

has been presented at the 3rdIEEE International Symposium on Wireless

Communications Systems, Sept. 2006.

Compared with non-iterative algorithms, an adaptive array with iterative

beam pattern synthesis ability is a more complex system which is able

to adapt itself in a time-varying signal environment. However, sidelobe

shapes in an adaptive beamformer are usually left uncontrolled and can
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1.2. Major Contributions 6

become undesirably high. In a receiving array, when an interference sig-

nal suddenly switches to the direction of a high sidelobe while the array

is in operation, it would interrupt the normal system operation because it

takes time for adaptive array to complete the interference nulling process.

In a transmission array, high sidelobes cause emissions in unwanted direc-

tions that may interference with other communication systems and waste

the transmission power. In this thesis, we propose an iterative algorithm,

which can achieve beam pattern control and adaptive beamforming at

the same time. Our proposed algorithm is computationally efficient be-

cause it avoids the calculation of matrix inverse which is often required

by conventional beam pattern synthesis algorithms. Besides, the new al-

gorithm is superior in being able to shape the sidelobe region which is

left uncontrolled by other adaptive beamforming algorithms. In addition,

Householder Transform (HT) is applied to further reduce the computa-

tional load. Analysis and comparison on the computational costs of our

proposed algorithm along with several relevant algorithms are provided

to prove the computational efficiency of the new algorithm. Numerical

results show that our proposed algorithm has the ability of nulling out

interferences and maintaining a well-shaped beam pattern simultaneously

which guarantees an overall best performance among several other algo-

rithms. This work has been presented at 64th IEEE Vehicular Technology

Conference, Sept. 2006 and has been submitted to IEEE Transaction on

Antennas and Propagations.
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1.3. Organization of the Thesis 7

1.3 Organization of the Thesis

This thesis is divided into seven chapters, and its organization is as follows.

Chapter 2 overviews fundamentals of adaptive arrays. First, some basic con-

cepts, terminologies and classification of adaptive array are presented. Then the

assumptions on array model and transmission environment are described. This

assumptions and array model will be used to develop the algorithms throughout

the following chapters. Criteria to optimize performance of adaptive arrays and

adaptive algorithms to obtain the array optimal weight vector are also summa-

rized here.

Chapter 3 presents the classification of DOA estimation algorithms and

briefly reviews some of the well-known algorithms in each category.

Chapter 4 discusses the direction-of-arrival estimation algorithm of cyclosta-

tionary coherent signals in wireless communications. We propose a new cyclic

MUSIC direction finding algorithm which only requires single operation of di-

rection finding process when the desired signals do not share a common cycle

frequency.

In chapter 5, we introduce two non-iterative beam pattern synthesis tech-

niques by forming a quadratically constrained minimization problem. Then

the relationship between this two algorithms is explained. Finally, we employ

method I in GSC structure to shape the quiescent beam pattern, and use an

effective approach to construct the blocking matrix to make sure that nulls can

be achieved at the directions of strong interferences and multipath signals.

In chapter 6, we firstly review the Olen, Bell and Zhou’s iterative beam

pattern shaping algorithms. Then we reformulate Zhou’s algorithm to avoid
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the computation of matrix inverse in each iteration, and put forward an algo-

rithm which incorporates the reformulated algorithm with Frost beamforming

algorithm. The new algorithm can achieve beam pattern control and adaptive

beamforming at the same time. Householder transform is applied to further

reduce the computational load of our proposed technique.

Chapter 7 concludes this thesis. Some recommendations on future work are

discussed in this chapter.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 2

Fundamentals of Smart

Antennas

This chapter presents the principle concepts of adaptive arrays. In particular,

this chapter covers array signal model, different types of adaptive beamform-

ing, criteria to optimize performance and adaptive signal processing algorithms

for adaptive arrays. The benefits of using adaptive arrays in wireless mobile

communications are also discussed.

2.1 Overview of Smart Antennas

2.1.1 Two Types of Smart Antennas

A smart antenna [6] is a multi-element antenna array where the signals received

at each antenna element are intelligently combined to improve the performance

of the wireless system.
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2.1. Overview of Smart Antennas 10

(a) Switched multibeam antenna (b) Adaptive array

Figure 2.1: Two basic types of smart antennas

There are two basic types of smart antennas, as shown in Figure 2.1. The

first type is the switched beam antenna array, which forms multiple fixed beams

with heightened sensitivity in particular directions. These antenna systems de-

tect signal strength, choose from one of several predetermined, fixed beams, and

switch from one beam to another as the mobile moves in the sector. Instead of

shaping the directional antenna pattern with the metallic properties and physi-

cal design of a single element (like a sectorized antenna), switched beam systems

combine the outputs of multiple antennas in such a way as to form finely sector-

ized (directional) beams with more spatial selectivity than that can be achieved

with conventional, single-element approaches. The second type is defined here

as an adaptive array as shown in Figure 2.1(b) in which the signals from several

antenna elements (not necessarily a linear array), each with similar antenna

patterns, are weighted (both in amplitude and phase) and combined to maxi-

mize the performance of the output signal. Note that the adaptive array will

form a narrow beam in a line-of-sight environment without multipath, but can

also optimally suppress interference and provide fading mitigation and gain in a

multipath environment. The switched beam antenna array is less complex be-

cause it uses simple beam tracking. That is, the beam-selection technique only
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2.1. Overview of Smart Antennas 11

need to look at the signal level in each beam every few seconds to determine

which beam to use. Similarly, in the case of linear array implementation of the

switched beam antenna array, the phase shifts only need to be slowly adjusted

to track the change in direction-of-arrival of the received signal. On the other

hand, the beamformer weights in the adaptive array need to track the fading

of the desired signal. For example, at 2 GHz with 100 km/hr vehicle speeds,

the Doppler is about 200 Hz and the complex weights need to be calculated at

least 100 times faster for accurate tracking, i.e., the complex weights need to

be calculated at a 20 kHz rate. However, although the adaptive-array process-

ing is much more computationally complex, the requirement is well within the

capability of current signal processing ICs.

2.1.2 Benefits of Using Smart Antennas

Using multiple antennas in a receiver can reduce the effect of cochannel inter-

ference, multipath fading, and background noise. For these reasons, the use

of antenna arrays in wireless communications has received a great deal of at-

tention in the literature (see [5–7, 22] and references therein). Using an array

of elements to improve a wireless connection is an old technique, even used by

Marconi in 1901 to increase the gain of the Atlantic transmissions of Morse

codes [23]. Today, antenna arrays in wireless communication systems are used

to improve performance in several ways, not just for range improvement. Sys-

tems with array antennas in commercial operation have been reported for GSM

networks [24], fixed broadband wireless access networks [25] and 3G CDMA

networks [26]. A number of field trials with testbed antenna arrays have also

been reported, see [27, 28].
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2.1. Overview of Smart Antennas 12

This trend in wireless communications has been possible mainly through the

advents of signal processing, digital signal processors and high speed analog-

digital convertor. The main advantages today, for using multiple antennas when

transmitting over a wireless link, are:

Improved signal quality: Due to the use of multiple antennas, adaptive

arrays can provide additional antenna gain, which depends on the number

of array elements. This, consequently, leads to an improved output SINR.

Define the input SNR as SNRin and M as the number of array elements.

If the number of interferences is smaller than the degree of freedom in

the array, the output SINR in a single propagation environment (without

multipath fading) can be found as

SINRout = M · SNRin, (2.1)

or

SINRout[dB] = 10log10M + SNRin[dB]. (2.2)

In multipath fading environment, if signal processing technique is used

in both spatial and temporal domains such as the case of the broad-

band beamformer, more diversity gain could be achieved depending on

the number of taps in the employed tap-delay-lines and fading character-

istics. Take a simple case of 2-path model as an example. When the two

paths are spatially uncorrelated, for example, the preceding and delayed

signals coming from 0◦ and 30◦, respectively, the output SINR is estimated

as

SINRout[dB] = 10log10M + 10log102 + SNRin[dB]. (2.3)
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2.1. Overview of Smart Antennas 13

This means that additional 3dB diversity gain has been obtained in 2-path

multipath fading environment. The richer the multipath fading environ-

ment is, the more diversity gain can be achieved. Figure 2.2 plots the

output SNR versus the number of employed array elements.
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Figure 2.2: Output SNR versus number of array elements

Extended coverage: From (2.2) it is clear the array gain that can be achieved

by an adaptive array is

G = 10log10M. (2.4)

This additional gain allows to extend the coverage of the basestation.

When the angular spread is small and the path loss is modeled with ex-

ponent α, the range extension factor (REF) is given by [29]

REF =
rarray

rconv
= M

1

α , (2.5)

where rconv and rarray denotes the range covered by the conventional an-
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2.1. Overview of Smart Antennas 14

tenna (with single element) and the array antenna (with multiple ele-

ments), respectively. The extended area coverage factor (ECF) is [29]

ECF =

(

rarray

rconv

)2

= REF2. (2.6)

Figure 2.3 shows that with an 6 element array, the coverage area is almost

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of array elements

E
C

F

 

 

α = 3

α = 4

α = 5

Figure 2.3: Improvement of area coverage by adaptive arrays

doubled compared with single antenna case for α = 5. Since the inverse of

the ECF represents the reduction factor in number of basestation required

to cover the same area using a single antenna, it is clear that using adaptive

arrays can significantly reduce the number of base stations. For example,

for the above mentioned case with α = 5, the number of base stations

can be reduced to only one half of the original number. This is useful in

remote areas with low population. A larger area can thus be served with

less base stations. Alternatively, the transmit power of the mobile units

can be reduced due to the increased gain, or sensitivity, of the receiving
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2.1. Overview of Smart Antennas 15

base station antenna array.

Reduced transmission power: We have seen in (2.1) that the use of adap-

tive arrays can provide a large array gain. This gain consequently leads

to the reduction in required transmission power in base station. If the re-

quired reception sensitivity is kept the same, then the power requirement

of a base station employed an M-element array is reduced to M−1 and

correspondingly the required output power of the base station power am-

plifier can be reduced to M−2. The reduction in the transmission power is

beneficial to user’s health and will reduce implementation cost since high

frequency power amplifiers are often very expensive.

Interference suppression: By using the spatial dimension provided by mul-

tiple antenna elements, it is possible to suppress interfering signals in a

way that is not possible with a single antenna. Hence the system can be

tuned to be less susceptible to interference and the distance between base

stations using the same time/frequency channel can be reduced, which is

beneficial in densely populated area. This will definitely lead to system

capacity improvement.

Spatial diversity: Multiple antennas can also be used to counteract the

channel fading due to multipath propagation. Sufficiently spaced multi-

ple antennas at the receiver give copies of the transmitted signal that has

propagated through channels with different fading profiles. The proba-

bility that all signal copies are in a deep fading simultaneously is small.

Thus, spatial diversity increases the robustness of the wireless link and

this can be utilized to obtain a higher data throughput to decrease the

transmission power. A link capacity improvement is thus obtained.
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2.1. Overview of Smart Antennas 16

Transmitter localization: A receiver array antennas can be used to localize

the transmitter, just as we can use our both ears to localize the source

of a sound in a room without using our eyes. This has application in

positioning services and emergency call localization.

2.1.3 Architecture of Smart Antennas

A typical smart antenna architecture for a base station can be divided into the

following functional blocks:

Radio Unit: This unit mainly consists of antenna arrays, down-conversion

chains and analog-to-digit convertors.

Beamforming Unit: In beamforming unit, the signals received by antenna

array are multiplied by a set of weights to form a beam towards desired

direction. By choosing different sets of weights, it is possible to steer

the beam pattern towards arbitrary directions. Moreover, with appropri-

ate selected weighting vector, smart antennas can achieve beam steering,

adaptive nulling and beam shaping at the same time.

Adaptive Antenna Processor: The function of the adaptive processor unit

is to determine the complex weight vector to be used in beamforming unit.

The weight vector can be optimized according to different criteria which

will be described in detail in section 2.4. In general, this processor can be

divided into the following computation processes:

• Sampling: Snapshot is taken of the training signals coming from all

of the antenna elements.
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2.2. Array Signal Model 17

• DOA estimation: The number of incoming wave fronts and their

DOAs are estimated.

• DOA classification: First, the spatially resolved wave fronts with

different DOAs are extracted from the input data. Then, user identi-

fication decides whether a DOA belongs to a user or to an interference

signal.

• The optimum weight calculation: The processor calculates the

optimum weights to maximize the SINR for each user. A beamform-

ing algorithm forms an antenna pattern with a main beam steered

into the direction of the user, while minimizing the influence of the

interference wave fronts.

• Tracking: The user DOAs are tracked to increase the reliability of

the DOA estimates.

2.2 Array Signal Model

An adaptive array is a system consisting of an array of antenna elements and

a real-time adaptive processor which controls the beamforming network to au-

tomatically adjust its control weights toward optimization of a certain criterion

in accordance with a selected algorithm [30–33]. Sometimes adaptive arrays are

also referred to as adaptive antennas or smart antennas. A typical configuration

of an adaptive array is illustrated in Figure 2.4.

Antenna elements can be arranged in various geometry configurations of

which the most popular are linear, circular and planar (see Figure 2.5). A lin-

ear array consists of array elements whose centers are aligned along a straight
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2.2. Array Signal Model 18

Figure 2.4: An adaptive array with M elements

line. If the spacing between consecutive array elements is equal, it is called

a uniformly-spaced linear array (ULA). Similarly, a circular array contains ar-

ray elements whose centers lie on a circle. Finally, a planar array consists of

array elements whose centers are placed on a single plane. While both linear

and circular arrays can only perform one-dimensional beamforming (horizontal

plane), planar arrays can be used for two-dimension (2-D) beamforming (both

in vertical and horizontal planes).

Although the geometry configurations are different, the principle of adaptive

arrays is the same, and in order to simplify the analysis and synthesis of arrays,

the uniformly spaced linear arrays are often considered. The principles and

mathematics can be then extended to other array geometries [34]. Throughout
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(a) Uniformly spaced linear
array

(b) Circular array (c) Planar array

Figure 2.5: Different geometry configurations of adaptive arrays

this thesis, therefore, we shall restrict our study to the uniformly spaced linear

arrays.

As most of the modern approaches in signal processing are model based,

which means they rely on certain assumptions made on the observation data,

we describe first the prevailing data model used in this thesis first.

The following scenario is assumed and maintained throughout this thesis:

Isotropic and Linear Transmission Medium: The K transmission signals

and an M elements antenna array are in the same plane so that a 1-

dimension angle and 2-dimension coordinate pair is sufficient to describe

the direction of arrival of the signals and the positions of the sensors

respectively. Besides, the transmission medium is assumed to be linear

such that the signals received at one antenna element can be modeled as a

superposition of K wavefronts. The gain of each sensor element is assume

to be identical and equal to 1.

Farfield Assumption: The K signals are located far from the array such that

their direction of propagation is equal at each sensor and the wavefronts

are planar. Thus, the propagating field within the array aperture consists
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of plane waves. This assumption can in general be valid if the dimension

of the antenna array is neglectable compared with the distance from the

signal sources to the array.

Narrowband Assumption: The K emitted signals have the same carrier fre-

quency fc, which means their frequency content is concentrated in the

vicinity of carrier frequency fc. Then, the real component of transmission

signals can be expressed as

si(t) = αi(t) cos[2πfct + βi(t)], for i = 1, . . . , K. (2.7)

The signals are called narrowband if their amplitudes αi(t) and phases

βi(t) vary slowly with respect to the propagation time across the array τ ,

i.e.,

αi(t − τ) ≈ αi(t) and βi(t − τ) ≈ βi(t).

In other words, the narrowband assumption allows the time delay of the

signals across the array to be modeled as simply a phase shift of the carrier

frequency.

AWGN Channel: The noise is modeled as a complex white gaussian process.

The additive noise is taken from a zero mean, spatially uncorrelated ran-

dom process which is uncorrelated with the signals. The noise have a

common variance σ2
n at all sensors and is uncorrelated among all sensors.

Under the above assumptions, we now begin to consider a uniformly spaced

linear array with M elements as illustrated in Figure 2.6, where d is the distance

between adjacent elements.
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Figure 2.6: An adaptive array with M elements

Assume that a plane wave arrives at the array from a direction θ off the

array broadside. The angle θ, measured clockwise from the array broadside, is

called the direction of arrival (DOA) or angle of arrival (AOA) of the received

signal. The wavefront at the (m + 1)th element is later than that at the mth

element a differential distance of d sin θ. Let us take the first element as the

reference element and let the signal at the reference element be s(t), then the

phase delay of the signal at element m relative to element 1 is (m − 1)kd sin θ,
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where k = 2π
λ

is the wave number and λ is the wavelength. Consequently, the

received signal at the mth element xm(t) is given as

xm(t) = s(t)e−j 2π
λ

(m−1)d sin θ, (2.8)

where j =
√
−1 is the imaginary unit and m = 1, 2, . . . , M .

Now let us arrange xm(t) in a vector form as

x(t) = [x1(t) x2(t) . . . xM(t)]T , (2.9)

and let

a(θ) = [1 e−j 2π
λ

d sin θ . . . e−j 2π
λ

(M−1)d sin θ]T , (2.10)

where [·]T denotes the vector/matrix transpose operation. Then (2.9) can be

expressed by

x(t) = s(t)a(θ). (2.11)

The vector x(t) is called the array input data vector and a(θ) is referred to

as the array response vector or steering vector. The array response vector in

this case depends only on the angle of arrival. In general, it may also depend

on individual element response, the array geometry, and signal frequency. The

set of array response vectors over all directions and frequencies is known as

the array manifold. For simple arrays such as uniformly spaced linear array

considered here, the array manifold can be analytically computed. In practice,

however, it is measured as point source responses over various directions and

frequencies and this process of obtaining the array manifold is referred to as

array calibration.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



2.3. Adaptive Beamforming 23

Since there is one-to-one relationship between the spatial frequency −π ≤

µi ≤ π and the range of possible DOAs, the maximum range of DOAs is re-

stricted to the interval −90◦ ≤ θi ≤ 90◦. This in turn requires that the sensor

spacing satisfy d ≤ λ/2. If the sensor spacing does not satisfy this relation-

ship, the array will be subject to grating lobes and there will be an ambiguity

in determining the DOAs. Grating lobes in beam pattern refer to lobes other

than main lobe, and they will amplify signals from undesired directions. This

is called spatial aliasing technically. The above requirement for sensor spacing

is analogous to the Nyquist sampling rate for frequency domain analysis.

Now taking local noise effect into consideration, the input data vector be-

comes

x(t) = s(t)a(θ) + n(t), (2.12)

where the noise vector n(t) is defined as

n(t) = [n1(t) n2(t) . . . nM (t)]T . (2.13)

It should be noted that (2.8) holds for signals with bandwidth much smaller

than the reciprocal of the propagation time across the array. Any signal which

satisfies this condition is referred to as the narrowband, otherwise it is called

wideband.

2.3 Adaptive Beamforming

Beamforming is one type of signal processing used to form the array beams

toward the desired signal sources while simultaneously create nulls toward in-
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terferences. This process of separating desired user from the interferences based

on their spatial characteristics is called spatial filtering. In the reverse or uplink

(from mobile to basestation), the objective of beamforming is to maximize the

signal to interference plus noise ratio (SINR) of the received desired signal. Sim-

ilarly, beamforming is utilized in the forward or downlink (from basestation to

mobile) to maximize the transmission power of basestation to a desired mobile,

thereby maximizing SINR of the downlink. When beamforming is controlled

using adaptive signal processing, it is called adaptive beamforming. In some

cases, it is desired to steer not only the beams but also array nulls toward a

specific location to suppress interferences.

A beamformer is a processor used in conjunction with an array to perform

versatile form of spatial filtering [35]. Broadly speaking, there are two types of

beamformers, namely, narrowband beamformer and broadband beamformer.

A narrowband beamformer samples input signals in spatial domain and is

typically used to process narrowband signals. The configuration of a narrow-

band beamformer is depicted in Figure 2.7. The output of the narrowband

Figure 2.7: Configuration of an adaptive narrowband beamformer

beamformer is a weighted linear combination of received signals at each array
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element, and can be given by

y(t) = wHx(t), (2.14)

where x(t) is input data vector, (·)H represents Hermitian (complex conjugate

transpose) operation of a vector/matrix, and the complex weight vector w is

defined as

w = [w1 w2 . . . wM ]T . (2.15)

Although our thesis focuses on algorithms dealing with narrowband signals,

we take some time to give a brief introduction on broadband beamformer as it

is of increasing importance in modern wireless communications. Different from

the narrowband beamformer, a broadband beamformer samples input signals

in both spatial and temporal domains and is employed to process broadband

signals. A broadband beamformer is also called a spatio-temporal processor

or spatio-temporal equalizer. The structure of a broadband beamformer often

contains in each array element a tapped delayed line (TDL) which is also called

transversal filters. If the tap spacing is sufficiently long and the number of

taps is large, the TDL approximates an ideal filter that allows exact control

of gain and phase at each frequency within the band of interest [36]. The

TDL is not only useful for providing desired adjustment of gain and phase over

the frequency band of interest for wideband signals but also suited for other

purposes such as mitigation of multipath fading and compensation for effects

of finite array propagation delay and interchannel mismatch [36]. A typical

broadband beamformer using TDLs is shown in Figure 2.8.

To model the broadband beamformer, we arrange the signals and complex
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Figure 2.8: Configuration of an adaptive broadband beamformer using tapped
delay lines

weights at the K TDL taps of antenna m as

xm(t) = [xm(t) xm(t − Ts) . . . xm(t − [K − 1]Ts)]
T , (2.16)

and

wm = [wm1 xm2 . . . wmK ]T , (2.17)

and define

x(t) = [x1(t)
T x2(t)

T . . . xM(t)T ]T , (2.18)
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and

w = [wT
1 wT

2 . . . wT
M ]T . (2.19)

Now the output of broadband beamformer can be expressed in exactly the same

form as that of narrowband beamformer in (2.14), that is,

y(t) = wHx(t). (2.20)

2.4 Criteria for Performance Optimization

As we have mentioned earlier in this chapter, the adaptive processor controls

the beamforming network to optimize the beamforming weights according to

a certain criterion. The four most common criteria which are often employed

to obtain optimum weights for adaptive arrays in mobile communications are

Minimum Mean Square Error (MMSE), Maximum Signal to Interference plus

Noise ratio (MSINR), Minimum Variance (MV) and Maximum Likelihood (ML).

These optimum criteria will be reviewed below.

2.4.1 Minimum Mean Square Error

The MMSE criterion is first considered by Widrow et al. in [30]. The criterion

strives to minimize the error between the array output signal y(t) and the desired

signal s(t). In practice, the desired signal s(t) is of course not known. However,

by using some techniques such as the use of training signal or estimation based

on the desired signal characteristics, one can generate a reference signal r(t)

that closely approximates the desired signal to a certain extent. Consider the
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input signal vector given by

x(t) = s(t)a(θ) + n(t), (2.21)

where a(θ) is the array response and n(t) is a vector containing zero mean noise

and uncorrelated interferences. For a narrowband adaptive array, the output

signal is calculated according to (2.14) as

y(t) = wHx(t). (2.22)

The error signal is defined as

ǫ(t) = r(t) − y(t)

= r(t) −wHx(t),

(2.23)

and the weights are chosen to minimize the mean square error (MSE) of the

error signal

E
{

|ǫ(t)|2
}

= E
{

|r(t) − wHx(t)|2
}

, (2.24)

where E {·} denotes the expectation operation. Expanding (2.24) we can have

E
{

|ǫ(t)|2
}

= E
{

|r(t)|2
}

− wTE {x∗(t)r(t)} − wHE {x(t)r∗(t)} + wHE
{

x(t)xH(t)
}

w

= E
{

|r(t)|2
}

− wT r∗xr − wHrxr + wHRxxw,

(2.25)

where rxr = E {x(t)r∗(t)} and Rxx = E
{

x(t)xH(t)
}

are called the correlation

vector and the covariance matrix, respectively. Here (·)∗ denotes the complex

conjugate. The optimum weight vector can be found by setting the gradient of
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(2.25) with respect to w equal to zero [5], i.e.

∇wE
{

|ǫ(t)|2
}

= −2rxr + 2Rxx = 0, (2.26)

which gives the solution

wMMSE = wopt = R−1
xx rxr. (2.27)

Equation (2.27) is often referred to as the Wiener-Hopf equation or the optimum

Wiener solution [5]. By substituting (2.27) into (2.25), we have the optimum

MMSE as

MMSE = E
{

|ǫ(t)|2
}

= E
{

|r(t)|2
}

− rH
xrR

−1
xxrxr. (2.28)

2.4.2 Maximum Signal to Interference plus Noise Ration

(MSINR)

The criterion considered in this subsection is the maximum SINR. With (2.14)

and (2.21), the output of the array can be expressed as

y(t) = wHx(t) = wHs(t) + wHn(t)

= ys(t) + yn(t).

(2.29)

The average output SINR is given by

SINR = E
{ |ys(t)|2
|yn(t)|2

}

= E
{

wHs(t)sH(t)w

wHn(t)nH(t)w

}

=
wHRssw

wHRnnw
, (2.30)
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where Rss = E
{

s(t)sH(t)
}

and Rnn = E
{

n(t)nH(t)
}

. Taking the gradient of

(2.30) with respect to w, we can get

∇wSINR =
∇w(wHRssw)(wHRnnw) − (wHRnnw)∇w(wHRssw)

(wHRuuw)2

=
2Rssw(wHRssw) − 2Rnnw(wHRssw)

(wHRnnw)2
.

(2.31)

The optimum weight wopt can be found by setting ∇wSINR = 0, which leads

to

Rssw =
wHRssw

wHRnnw
Rnnw = SINR ·Rnnw. (2.32)

If Rnn is invertible, then (2.32) can be written as

R−1
nnRssw = SINR · w, (2.33)

which is the generalized eigenvalue problem. Note that the value on the right

hand side of (2.33) is bounded by the maximum and minimum eigenvalues of

R−1
nnRss. The maximum eigenvalue λmax satisfies the following condition,

R−1
nnRssw = λmaxw. (2.34)

Comparing (2.33) with (2.34), it is clear that λmax is the optimum value of

SINR. The eigenvector associated with λmax is wopt, and can be written as

wopt =
R−1

nnRsswopt

SINR
=

R−1
nnE

{

s(t)a(θ)s∗(t)aH(θ)
}

wopt

SINR

=
R−1

nna(θ)aH(θ)woptE {|s(t)|2}
SINR

.

(2.35)

Define

β =
aH(θ)woptE {|s(t)|2}

SINR
, (2.36)
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then the optimum weight vector can be expressed in a similar form of the

Wiener-Hopf equation as

wSINR = wopt = βR−1
nna(θ). (2.37)

2.4.3 Maximum Likelihood (ML)

We rewrite the input signal vector in (2.21),

x(t) = s(t)a(θ) + n(t)

= s(t) + n(t),

(2.38)

and define the probability density function for s(t) given x(t) as px(t)|s(t){x(t)}.

Given x(t), we wish to maximize px(t)|s(t){x(t)}. Since the natural logarithm

is a monotonous function, increasing px(t)|s(t){x(t)} is equivalent to increasing

ln
[

px(t)|s(t){x(t)}
]

. Thus the likelihood function of x(t) can be defined as

L[x(t)] = −ln
[

px(t)|s(t){x(t)}
]

. (2.39)

Assume that the n(t) is a stationary zero mean Gaussian vector with covariance

matrix Rnn, and that x(t) is a Gaussian random vector with mean s(t)a(θ). The

likelihood function can then be expressed as [36]

L [x(t)] = c [x(t) − a(θ)s(t)]H R−1
nn [x(t) − a(θ)s(t)] , (2.40)

where c is a scalar constant independent of x(t) and s(t).

Our objective is to find an estimate ŝ(t) of s(t) which minimizes (2.40).
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Calculating the partial derivative of L [x(t)] with respect to s(t) to zero [36], we

get

∂L [x(t)]

∂s(t)
= −2aH(θ)R−1

nnx(t) + 2ŝ(t)aH(θ)R−1
nna(θ) = 0, (2.41)

and we notice that aH(θ)R−1
nna(θ) is a scalar, then it follows that

ŝ(t) =
aH(θ)R−1

nn

aH(θ)R−1
nna(θ)

x(t). (2.42)

Comparing (2.42) with (2.14), it is easy to realize that the optimum weight

vector wopt using ML criterion is given by

wML = wopt =
R−1

nna(θ)

aH(θ)R−1
nna(θ)

. (2.43)

Defining

β =
1

aH(θ)R−1
nna(θ)

, (2.44)

then the optimal weight vector using ML criterion can be expressed in the

similar form of the Wiener-Hopf equation as

wML = βR−1
nna(θ). (2.45)

2.4.4 Minimum Variance (MV)

Minimum variance (MV), also known as linear constrained minimum variance

(LCMV), is used when the desired signal and its direction are both known a
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priori. In (2.14), the beamformer output can be written as

y(t) = wHx(t) = wHs(t) + wHn(t)

= wHa(θ)s(t) + wHn(t).

(2.46)

In order to obtain the desired signal with a specific gain in a given direction,

we can use a constraint [5]

wHa(θ) = g. (2.47)

Substituting (2.47) into (2.46), we obtain the array output subject to the con-

straint as

y(t) = gs(t) + wHn(t). (2.48)

Since u(t) is assumed to be uncorrelated and zero mean Gaussian, we have

E {y(t)} = gs(t). The variance of the array output then is given by

var {y(t)} = E {[y(t) − gs(t)][y(t) − gs(t)]∗}

= wHRnnw.

(2.49)

Now using the method of Lagrange, we have

∇w

{

wHRnnw − β
[

g −wHa(θ)
]}

= 0, (2.50)

or equivalently,

Rnnw − βa(θ) = 0, (2.51)
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where β is used as Lagrange multiplier. If Rnn is invertible the optimum weight

vector using MV criterion can be expressed as

wMV = βR−1
nna(θ), (2.52)

where

β =
g

a(θ)R−1
nna(θ)

. (2.53)

When g = 1, the MV beamformer is often referred to as the minimum variance

distortionless response (MVDR) beamformer, or the Capon beamformer.

2.5 Adaptive Algorithms

2.5.1 Least Mean Square

The least mean square (LMS) is the most popular adaptive algorithm for con-

tinuous adaptation [37]. The algorithm is based on the steepest-descent method

[38], which chooses the weight vector to minimize the ensemble average of the

error squares toward the MSE. Using the steepest decent method, the updated

weight vector at time (n + 1) is given by [37],

w(n + 1) = w(n) − µ

2
∇wE

{

ǫ2(n)
}

, (2.54)

where µ is the step size, and it needs to satisfy the following condition to ensure

the convergence characteristics of w(n),

0 < µ <
1

λmax

, (2.55)
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where λmax is the largest eigenvalue of the covariance matrix Rxx. From (2.26)

we have

∇wE
{

ǫ2(n)
}

= −2rxr + 2Rxxw(n). (2.56)

Substituting (2.56) into (2.54), we have

w(n + 1) = w(n) + µ[rxr −Rxxw(n)]. (2.57)

In order to update the optimum weight using (2.57), it is necessary to know in

advance both Rxx and rxr, and a convenient way is to use their instantaneous

values,

Rxx(n) = x(n)xH(n), (2.58)

rxr(n) = x(n)r∗(n). (2.59)

Thus (2.57) now becomes

w(n + 1) = w(n) + µx(n)
[

r∗(n) − xH(n)w(n)
]

= w(n) + µx(n) [r∗(n) − y∗(n)]

= w(n) + µx(n)ǫ∗(n).

(2.60)

It is clear that the convergence rate of the LMS algorithm depends on the step

size µ, and as a consequence, on the eigenvalue spread of the covariance matrix

Rxx.
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2.5.2 Sample Matrix Inverse (SMI)

If the desired and reference signals are both known a priori, then the optimal

weights could be computed using the direct inversion of the covariance matrix

Rxx as in (2.27). Since in general the desired and reference signals are unknown

in practice, it is possible to use their estimates from the input data vector as [37]

Rxx(n) =
1

n

n
∑

i=1

x(i)xH(i), (2.61)

rxr(n) =
1

n

n
∑

i=1

x(i)r∗(i). (2.62)

From (2.27), it follows that the updated weight vector using the SMI algorithm

is given by

w(n) = R−1
xx (n)rxr(n). (2.63)

SMI is a block-adaptive algorithm and it has been shown to be the fastest

algorithm for estimating the optimum weight vector [32]. However, it suffers

the problems of increased computational complexity and numerical instability

due to the inversion of a large matrix.

2.5.3 Recursive Least Square (RLS)

RLS algorithm determines the weight vector which minimizes a cost function

Q(n) which is the sum of the error squares over a time window

Q(n) =
n
∑

i=1

γn−i|ǫ(i)|2, (2.64)
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where the error function ǫ(i) is defined in (2.23) and 0 < γ < 1 is the forgetting

factor. Using the least squares method, the covariance matrix and correlation

vector are calculated in the following way [5],

Rxx(n) =
n
∑

i=1

γn−ix(i)xH(i), (2.65)

rxr(n) =

n
∑

i=1

γn−ix(i)r∗(i). (2.66)

Factoring out the terms corresponding to i = n, (2.65) and (2.66) become

Rxx(n) =

n−1
∑

i=1

γ(n−1)−iγx(i)xH(i) + x(n)xH(n) = γRxx(n − 1) + x(n)xH(n),

(2.67)

rxr(n) =

n−1
∑

i=1

γ(n−1)−iγx(i)r∗(i) + x(n)r∗(n) = γr(n − 1) + x(n)r∗(n). (2.68)

Apply Woodebury’s Identity [39], we can obtain the inversion of the covariance

matrix as follows,

R−1
xx (n) = γ−1

[

R−1
xx (n − 1) − q(n)xH(n)R−1

xx (n − 1)
]

, (2.69)

where

q(n) =
γ−1R−1

xx (n − 1)x(n)

1 + γ−1xH(n)R−1
xx (n)x(n)

. (2.70)

The estimated weight vector can be updated using (2.27) as

w(n) = R−1
xx (n)rxr(n)

= γ−1
[

R−1
xx (n − 1) − q(n)xH(n)R−1(n − 1)

]

[γr(n − 1) + x(n)r∗(n)] ,

(2.71)
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which finally gives us

w(n) = w(n − 1) + q(n)
[

r∗(n) − wH(n − 1)x(n)
]

. (2.72)

Since the RLS algorithm utilizes information from the initial sample to estimate

the weight, it is an order of magnitude faster than that of the LMS algorithm

[38]. However, this convergence improvement is achieved at the expense of an

increased computational complexity.
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Chapter 3

DOA Estimation Algorithms

Array processing techniques generally require the spatial properties of the sig-

nals impinging on the array of sensors, where the most important issue lies in

the number of signals of interest and their directions-of-arrival (DOA). Many

methods have been developed in the field of DOA estimation, and they can be

broadly classified into Beamforming techniques, Maximum Likelihood techniques

and Subspace based techniques. We will first present an overview of these DOA

methods in this chapter.

3.1 Beamforming Techniques

The basic idea behind beamforming techniques for DOA estimation [40] is to

“steer” the array in one direction at a time and measure the output power. The

steering locations which results in maximum power yield the DOA estimates.

Given the knowledge of array steering vector, an array can be steered elec-

tronically just as a fixed antenna can be steered mechanically. A weight vector

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



3.1. Beamforming Techniques 40

w can be used to linearly combine the output signal from the sensors to form a

single output signal y(t) as that defined in (2.14). The total output power can

be expressed as,

P (w) =
1

N

N
∑

t=1

|y(t)|2

=
1

N

N
∑

t=1

wHx(t)xH(t)w

= wHR̂xxw,

(3.1)

where N is the number of snapshots. Different beamforming techniques were

developed by taking different choices of the weighting vector w. Three main

techniques of this class are discussed here.

3.1.1 Conventional Beamformer

For any particular direction θ0, the antenna pattern formed using the weight

vector wcb = a(θ0) has the highest gain in the direction θ0 of any possible weight

vector of the same magnitude. The reason is wcb optimally adjust the ampli-

tudes, and aligns the phases of the signal components arriving from θ0 at the

sensors, therefore causing them to add constructively. In conventional beam-

forming approach [6], the beam is scanned over the angular region of interest

and for each look direction θ, the average power output Pcb(θ) of the steered

array is measured as,

Pcb(θ) = wHR̂xxw. (3.2)

The weight vector which maximizes Pcb(θ) is

wcb =
a(θ0)

√

aH(θ0)a(θ0)
. (3.3)
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The above weight vector can be interpreted as a spatial filter which has been

matched to the impinging signal. Intuitively, the array weight vector equalizes

the delays experienced by the signal on various sensors to maximally combine

their respective contributions.

A simulation was conducted employing a 6 element ULA with its omnidi-

rectional sensors separated by half wavelength. Two equi-powered uncorrelated

signals were made to impinge on the array from 10◦ and 30◦. An SNR of 10 dB

was assumed. Figure 3.1 shows the simulation results. It can be seen that the

peaks at 10◦ and 30◦ are not quite obvious and somewhat “averaged‘”.
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Figure 3.1: Conventional beamformer

Inserting (3.3) into (3.2), the output power as a function of DOA, i.e. the

spatial spectrum, is obtained as

Pcb(θ) =
aH(θ)R̂xxa(θ)

aH(θ)a(θ)
. (3.4)
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This method has many disadvantages. The width of the beam and the height

of the sidelobes limit the effectiveness when signals arriving from multiple di-

rections and sources are present, because the signals over a wide angular region

contribute to the measured average power at each look direction. Hence this

technique has poor resolution. Although it is possible to increase the resolution

by adding more sensor elements, increasing the number of sensors increases the

number of receivers and the amount of storage required for the calibration data.

3.1.2 Capon Beamformer

The conventional beamformer works on the premise that pointing the strongest

beam in a particular direction yields the best estimate of power arriving in that

direction. In other words, all the degrees of freedom (equal in number to one

less than the number of sensors) available to the array were used in forming a

beam in the required look direction. This works well when there is only one

signal present. But when there is more than one signal present, the array output

power contains contribution from the desired signal as well as the undesired ones

from other directions.

Capon’s method [41] overcomes this problem by using some degrees of free-

dom to form a beam in the look direction and simultaneously using the remain-

ing degrees of freedom to form nulls in other directions in order to reject other

signals. In terms of the array processor output power, forming nulls in the di-

rections from which other signals arrive can be accomplished by minimizing the

output power and simultaneously constraining a beam (or at least maintain-

ing a unity gain) in the look direction. Thus, for a particular look direction,

Capon’s method uses all but one of the degrees of the freedom to minimize the
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array processor output power while using the remaining degrees of freedom to

constrain the gain in the look direction to be unity, that is,

min P (w) subject to wHa(θ) = 1. (3.5)

The weight vector chosen in this way is often referred to as the minimum vari-

ance distortion-less response (MVDR) beamformer since for a particular look

direction, it minimizes the variance (average power) of the array processor out-

put signal while passing the signal arriving from the look direction with no

distortion (unity gain and zero phase shift signal). The resulting weight vector

is shown to be given by

wcap =
R̂−1

xxa(θ)

aH(θ)R̂−1
xxa(θ)

. (3.6)

Substituting the above weight vector into (3.1), the following spatial spectrum

is obtained,

Pcap(θ) =
1

aH(θ)R̂−1
xxa(θ)

. (3.7)

A simulation was conducted in the same situation as that in the previous

subsection. Figure 3.2 shows the result. It can be seen that the peaks at

10◦ and 30◦ are somewhat well separated compared with that of conventional

beamformer.

Though it provides a better resolution compared to conventional beamform-

ing technique, Capon’s method suffers from many other disadvantages. Capon’s

method fails if other signals correlated with the SOI are present because it in-

evitably uses that correlation to reduce the processor output power without spa-

tially nulling it. In other words, the correlated components may be combined
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Figure 3.2: Capon’s beamformer

destructively in the process of minimizing the output power. Also, Capon’s

method requires the computation of a matrix inverse, which can be expensive

for large array configuration.

3.1.3 Linear Prediction Method

This method estimates the output of one sensor using linear combinations of the

remaining sensor outputs and minimizes the mean square prediction error, that

is, the error between the estimate and the actual output [42]. Thus it obtains

the array weights by minimizing the mean output power of the array subject to

the constraint that the weight on the selected sensor is unity. Expressions for
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the array weights and the power spectrum are given respectively by

wlp =
R̂−1

xxu

uHR̂−1
xxu

(3.8)

and

Plp(θ) =
uHR̂−1

xxu

|uHR̂−1
xxa(θ)|2

(3.9)

where u is a column vector of all zeros except one element which is equal to

1. The position of this element corresponds to the position of selected element

in the array for predicting its output. There is no criterion for proper choice

of this element, however, the choice of this element does affect the resolution

capability of the estimate, and this effect is dependent on the SNR and the

angular separation of the directional sources. The linear prediction method

performs well in a moderately low SNR environment and is a good compromise

in situations where sources are of approximately equal strength and are nearly

coherent.

A simulation was conducted in the same situation as that in the previous

2 methods. Figure 3.3 shows the result. It can be seen that the peaks at 10◦

and 30◦ are more prominent and obvious compared to those of conventional

beamformer and Capon beamformer.

3.2 Maximum Likelihood Method

Maximum likelihood techniques were some of the first techniques investigated

for DOA estimation. This method estimates the DOAs from a given set of array

samples by maximizing the log-likelihood function [43]. The likelihood function
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Figure 3.3: Linear prediction beamformer

is the joint probability density function of the sampled data given the DOAs

and viewed as a function of the desired variables the DOAs, for this case. The

method searches for those directions that maximize the log of this function, the

log-likelihood function. The ML criterion signifies that plane waves from these

directions are most likely to cause the given samples to occur.

The maximization of the log-likelihood function is a nonlinear optimization

problem. In the absence of a closed form solution, it requires iterative schemes

for solutions. There are many such schemes available in the literature, such

as the well-known gradient descent algorithm, Newton-Raphson method [44],

alternating projection method [45] and expectation maximum algorithm [43]

etc.

The ML method gives a superior performance compared to other methods,
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particularly when the SNR is small, the number of samples are small, or the

sources are correlated [43], and thus is of practical interest. For the case of

estimating the direction of a single source, the results obtained by this method

are asymptotically unbiased [46], that is, the expected values of the estimates

are equal to their true values. When a large number of samples are avail-

able, ML techniques become more and more computationally intensive. In such

cases, other computationally more efficient schemes, such as subspace based

techniques, may be used with performance almost equal to this method.

3.3 Subspace Based Method

These methods basically rely on the following properties of the covariance matrix

Rxx of received signal:

1. The space spanned by its eigenvectors can be partitioned into two sub-

spaces, namely, the signal subspace and noise subspace.

2. The steering vectors corresponding to the signal subspace is orthogonal to

the noise subspace.

It should be observed that the noise subspace is spanned by the eigenvectors

associated with the smaller eigenvalues of the covariance matrix and the signal

subspace is spanned by the eigenvectors associated with its larger eigenvalues.

The popular algorithms like ESPRIT and MUSIC belong to this class. A dis-

cussion on the basic concepts of subspace based approach for direction finding

is first given in the next subsection [47].
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3.3.1 Concept of Subspaces

With a given matrix X of size M×N and with complex entries, one may want to

know how many columns (rows) of this matrix are non-parallel or independent

of each other. If there are d ≤ M ≤ N independent columns in X, then

this matrix is said to have a d dimensional range or column space, which is a

subspace of the M-dimensional Euclidean space C
M . The rank of the matrix

is the dimension of this subspace. If d = M , then the matrix is of full rank,

and for d < M , it is rank deficient. Now CM is spanned by the columns of

any unitary matrix in CM×M , the euclidean space of square, complex valued M

dimensional matrices. The same holds for C
N of which the row space of X is

a d dimensional subspace: the columns of any N × N unitary matrix in CN×N

span the vector space CN . Assuming d ≤ M ≤ N , a unitary matrix U can be

chosen such that the d dimensional column space of X is spanned by a subset

of d columns of U, e.g. the first d columns, which together formm a matrix Us.

Let the remaining M − d columns together form a matrix Un. Then,

U = [Us Un]. (3.10)

Since U is a unitary matrix, it can be observed that

1. From UHU = IM ,

(a) UH
s Us = Id,

(b) UH
s Un = 0,

(c) UH
o Un = IM−d.

2. From UUH = IM ,
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(d) UsU
H
s + UnU

H
n = IM .

where Id is the identity matrix of order d, and the same applies for IM−d.

Relations (a)–(d) tell us that any vector u ∈ C
M can be decomposed into

two mutually orthogonal vectors us and un in the spaces spanned by Us and

Un respectively. These two spaces are d dimensional and M − d dimensional

orthogonal subspaces in CM , and their direct sum is equal to CM . These two

subspaces are orthogonal to each other, which implies that in terms of inner

products, the noise free signals and disturbances are independent of one another.

The dominant subspace consists of signals of interest and is referred to as the

signal subspace while its complimentary subspace is referred to as the noise

subspace [47].

Hence, the observation matrix is decomposed to obtain these two subspaces.

Singular value decomposition (SVD) is a mathematical tool which can deocm-

pose X as X = UΣVH , where U and V are matrices whose columns span the

column and row spaces of X respectively and where Σ is an invertible d × d

matrix.

3.3.2 Singular Value Decomposition

A mathematical tool used to decompose the range space of the observation

matrix into two complimentary subspaces is the singular value decomposition

(SVD). The SVD is computationally very robust and allows for high resolution

discrimination against noise contamination.

In terms of the above discussion of subspaces, the singular value decompo-

sition gives rise to following decomposition on the M × N matrix X of rank
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d,

X = UΣVH = [Us Un]







Σs 0

0 Σn













VH
s

VH
n






, (3.11)

where Σ is an M ×N diagonal matrix containing the singular values σi of X in

descending order,

σ1 ≥ σ2 ≥ . . . ≥ σd ≥ σd+1 = . . . = 0. (3.12)

Not that only d singular values are nonzero. The d columns of Us corresponding

to these nonzero singular values span the column space of X and are called left

singular vectors. Similarly the d columns of Vs are called right singular vectors

and span the row space of X (or the column space of XH). However, only the

d largest singular values are of interest to us.

Another way of decomposition is eigenvalue decomposition on the data co-

variance matrix XXH . The main difference between these two approaches is

that SVD based algorithms operate directly on observation matrix X instead of

“squared” matrix XXH , and thus making it superior in practical applications

with finite precision.

In principle, the subspace based methods search for directions such that the

steering vectors associated with these directions are orthogonal to the noise

subspace and are contained in the signal subspace. Once the signal subspace

has been determined, the model parameters can be extracted from it. This

insight gives rise to a number of subspace based approaches. In the following

subsection, one such technique called MUltiple SIgnal Classification (MUSIC)

is discussed.
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3.3.3 MUSIC Algorithm

MUSIC (MUltiple SIgnal Classification) is one of the earliest proposed and the

most popular methods for super resolution direction finding [48]. In terms of

the data model described in section 2.2, the input data covariance matrix Rxx

is written as

Rxx = ARssA
H + σ2

nIM , (3.13)

where Rss is the signal correlation matrix. The eigenvalues of Rxx are values

{λ1 . . . λM} which satisfy the following condition,

|Rxx − λiIM | = 0, (3.14)

where IM is the identity matrix. Substituting (3.13) into (3.14), we can get

|ARssA
H − (λi − σ2

n)IM | = 0. (3.15)

We denote the eigenvalues of ARssA
H by {ν1, ν2, . . . , νM}, and we can then get

the following relationship between νi and λi,

νi = λi − σ2
n. (3.16)

Since A is composed of steering vectors which are linearly independent, it has

full column rank, and the signal correlation matrix Rss is nonsingular as long

as the incident signals are not highly correlated or coherent.

The full column rank of A and non-singularity of Rss guarantee that when

the number of incident signals d is less than the number of elements M , the

matrix ARssA
H is positive semidefinite with rank d. This implies that M − d
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eigenvalues of ARssA
H are zero. From (3.16), this means that M−d eigenvalues

of Rxx are equal to the noise variance σ2
n. Therefore,

λd+1 = λd+2 = . . . = λM = λmin = σ2
n. (3.17)

Once the multiplicity of the smallest eigenvalues is determined as k, an estimate

of the number of signals can be obtained from the following relationship,

d = M − k. (3.18)

In practice, however, when the covariance matrix Rxx is estimated from a finite

data sample, all the eigenvectors corresponding to the noise power will not be

identical. Instead, they will appear as a closely spaced cluster, and the variance

of this spread decreases as the number of samples increases.

We express the eigenvector in association with a particular eigenvalue λi as

qi which satisfies,

(Rxx − λiIM)qi = 0. (3.19)

For eigenvectors associated with the M − d smallest eigenvalues, we have,

(Rxx − σ2
nIM)qi =ARssA

Hqi + σ2
nIMqi − σ2

nIMqi = 0

⇒ARssA
Hqi = 0. (3.20)

Since A has full rank and Rss is nonsingular, these imply that

AHqi = 0 for i = d + 1, . . . , M. (3.21)
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The above equation means that the eigenvectors associated with the M − d

smallest eigenvalues are orthogonal to the d steering vectors that make up matrix

A, that is,

{a(θ1), . . . , a(θd)} ⊥ {qd+1, . . . ,qM}. (3.22)

This remarkable observation forms the corner stone of almost all of the subspace

based methods. It means that one can estimate the steering vectors associated

with the received signals by finding the steering vectors that are most nearly

orthogonal to the d eigenvectors associated with the eigenvalues of Rxx that are

approximately equal to σ2
n.

This analysis shows that the eigenvectors of the covariance matrix Rxx be-

long to either of the two orthogonal subspaces, i.e. the principal eigen subspace

(signal subspace) and the non-principal eigen subspace (noise subspace). The

steering vectors corresponding to the DOAs of signals lie in the signal sub-

space and are hence orthogonal to the noise subspace. By searching through

all possible array steering vectors to find those which are perpendicular to the

space spanned by the non-principal eigenvectors, the DOAs can thus be deter-

mined [6].

To search the noise subspace, a matrix Un containing the noise eigenvectors

is formed as

Un = [qd+1, . . . ,qM ] . (3.23)

Since the steering vectors corresponding to signal components are orthogonal

to the noise subspace eigenvectors, we can have

aH(θ)UnU
H
n a(θ) = 0 (3.24)
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for all the signals and their noncoherent multipath components in the environ-

ment. Then the DOAs of the multiple incident signals can be estimated by

locating the peaks of a MUSIC spatial spectrum determined by

PMUSIC(θ) =
1

aH(θ)UnUH
n a(θ)

. (3.25)

Orthogonality between a(θ) and Un will minimize the denominator and will

hence give rise to peaks in the MUSIC spectrum. The d largest peaks in the

MUSIC spectrum correspond to the directions of arrival of the signals impinging

on the array.

A simulation was conducted employing a 6 elements ULA with omnidirec-

tional sensors separated by half wavelength. Three equip-power and uncorre-

lated signals arrived at the array from 10◦, 20◦ and 40◦ respectively. SNR was

assumed to be 10dB. 50 trials were taken with each trial averaged over 250

snapshots. Figure 3.4 shows the results.

Now we summarize the MUSIC algorithm as follows:

Step 1: Collect input samples xk, k = 1, 2, . . . , N and estimate the input co-

variance matrix as

R̂xx =
1

N

N
∑

k=1

x(k)xH(k). (3.26)

Step 2: Perform eigen decomposition on R̂xx

R̂xxU = UΛ, (3.27)

where Λ = diag{λ1, λ2, . . . , λM}, λ1 ≥ λ2 ≥ . . . ≥ λM are the eigenvalues

of R̂xx and U contains the corresponding eigenvectors of R̂xx.
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Figure 3.4: MUSIC algorithm

Step 3: Estimate the number of signals d from the multiplicity k of the smallest

eigenvalue λmin as d = M − k.

Step 4: Compute the MUSIC spectrum

PMUSIC(θ) =
1

aH(θ)UnUH
n a(θ)

, (3.28)

where

Un = [qd+1, . . . ,qM ] .

Step 5: Find the d largest peaks of PMUSIC(θ) to obtain estimates of the DOAs.
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3.3.4 Minimum Norm Method

Minimum norm method [49] is applicable for linear array, and it finds a DOA

estimate by searching for the location of peaks in the spectrum

PMN(θ) =
1

|wHa(θ)| , (3.29)

where the weight w is chosen with the minimum norm and its first element

equal to 1. The solution of the above problem leads to the following expression

for the minimum norm spatial spectrum

PMN(θ) =
1

|aH(θ)UnUH
n WUnUH

n a(θ)| , (3.30)

where matrix W = e1e
H
1 and e1 is the first column of an M×M identity matrix.

A simulation was conducted employing a 6 element ULA with its omnidirec-

tional sensors separated by half wavelength. Three equi-power and uncorrelated

signals arrived at the array from 5◦, 25◦ and 45◦. SNR was 10dB. 50 trials were

taken with each trial averaged over 250 snapshots. Figure 3.5 shows the result.
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Figure 3.5: Minimum norm beamformer
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Chapter 4

Proposed DOA Estimation

Algorithms

4.1 Introduction

The ever growing number of subscribers and the demand for next generation

data services have made the issues of capacity increase and performance im-

provement for wireless communication systems more and more crucial. These

can be achieved by adding additional carrier frequencies or increasing cell den-

sity in the network which are generally extremely expensive. In recent years,

interference cancelation through beamforming is especially attractive and has

been recognized as one of the most promising and cost-effective techniques to

solve the above-mentioned problems in the third generation and future wireless

communication systems where capacity, carrier frequency and coverage are the

most important issues.

In wireless communication systems, subscribers are usually spatially sepa-
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rated and the use of antenna arrays makes it possible to track the direction-

of-arrival of each signal and locate the position of a subscriber. Based on the

position information, the spatial separation can be exploited through beamform-

ing to multiplex the channel in the spatial dimension as well as in the frequency

and time dimensions to receive and transmit signals in a directional manner. In

this way, the co-channel interference can be reduced, which will subsequently

lead to an improvement in the capacity, carrier efficiency and coverage of a

wireless communication system.

This chapter is organized as follows. In the next section, existing algorithms

for DOA estimation will be reviewed. A brief study about the cyclostationary

property of communication signals followed by the introduction of system model

is presented in section 4.3. Our proposed algorithms for noncoherent signal

environment and coherent signal environment along with theoretical analysis

are described in section 4.4 in detail. Section 4.5 provides some simulation

examples to verify the effectiveness of our proposed algorithm.

4.2 Existing Methods

Since the middle of 20th century, many methods have been developed in the field

of DOA estimation, e.g. classical Fourier analysis, conventional beamforming,

minimum-variance method [41] and maximum entropy method [50] etc. Over

the past few decades, subspace approaches have received much prominence due

to their high resolution performance and low computational complexity. Pio-

neered by Pisarenko [51], different algorithms in this field have been put forward,

such as MUSIC by Schmidt [8], Min-Norm linear prediction by Tufts and Ku-
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maresan [49], state-space methods by Kung [52], ESPRIT by Paulraj [53] and

Matrix Pencil by Ouibrahim [54]. Detailed description of some of the above-

mentioned methods can be found in chapter 3. Generally speaking, these sub-

space based approaches take advantage of certain eigen-structure properties as-

sociated with the special structure of array output covariance matrix for planar

wavefronts to generate spectral peaks (or nulls) in the DOAs. They have very

desirable and attractive properties, such as asymptotically unbiased estimation

of the DOAs and low mean-square error which is comparable to Cramer-Rao

lower bound in some signal environment. Despite all these advantages, the

performance and applications of MUSIC algorithm are limited in practice due

to the following reasons. First, the MUSIC algorithm requires that the total

number of signals impinging on the array must be less than the number of an-

tennas which cannot always be satisfied in real wireless applications. Second,

the spatial characteristics of noise must be known a priori, or be transformation

invariable. Moreover, MUSIC algorithm resolves all the directions of signals ar-

riving at the array, including both desired signals and undesired ones. This

results in both a waste of unnecessary computational efforts in dealing with the

unwanted signals and some extra post-processing techniques to distinguish the

SOIs. Besides, when an undesired signal comes from the direction that is very

close to the desired signals, more antennas and long data samples are required

to distinguish them.

One way to overcome the aforementioned problems is to select and pro-

cess only a signal subset composed of interested signals only. In applications

such as radar, sonar or telecommunications, where almost all signals exhibit

the cyclostationary characteristics [55], the SOIs may have rich properties that

can be exploited to cancel interferences and background noise. So it came the
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Cyclic-MUSIC algorithm in [13]. The cyclic MUSIC algorithm can achieve bet-

ter performance than MUSIC in some environments in which MUSIC operates

unsatisfactorily or even fails to work. For instance, in situation where two sig-

nals impinge on the array from almost the same direction, cyclic MUSIC needs

much less data to give correct DOA estimation than MUSIC if these two signals

have different cycle frequencies. In addition, it is impossible for MUSIC to work

properly if the number of signals arriving at the array exceeds the number of

antennas whereas cyclic MUSIC can still function well as long as the number of

signals sharing the same cycle frequency is smaller than the number of anten-

nas. Moreover, substantial savings in computations can be achieved by using

cyclic MUSIC because it discards the undesired signals and only involves the

processing on SOIs.

Just as every algorithm has its own pros and cons, cyclic MUSIC cannot

escape. One of the drawbacks of cyclic MUSIC is a direct consequence of its

“signal-selective” advantages. When the SOIs do not have a common cycle fre-

quence, we need to apply cyclic MUSIC repeatedly for each cycle frequency of

interest, which results in a repeated computations of cyclic correlation matrix,

singular value decompositions, cyclic MUSIC spectrum calculations and local-

ization of the DOAs. To reduce such an extra waste, we in this chaper put

forward a new algorithm which can obtain the DOAs of all the SOIs by simply

performing the DOA estimation algorithm only once. Therefore, considerable

savings in computations can be achieved. Another drawback of cyclic MUSIC

is its inability to work in multipath environment. The multipath propagation

due to various reflections is often encountered in most wireless communications

systems. The radiated signals from a single signal source reach the array from

different directions, and the coherence inherent in these signals makes the cyclic
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correlation matrix singular. In such a situation, cyclic MUSIC performs as

poorly as the ordinary MUSIC algorithms. To reduce multipath effect, we try

to incorporate a preprocessing technique–spatial smoothing [56]–with our pro-

posed algorithm to enable it to work with coherent signals. Some other works

dealing with cyclostationary signals in the presence of coherent sources are pre-

sented in [57] and [58]. Other algorithms such as “cyclic maximum likelihood

direction finding” are presented in [55] which can resolve the multipath signals

as well. But it requires a search in high dimension which would incur a heavy

computational load, and therefore is not considered in this chapter.

4.3 Problem Formulation

4.3.1 Cyclostationary Property

Random signals in many conventional signal processing methods are considered

as statistically stationary in which the mean or autocorrelation function of the

signal is time invariant. But for most manmade signals encountered in commu-

nications, such as radar and sonar systems, their mean and autocorrelation do

vary periodically with time [55]. This includes, for example, signals with Ampli-

tude Modulation (AM), Binary Phase Shift Keying (BPSK), Quaternary Phase

Shift Keying (QPSK) etc. This attribute is referred to as cyclostationarity,

which enables generation of cyclic spectral lines in the signal spectrum.

Now let us describe cyclostationarity mathematically. Cyclic correlation for

a given signal s(t), is defined as the Fourier transform of the correlation of the
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signal at a certain frequency, let us say α [59]

rα
ss =

∫

E {s(t + τ/2)s∗(t − τ/2)} e−j2παtdt. (4.1)

We know if s(t) is stationary, then its correlation is independent on t. Therefore

the Fourier transform of the correlation of a stationary signal is zero unless when

α = 0. But if s(t) is cyclostationary, then its correlation is periodic. If we denote

the period as Ts, then the Fourier transform of the correlation of the signal will

have large values at frequencies of integer multiples of 1/Ts. These frequencies

are referred to as cycle frequencies. Similarly, cyclic conjugate correlation of the

signal s(t) can be defined as

rα
ss∗ =

∫

E {s(t + τ/2)s(t − τ/2)} e−j2παtdt. (4.2)

Signal s(t) is said to be cyclostationary if rα
ss(τ) or rα

ss∗(τ) is not zero at some

time delay τ and cycle frequency α. Many man-made communication signals

exhibit cyclostationarity due to modulation, periodic gating, etc. They usually

have cycle frequencies at twice the carrier frequency or multiples of the baud rate

or combinations of these. Moreover, some signals may have both nonzero cyclic

correlation and nonzero cyclic conjugate correlation. Note cyclic correlation can

be simplified as [55]

rα
ss(τ) = 〈s(t + τ/2)s∗(t − τ/2)e−j2παt〉∞, (4.3)

rα
ss∗(τ) = 〈s(t + τ/2)s(t − τ/2)e−j2παt〉∞, (4.4)

where 〈•〉∞ represents infinite time average operation.

For a given vector x(t), we can calculate the cyclic correlation matrix and
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the cyclic conjugate correlation matrix which are defined as

Rα
xx(τ) = 〈x(t + τ/2)xH(t − τ/2)e−j2παt〉∞, (4.5)

Rα
xx∗(τ) = 〈x(t + τ/2)xT (t − τ/2)e−j2παt〉∞. (4.6)

Instead of infinite time average, in real practice, these above autocorrelation

matrices are estimated by the finite time operator.

4.3.2 System Model

We consider an uniform linear array (ULA) with M antennas and element spac-

ing d. K narrow band far-field planar waves sk(t) with wavelength λ impinge

on the array from different angular directions θk, k = 1, 2, . . . , K. The steering

vector for the k-th signal can be expressed as

ak = [1, e−j 2π
λ

d sin θk , . . . , e−j(M−1) 2π
λ

d sin θk ]T , (4.7)

then the received data vector x(t) can be written as

x(t) =
K
∑

k=1

sk(t)ak + n(t),

= As(t) + n(t),

(4.8)

where A is the matrix for steering vectors and is defined as

A = [a1, a2, . . . , aK ], (4.9)
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and s(t) = [s1(t), s2(t), . . . , sK(t)]T is source signal vector, and n(t) is additive

noise which is uncorrelated with source signals.

Assume that we are interested in the first two signals s1(t) and s2(t), and

both of them are cyclostationary signals each with cycle frequency αi for i =

1 and 2. Besides, they satisfy the following properties as well,

rα1

s1s1
6= 0, rα2

s1s1
= 0, rα1

s1s2
= rα2

s1s2
= 0, (4.10)

and

rα1

s2s2
= 0, rα2

s2s2
6= 0, rα1

s2s1
= rα2

s2s1
= 0. (4.11)

And we further assume that all the remaining signals sk(t) for k = 3, . . . , K

and noise are not cyclostationary or do not exhibit cyclostationarity at cycle

frequencies αi for i = 1 and 2.

4.4 Proposed DOA Estimation Algorithms

4.4.1 Proposed Algorithm in Noncoherent Environment

Here, we give an extension of the conventional cyclic correlation matrix by

introducing a function ϕ(t) as

ϕ(t) =
Kα
∑

i=1

e−j2παit, (4.12)

where Kα is the number of cycle frequencies among the SOIs. In the environ-

ment described above, Kα equals 2. Now the extended cyclic correlation matrix
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of received data vector can be written as

Rxx(τ) = 〈x(t + τ/2)xH(t − τ/2)ϕ(t)〉∞. (4.13)

Substituting (4.8) into (4.13), we can get

Rxx(τ) =A〈s(t + τ/2)sH(t − τ/2)ϕ(t)〉∞AH

+ 〈n(t + τ/2)nH(t − τ/2)ϕ(t)〉∞.

(4.14)

With (4.10)–(4.11) and the assumptions in section 4.3.2, the above equation can

be further written as

Rxx(τ) = ÃRss(τ)ÃH , (4.15)

where Ã = [a1, a2] is the matrix for steering vectors of signals of interests only,

and Rss(τ) is given by

Rss(τ) =







rα1

s1s1
0

0 rα2

s2s2






. (4.16)

In this case, the problem of DOA estimation returns to the basic cyclic-MUSIC

case, so we can say that as long as M is greater than the number of desired

signals, our proposed algorithm is able to estimate the directions of SOIs no

matter how large the number of total signals is in the system and whether SOIs

share a common cycle frequencies or not.

Now we describe the procedures of our proposed algorithm for DOA estima-

tion:
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• Step 1: Estimate Rxx(τ) in (4.13) by calculating

R̂xx(τ) =

T
∑

t=1

x(t + τ/2)xH(t − τ/2)ϕ(t), (4.17)

where T is the number of samples.

• Step 2: Perform singular value decomposition on R̂xx(τ) and obtain

R̂xx(τ) =

[

Ûs Ûn

]







Σ̂s 0

0 Σ̂n







[

V̂s V̂n

]H

, (4.18)

where

[

Ûs Ûn

]

and

[

V̂s V̂n

]

are matrices for left singular vectors and

right singular vectors respectively. The second matrix in the right hand

side of (4.18) is a diagonal matrix of nonnegative singular values in de-

scending order. In practice, there are no zero singular values in Σ̂n but

only small singular values which satisfy T → ∞, Σ̂n → 0. Then the di-

mension of signal subspace which is spanned by Ûs can be estimated by

Minimum Description Length (MDL) criterion [60].

• Step 3: Calculate the spectrum P (θ) = 1/||ÛH
n a(θ)||2 for all the possible

impinging directions, where a(θ) is the steering vector associated with each

direction, and the peaks in the spectrum correspond to the directions of

SOIs.

4.4.2 Proposed Algorithm in Coherent Environment

It is frequently encountered in wireless communications that the signal received

by the base station from a mobile terminal consists of multiple copies of the
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original signal, i.e. the so called coherent multipath signals, due to reflection or

refraction in the transmission process. To make our proposed algorithm in the

previous section applicable in such environments, we make an improvement by

incorporating with it a preprocessing technique–spatial smoothing. To elaborate

the improved algorithm, we first describe the signal environment considered in

this part.

First, consider the same signal environment as that introduced in section

4.3.2 except that SOI-1 and SOI-2 reach the array with several multipath co-

herent signals. Suppose that we intend to obtain the directions of s1(t) (SOI-1),

s2(t) (SOI-2) and their multipath signals. Let Ki, i = 1 and 2, denote the

number of SOI-i and its multipath components, and θi(k), k = 1, 2, . . . , Ki,

are the directions of SOI-i and its multipath signals respectively. Assume that

SOI-1, SOI-2 and their multipath signals reach the array from different direc-

tions. We use si,k(t) = si(t)βi(k), for k = 1, . . . , Ki and i = 1, 2, to denote the

k-th multipath signal of SOI-i, and we group the SOI-i along with its multipath

signals into a vector si(t) which can be written as

si(t) = si(t)βi, for i = 1 and 2, (4.19)

where βi = [βi(1), . . . , βi(Ki)]
T is the vector of multipath coefficients of SOI-i

with the k-th nonzero element βi(k) representing the complex attenuation of the

k-th multipath signal of SOI-i with respect to the first signal si(t) and βi(1) = 1.

Now we divide the M-element uniform linear array into L subarrays, each

with N antennas, and L and N satisfy the relationship M = L + N − 1. Then

the N × 1 vector x̄l(t) of received signals in the l-th subarray can be expressed
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by

x̄l(t) = ĀBl−1s(t) + n̄l(t), for l = 1, . . . , L (4.20)

where n̄l(t) is the noise vector received by the l-th subarray; Ā is the matrix

containing the steering vectors of length N for SOI-1, SOI-2, their multipath

components and other directional interference signals. Bl denotes the l-th power

of diagonal matrix B which is defined by

B =













B1 0 0

0 B2 0

0 0 B3













, (4.21)

where Bi = diag{bi} with

bi =















[

e−j 2π
λ

d sin θi(1) . . . e−j 2π
λ

d sin θi(k) . . . e−j 2π
λ

d sin θi(Ki)
]T

, for i = 1 and 2,

[

e−j 2π
λ

d sin θ3 . . . e−j 2π
λ

d sin θk . . . e−j 2π
λ

d sin θK

]T

, for i = 3.

(4.22)

According to signals from SOI-1, SOI-2 and interferences, we may also divide

Ā into three submatrices Āi for i = 1, 2, 3 as

Ā = [Ā1 Ā2 Ā3], (4.23)

and s(t) into three subvectors si(t) for i = 1, 2 and 3 as

s(t) = [sT
1 (t) sT

2 (t) sT
3 (t)]T . (4.24)
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Therefore, matrix Āi, i = 1, 2, can be written as

Āi = [āi,1, . . . , āi,Ki
], (4.25)

where āi,k for k = 1, . . . , Ki and i = 1, 2 are steering vectors associated with

SOI-i from direction θi(k), and they consist of the first N elements of that

defined in (4.7) and can be expressed by

āi,k = [1, e−j 2π
λ

d sin θi(k), . . . , e−j(N−1) 2π
λ

d sin θi(k)]T , for i = 1 and 2. (4.26)

We combine the N × 1 steering vectors of interference signals into matrix Ā3.

In the same vein, si(t) for i = 1, 2, 3 have the following expressions,

s1(t) = [s1(t)β1(1), . . . , s1(t)β1(K1)]
T = s1(t)β1, (4.27)

s2(t) = [s2(t)β2(1), . . . , s2(t)β2(K2)]
T = s2(t)β2, (4.28)

s3(t) = [s3(t), s4(t), . . . , sK(t)]T . (4.29)

The cyclic autocorrelation matrix for the l-th subarray can therefore be

expressed as

R̄xx,l(τ) =〈x̄l(t + τ/2)x̄H
l (t − τ/2)ϕ(t)〉∞

=ĀBl−1Rss(τ)B−(l−1)ĀH + 〈nl(t + τ/2)nH
l (t − τ/2)ϕ(t)〉∞,

(4.30)

where Rss(τ) is the cyclic autocorrelation matrix of the source signals and can
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be written by

Rss(τ) =













rα1

s1s1
(τ)β1β

H
1 0 0

0 rα2

s2s2
(τ)β2β

H
2 0

0 0 0













. (4.31)

As Rss(τ) has a special structure of being a block diagonal matrix and along

with the assumptions that interference signals and noise do not exhibit cyclo-

stationarity at cycle frequencies α1 and α2, we can further rewrite (4.30) as

R̄xx,l(τ) = ˜̄AB̃l−1R̃ss(τ)B̃−(l−1) ˜̄AH , (4.32)

with ˜̄A = [Ā1 Ā2], and B̃, R̃ss(τ) being the upper left (K1 + K2) × (K1 + K2)

submatrices of B and Rss(τ) respectively.

Next, we define the spatial smoothed cyclic autocorrelation matrix as

R̄xx(τ) =
1

L

L
∑

l=1

R̄xx,l(τ) = ˜̄AR̄ss(τ) ˜̄AH , (4.33)

where

R̄ss(τ) =
1

L

L
∑

l=1

B̃l−1R̃ss(τ)B̃−(l−1)

=
1

L

L
∑

l=1

B̃l−1ΓΓHB̃−(l−1)

=
1

L

[

Γ, B̃Γ, . . . , B̃L−1Γ
] [

Γ, B̃Γ, . . . , B̃L−1Γ
]H

=
1

L
CCH .

(4.34)
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In the above equation, matrix C is defined as

C = [Γ, B̃Γ, . . . , B̃L−1Γ], (4.35)

and Γ has the following expression

Γ =







γ1 0

0 γ2






, (4.36)

with ΓΓH = R̃ss(τ) and vector γi =
√

rαi
sisi(τ)βi for i = 1 and 2.

With the definition in (4.36), (4.35) can be rewritten as

C = DV, (4.37)

where D is a (K1 + K2) × (K1 + K2) diagonal matrix given by

D =







diag{γ1} 0

0 diag{γ2}






, (4.38)

and V is a block diagonal matrix with the following formula

V =







V1 0

0 V2






. (4.39)

In (4.39), the K1 × L matrix V1 and K2 × L matrix V2 have the following

definitions

Vi =

[

1 bi . . . bL−1
i

]

, for i = 1 and 2, (4.40)

where bl
i is the l-th power of element-wise Hadamard product with the defini-
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tion as (A ⊙ B)(i, j) = A(i, j)B(i, j) provided that A and B are of the same

dimension. Under the assumption that SOI-1, SOI-2 and their multipath sig-

nals come from different directions, it is obvious that Vi for i = 1 and 2 are

Vandermonde Matrices.

Now that matrix D defined in (4.38) is a diagonal matrix with nonzero

diagonal elements, we have rank(D) = K1 + K2. For matrix V, because it is

a block diagonal matrix, its rank is the sum of the rank of its submatrices V1

and V2, i.e. rank(V) = rank(V1) + rank(V2). To calculate the rank of matrix

V, we first prove the following theorem.

Theorem 1. Rank(Vi) = min{Ki, L}, for i = 1 and 2.

Proof. First, we define Pi = min{Ki, L}. Because Vi has a dimension of Ki×L,

it is easy to get the following inequality,

rank(Vi) ≤ Pi. (4.41)

Next, we choose the upper left Pi × Pi submatrix Vi,sub of Vi, which can then

be written as

Vi,sub =



















1 bi(1) b2
i (1) . . . bPi−1

i (1)

1 bi(2) b2
i (2) . . . bPi−1

i (2)

...
...

...
...

...

1 bi(Pi) b2
i (Pi) . . . bPi−1

i (Pi)



















. (4.42)

Let det(Vi,sub) denote the determinant of Vi,sub, and it can be regarded as a

polynomial of bi(1) up to (Pi−1)-th order. Therefore, det(Vi,sub) has Pi−1 roots

at bi(1) = bi(k) for k = 2, . . . , Pi, because when arbitrary two rows in a square
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matrix are equivalent, the matrix is singular and its determinant turns out to

be zero. As a result, det(Vi,sub) can be expressed by the following equation,

det(Vi,sub) = f(bi(2), . . . , bi(Pi))

k=Pi
∏

k=2

[bi(1) − bi(k)] , (4.43)

where f(bi(2), . . . , bi(Pi)) is a polynomial related with bi(2), . . . , bi(Pi) only. Ac-

cording to the assumption we made previously, we have bi(m) 6= bi(n) for m 6= n.

So, the determinant of Vi,sub is nonzero, and therefore, Vi,sub is nonsingular with

its rank equal to Pi. Because the rank of a matrix is greater than or equal to

its submatrix, we have

rank(Vi) ≥ Pi. (4.44)

Combining (4.41) and (4.44), we can reach the conclusion of rank(Vi) = Pi =

min{Ki, L}.

Now we begin to obtain the conditions on N and L in order to make our

proposed algorithm able to resolve the directions of SOI-1, SOI-2 and their

multipath signals simultaneously.

Theorem 2. If N and L satisfy the following conditions,

N ≥ K1 + K2, (4.45)

L ≥ max{K1, K2}, (4.46)

our proposed algorithm with spatial smoothing preprocessing technique has the

ability to discriminate directions of all the signals of interests and their multipath

at the same time.

Proof. In (4.33), as matrix ˜̄A = [Ā1 Ā1] is of dimension N × (K1 + K2), it
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is obvious that N need to satisfy (4.45) to make our algorithm effective in

multipath environment.

From (4.34), we have rank(C) = rank(R̄ss(τ)). From (4.37) along with

the fact that D is a diagonal matrix with rank(D) = K1 + K2, we have

rank(C) = rank(V). With the results in Theorem 1, we can classify the re-

lationship between K1, K2 and L into the following 4 cases:

1. K1, K2 ≤ L. According to Theorem 1, we have rank(Vi) = Ki for

i = 1 and 2. So rank(C) = rank(V) = K1 + K2.

2. K1, K2 > L. According to Theorem 1, we have rank(Vi) = L for i =

1 and 2. So rank(C) = rank(V) = 2L < K1 + K2.

3. K1 ≥ L ≥ K2. According to Theorem 1, we have rank(V1) = L and

rank(V2) = K2. So rank(C) = rank(V) = L + K2 ≤ K1 + K2.

4. K2 ≥ L ≥ K1. According to Theorem 1, we have rank(V1) = K1 and

rank(V2) = L. So rank(C) = rank(V) = K1 + L ≤ K1 + K2.

Summarizing the 4 cases listed above, we can find that it is only when L ≥

max{K1, K2} can the rank of matrix C be equal to K1 + K2, which implies

that R̄ss(τ) is nonsingular and R̄xx(τ) has a rank no less than K1 + K2.

Moreover, after examining (4.32), and with the definitions made from (4.21)–

(4.29), we can also rewrite (4.32) as

R̄xx(τ) =rα1

s1s1
(τ)

{

K1
∑

m=1

K1
∑

n=1

β1(m)β∗
1(n)

[

1

L

L
∑

l=1

ej(l−1)(φ1(n)−φ1(m))

]

ā1(m)āH
1 (n)

}

+ rα2

s2s2
(τ)

{

K2
∑

m=1

K2
∑

n=1

β2(m)β∗
2(n)

[

1

L

L
∑

l=1

ej(l−1)(φ2(n)−φ2(m))

]

ā2(m)āH
2 (n)

}

(4.47)
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where φi(m) = 2π
λ

d sin θi(m) for m = 1, . . . , Ki and i = 1, 2. In (4.47), the signal

components in relation with m-th and n-th signal multipath signal from SOI-1

can be written as

[

ā1(m) ā1(n)

]







ρm,m ρm,n

ρn,m ρn,n







[

ā1(m) ā1(n)

]H

, (4.48)

where

ρm,m =
1

L
β1(m)β∗

1(m)
L
∑

l=1

ej(l−1)[φ1(m)−φ1(m)]

= |β1(m)|2, (4.49)

ρn,n =
1

L
β1(n)β∗

1(n)
L
∑

l=1

ej(l−1)[φ1(n)−φ1(n)]

= |β1(n)|2, (4.50)

ρm,n =
1

L
β1(m)β∗

1(n)
L
∑

l=1

ej(l−1)[φ1(n)−φ1(m)]

= β1(m)β∗
1(n)

1 − ejL[φ1(n)−φ1(m)]

L {1 − ej[φ1(n)−φ1(m)]} , (4.51)

ρn,m =
1

L
β1(n)β∗

1(m)

L
∑

l=1

ej(l−1)[φ1(m)−φ1(n)]

= β1(n)β∗
1(m)

1 − ejL[φ1(m)−φ1(n)]

L {1 − ej[φ1(m)−φ1(n)]} . (4.52)

The determinant of the second matrix in (4.48) can be calculated by

ρm,mρn,n − ρm,nρn,m

=|β1(m)|2|β1(n)|2
{

1 −
{

1 − ejL[φ1(m)−φ1(n)]
}{

1 − e−jL[φ1(m)−φ1(n)]
}

L2 {1 − ej[φ1(m)−φ1(n)]} {1 − e−j[φ1(m)−φ1(n)]}

}

=|β1(m)|2|β1(n)|2
{

1 − sinc2 L
2
[φ1(m) − φ1(n)]

sinc2 1
2
[φ1(m) − φ1(n)]

}

.

(4.53)
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The component in the square bracket in (4.53) is nonzero for φ1(m) 6= φ1(n).

This implies that the matrix defined in (4.48) has rank 2. Therefore, the m-th

and n-th multipath of SOI-1 can be successfully decorrelated with our proposed

algorithm. We can get a similar result if we apply the above analysis to SOI-2.

Therefore, we can come to the conclusion that under the condition in (4.45)

and (4.46), our algorithm is able to fulfill the task in multipath environment

of discriminating all of the directions of SOIs with different cycle frequencies

simultaneously.

The procedures for DOA estimation by our proposed algorithm with spatial

smoothing is the same as that described in section 4.4.1 except that R̂xx(τ) in

step 1 is replaced by spatially smoothing cyclic autocorrelation matrix ˆ̄Rxx(τ)

which is computed according to

ˆ̄Rxx(τ) =
1

L

L
∑

l=1

ˆ̄Rxx,l(τ)

=
1

L

L
∑

l=1

[

T
∑

t=1

x̄l(t + τ/2)x̄H
l (t − τ/2)ϕ(t)

]

,

(4.54)

where T is the number of samples.

4.5 Simulation Results

In this section, we present some simulation results to compare our proposed

algorithm with MUSIC and cyclic MUSIC algorithms to illustrate the effective-

ness and superiority of our proposed algorithm.

We consider in this part a uniform linear array with eight antennas spaced by

a half wavelength of the incoming signals. Among all the incoming signals, two
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of them are signal of interests, and they are assumed to be BPSK cyclostationary

signals with signal-to-noise ratio (SNR) 10 dB. The bit rate of the BPSK SOI-1

is 4 Mb/s, and 3Mb/s for BPSK SOI-2. Then we choose the cycle frequencies

of SOIs as α1 = 4MHz, α2 = 3MHz, and τ is chosen as 0.125µs. The spectral

correlation density function of SOI-1 versus f and α is plotted in Figure 6.1.

Figure 4.1: Magnitude of the spectral-correlation density for BPSK SOI-1

We further assume that the interferences are stationary and directional

sources, and noise is temporally and spatially white Gaussian signals. Sup-

pose both of the interferences and noise are uncorrelated with SOIs. Then, the

above assumptions imply that both of the interferences and noises do not have

nonzero cycle frequencies, and as a result, their contributions at the two cycle

frequencies αi for i = 1 and 2 are theoretically zero.
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4.5.1 Case 1: Noncoherent Sources

In this first simulation example, we verify the superior signal selective ability

of our proposed algorithm. Consider the same signal environment as that de-

scribed above, and SOI-1 and SOI-2 arrive at the array from direction 0◦ and

30◦ respectively along with omnidirectional white Gaussian noise. A stationary

and directional interference with SNR 10dB reaches the array from 35◦. We

assume the cycle frequency used in cyclic MUSIC algorithm is set to equal α2.

We compare the performance of MUSIC, cyclic MUSIC and our proposed algo-

rithms in this situation. The resulting spatial spectrum is shown in Figure 4.2,

and the averaged estimates and the root mean square error (RMSE) over 100

trial runs are compared in Table 4.1.
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Figure 4.2: Spatial spectrum for case 1 with two cyclostationary SOIs of 10dB
from 0◦ and 30◦, and one interference of 10dB from 35◦.
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Table 4.1: Performance comparison of DOA estimation by MUSIC, cyclic MU-
SIC and proposed algorithm in case 1

True θ1 = 0◦ θ1 = 30◦

MUSIC Mean -0.102 30.075
RMSE 0.116 0.088

Cyclic MUSIC Mean 0.150 30.125
RMSE 0.164 0.162

Proposed Algorithm Mean 0.174 30.167
RMSE 0.201 0.192

The rank of signal subspace estimated by MDL criterion is 3 for MUSIC

algorithm, 1 for cyclic MUSIC algorithm and 2 for our proposed algorithm. As

depicted in Figure 4.2, the ordinary MUSIC algorithm resolves all the signals

present in the array, including both the SOIs and interferences. Although MU-

SIC algorithm shows its ability of correct discrimination of all the sources, we

still need extra efforts to distinguish the SOIs from interferences. As to cyclic

MUSIC algorithm, due to its signal selectivity ability, it ignores the interfer-

ences. But it cannot estimate the DOAs for both of the SOIs simultaneously.

We have to re-apply the cyclic MUSIC algorithm with a different cycle fre-

quency to resolve the other SOI from 0◦. Our proposed algorithm overcomes

the problems encountered by MUSIC and cyclic MUSIC algorithms, and allows

to perfectly select the two SOIs with different cycle frequencies and ignore the

interferences by exploiting the two cycle frequencies at the same time.

4.5.2 Case 2: Coherent Sources

Now we begin to consider the case where SOIs reach the array with multipath

signals. The signal environment is the same as that in the previous case except
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that the SOI-1 arrives at the array from −15◦ along with a multipath signal

from 50◦ and multipath coefficients β1(2) = 0.7 + j0.2, while the SOI-2 comes

from 0◦ with a multipath signal from 30◦ and multipath coefficient β2(2) =

0.8 + j0.3. Interference is stationary and directional signal from 60◦. We use

MUSIC, MUSIC with spatial smoothing, cyclic MUSIC, cyclic MUSIC with

spatial smoothing and our proposed algorithm with spatial smoothing in this

case for comparison. Here the cycle frequency used in cyclic MUSIC and cyclic

MUSIC with spatial smoothing is chose as α1 = 4MHz.
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Figure 4.3: Spatial spectrum for case 2 containing two cyclostationary SOIs
each with 10dB. SOI-1 comes from −15◦ with a multipath signal from 50◦ and
multipath coefficient β1(2) = 0.7 + j0.2. SOI-2 reaches array from 0◦ and
one interference with 10dB with a multipath signal from 30◦ and multipath
coefficient β2(2) = 0.8 + j0.3. The interference is stationary with 10dB and has
a DOA of 60◦.

From Figure 4.3 we can see that MUSIC and cyclic MUSIC algorithms fail
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Table 4.2: Performance comparison of DOA estimation by MUSIC, cyclic MU-
SIC and proposed algorithm with spatial smoothing in case 2

BPSK SOI-1 BPSK SOI-2
True θ1(1) = −15◦ θ1(2) = 50◦ θ2(1) = 0◦ θ2(2) = 30◦

MUSIC Mean -14.895 50.107 0.116 30.102
RMSE 0.118 0.125 0.112 0.129

Cyclic MUSIC Mean -15.150 50.505 0.165 30.245
RMSE 0.188 0.484 0.192 0.460

Proposed Algorithm Mean -15.166 49.455 -0.172 30.354
RMSE 0.204 0.693 0.218 0.589

to estimate the DOAs of SOIs and their multipath signals accurately because

of the rank deficit of the signal correlation matrix and signal cyclic correlation

matrix. When these two algorithms are used with spatial smoothing prepro-

cessing technique, both of them can give us correct DOA estimations of SOIs.

For MUSIC, besides the DOAs of two SOIs and their multipath signals, it also

provides us with an undesired information from interference. For cyclic MUSIC,

it can only give us the directions from SOI-1 and its multipath signal, requir-

ing to repeat the algorithm once more for detecting the SOI-2. Our proposed

algorithm with spatial smoothing performs the best among all the aforemen-

tioned algorithms in that it provides with us the only directions of our interests

correctly and exactly. In Table 4.2, the means and RMSE of the arrival angle

estimations are given.

4.5.3 Effect of SNR on Performance of DOA Estimation

Figure 4.4 shows that under signal environment in case 1 , how the input SNR

affects the performance of DOA estimation of SOI-1 by evaluating the root mean
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square error over 200 independent trials and then making an average of all the

results.
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Figure 4.4: Average RMSE versus SNR for environment in case 1

We can find in Figure 4.4 that our proposed algorithm has a similar per-

formance with cyclic MUSIC, but the RMSE obtained by MUSIC algorithm

is the lowest among the three algorithms. This is reasonable because MUSIC

utilizes the ordinary correlation matrix for direction finding, which is better

estimated and contains more of the estimated second-order signal components

than that of cyclic correlation matrices used by cyclic MUSIC and our proposed

method. This can be easily confirmed if we compare the level of spectral cor-

relation density in Figure 6.1, where the signal strength at f = 0 and α = 0 is

the strongest in the f − α plane. However, as the input SNR increasing, the

difference in RMSE between MUSIC and our proposed algorithm is diminish-

ing. So it is preferable to choose our proposed algorithm for DOA estimation in
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high SNR environment as it can overcome the problems of non-signal selectiv-

ity with MUSIC but yet achieve a comparably satisfactory performance as that

with MUSIC.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 5

Noniterative Beam Pattern

Synthesis Techniques

5.1 Introduction

The applications of sensor or antenna arrays can be found in many areas such

as radar, sonar and wireless communications. By linearly combining sensor

outputs, a receiver array can achieve spatial filtering, that is, an enhancement

of signals coming from desired directions and an attenuation of signals coming

from undesired directions. A linear-combining network can also be used as a

feed network for a transmission array, distributing relatively high amount of

power in desired direction and low power in undesired directions. Therefore,

the formation of array pattern is important for both the uplink and downlink

transmission in wireless communications. To synthesis an array pattern is to find

a set of weights such that the array pattern has a desired shape, e.g. a maximum

at the desired direction with a certain beamwidth and a certain sidelobe rolloff.
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This set of weights is sometimes called the array taper or the weight vector.

Generally speaking, there are two types of array pattern synthesis algo-

rithms: non-iterative and iterative, which we will elaborate in chapter 5 and

chapter 6 respectively. In this chapter, a brief review about several non-iterative

beam pattern synthesis algorithms will be given in the next section. Based on

the two algorithms introduced in section 5.2, we, in section 5.3, put forward an

improved algorithm with generalized sidelobe canceler (GSC) structure by using

the cyclostationary property of the transmitting signals. This will ensure that

the blocking matrix spans the interference-plus-noise subspace so that we can

get a better control of the beampattern, especially in the interference-limited

and time-varying environment and when the interference is close to the look

direction. We also consider the case when multipath exists in the desired sig-

nal, and put forward an improved structure to solve this problem. Numerical

results are provided in section 5.4 to show that the our proposed beampattern

synthesis technique is able to reject strong directional interferences as compared

to other type of GSC-based structure.

5.2 Existing Methods

5.2.1 Overview

In this section, we consider several non-iterative approaches to the selection of

weighting vector for linear arrays. All the methods introduced here reach their

optimal solution in one step. However, such an advantage may be at the cost

of heavy computational load or the requirement of certain a priori knowledge

of signal’s characteristics.
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The algorithms which we are going to introduce are:

Delay-and-sum beamformer: The delay and sum beamformer, also known

as conventional beamformer, is based on the idea that if an antenna ar-

ray is being used, and both of the direction of desired signal and array

geometry are known, then the output of each antenna will be the same,

except that each one will be delayed by a different amount. So, if the out-

put of each antenna is delayed appropriately then we add all the outputs

together the signal that was propagating through the array will reinforce,

while noise will tend to cancel.

Minimax design: The array pattern with low sidelobes is often of interest

in practice. An important type of pattern is the minimax pattern in

which the maximum sidelobe level of the synthesized pattern is minimized.

Dolph [61] published a well-known paper in which he identified the array

pattern with a Chebyshev polynomial to obtain the current distribution

of an uniform linear array. The resulting pattern has uniform sidelobes

and is optimal in the sense that the sidelobe levels are the lowest with the

main beam width fixed. However, Dolph’s approach can only be applied

to the ULAs.

Quadratic programming: Ng, Er and Kot developed a non-iterative method

to minimize the L2 norm of the error between the synthesized pattern and

a desired pattern using quadratic programming [16]. This method approx-

imates the integral of the squared pattern error, i.e. the L2 norm squared,

with a matrix expression that is quadratic in the weight vector, and solves

this expression subject to linear constraints. The optimal weight vector

can be obtained in one step instead of through an iterative process. Er
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in [17] and Sim in [4] also proposed some similar methods based on the

idea of quadratic programming, which we will introduce in more detail in

the following subsections.

5.2.2 Method I

This method is proposed by Er [17]. Its major idea is to form a quadratically

constrained minimization problem by minimizing the mean square error between

the array response and the desired response over the mainlobe region while

keeping the level of sidelobe region under certain prescribed level.

Now we first define some variables that will be used in this chapter.

Consider a ULA with M antenna elements. The normalized mean-square

error ε between the desired response and the response of the array system over

certain mainlobe width is given by

ε =
1

β

∫ θ0+∆θ/2

θ0−∆θ/2

|pr(θ) −wHa(θ)|2dθ = wHQ1w − wHp− pHw + 1, (5.1)

where pr(θ) is the desired response, θ0 is the look direction, ∆θ is the mainlobe

width of interest, and Q1 is the M × M dimensional Hermitian matrix given by

Q1 =
1

β

∫ θ0+∆θ/2

θ0−∆θ/2

a(θ)aH(θ)dθ, (5.2)

and p is the M-dimensional vector given by

p =
1

β

∫ θ0+∆θ/2

θ0−∆θ/2

p∗r(θ)a(θ)dθ, (5.3)
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where β is a normalization scalar,

β =

∫ θ0+∆θ2

θ0−∆θ/2

p∗r(θ)pr(θ)dθ. (5.4)

The mean-square value of the array response over the sidelobe regions is given

by

ρ =
1

∆θ1

[

∫ −θ1

−π
2

|g(θ)|2dθ +

∫ π
2

θ1

|g(θ)|2dθ

]

= wHQ2w, (5.5)

where ∆θ1 = π/2− θ1, g(θ) = wHa(θ) is array’s beam pattern response and Q2

is the M × M dimensional Hermitian matrix given by

Q2 =
1

∆θ1

[

∫ −θ1

−π/2

a(θ)aH(θ)dθ +

∫ π/2

θ1

a(θ)aH(θ)dθ

]

. (5.6)

We can rewrite (5.1) as

ε = (w0 −w)HQ1(w0 − w) + α0, (5.7)

where α0 = 1 −wH
0 Q1w0 is a scalar and w0 is the M-dimensional vector satis-

fying Q1w0 = p.

In method I, the optimal weight vector ŵ1 is the solution to the following

constrained optimization problem:

min wH
1 Q1w1 −wH

1 p − pHw1 + 1 subject to wH
1 Q2w1 ≤ ξ. (5.8)

With the aid of Lagrangian multiplier γ, the optimal weight vector can then

be found as:

ŵ1(γ) = (Q1 + γQ2)
−1p, (5.9)
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and the optimal Lagrangian multiplier γ̂ is the root of the following equation

pH(Q1 + γQ2)
−1Q2(Q1 + γQ2)

−1p = ξ. (5.10)

Now, we will give simulation examples to illustrate the performance of

method I. Suppose we employ a 32-element ULA with half-wavelength spac-

ing. The desired response pr(f0, θ) has the pattern of linear constrained mini-

mum variance (LCMV) beamformer. The look direction is set to 0◦, the main-

lobe of interest is [−3.0◦, + 3.0◦] and the sidelobe regions are [−90◦, − 3.6◦]

and [+3.6◦, + 90◦]. Figure 5.1 shows the the directional patterns using the

quadratic constraint method I with error limit ξ = 10−2 and ξ = 10−4 respec-

tively. We can see by choosing different values of ξ, a trade-off can be made in

terms of beamwidth and sidelobe level in the achieved beam pattern. In this

case, the bigger the error limit, the higher the sidelobe level.

5.2.3 Method II

The main idea of another effective pattern control algorithm is to match the

array response to a desired response over mainlobe width and minimize the mean

square value of the array response over sidelobe regions. The optimum weight

vector ŵ2 is the solution to the following constrained optimization problem

min wH
2 Q2w2 subject to wH

2 Q1w2 −wH
2 p− pHw2 + 1 ≤ ε, (5.11)

where 0 ≤ ε < 1 defines a normalized error limit over the mainlobe. From (5.7),

we can have ε = (w0 −w2)
HQ1(w0 −w2) + α0. We let ǫ = ε − α0, then (5.11)

can be expressed as (w0 − w2)
HQ1(w0 − w2) ≤ ǫ. With the same approach in
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(a) Method I, error limit ξ = 10−2
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(b) Method I, error limit ξ = 10−4
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(c) Comparison of method I with different
values of error limit

Figure 5.1: Beam patterns of method I

subsection 5.2.2, the optimal weight vector can be written as

ŵ2(α) = (Q1 + 1/αQ2)
−1p, (5.12)

where the optimal lagrangian multiplier α̂ is the root of the following equation,

wH
0 Q2(Q2 + αQ1)

−1Q1(Q2 + αQ1)
−1Q2w0 = ǫ. (5.13)

Now, we give examples for method II in Figure 5.2. The assumption is the

same as that in the previous subsection. We can have the same observation that

different error limit results in different sidelobe level and main beamwidth. But
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this time, the smaller the error limit, the higher the sidelobe level.
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(a) Method II, error limit=10−1
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(b) Method II, error limit=10−2
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(c) Method II, error limit=10−4
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(d) Comparison of method II with different
values of error limit

Figure 5.2: Beam patterns of method II

5.2.4 Relationship Between Method I and Method II

Comparing (5.9) with (5.12), it is easy to find out that if 1/α̂ = γ̂, then the two

optimum weights are identical. Since α̂ is the root of (5.13), it is possible to

find an ε such that for a given ξ, 1/α̂ = γ̂.

Note that (5.13) can also be expressed as

1/α̂pH (Q1 + 1/α̂Q2)
−1 Q2 (Q1 + 1/α̂Q2)

−1 p + pH (Q1 + 1/α̂Q2)
−1 p = 1 − ε.

(5.14)
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Substituting γ̂ = 1/α̂ into (5.14) and with some further calculation, we can

obtain

ε = 1 − γ̂ξ − pH (Q1 + γ̂Q2)
−1 p. (5.15)

Although the relationship between ξ and ε is not simple, the significance of

(5.15) is that for a given design value of ξ, γ̂ can be determined by (5.10),

and (5.15) can be used to calculate the mean square error over the mainlobe

of interest. Table 5.2.4 gives a numerical relationship between ξ and ε which

Table 5.1: Relationship between ξ and ε

ξ 10−3 10−4 10−5 10−6 10−7

ε 0.00833 0.006537 0.14316 0.60755 0.86383

reveals that a bigger ξ corresponds to a smaller ε. It coincides exactly with

what we have discovered in Figure 5.1 and Figure 5.2. In Figure 5.1, a bigger

ξ results in a higher sidelobe and wider main beamwidth which can also be

achieved with a smaller ε in Figure 5.2.

5.3 Proposed Non-iterative Beam Pattern Syn-

thesis Algorithms

Sim proposed a algorithm for beam pattern synthesis with GSC structure in [4].

Method I was used in the main beam to shape the quiescent beam pattern,

and the blocking matrix B in auxiliary beam was chosen as the eigenvectors

corresponding to the n0 smallest eigenvalues of Rxx which is the correlation

matrix of input signals x(k). Its structure is shown in Figure 5.3. This blocking

matrix spans the noise subspace when the interference is much stronger than the

desired signal, so it is unable to cancel the effect of strong interference signals
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Figure 5.3: GSC Structure

in such circumstances.

5.3.1 Proposed Algorithm for Environment Without Mul-

tipath

Consider a ULA that receives the planar narrow band signal from far field,

which can be expressed as

x(t) = a(f0, θ0)s(t) + n(t), (5.16)

where a(f0, θ0) is steering vector of signal of interest (SOI) from θ0 at frequency

f0, s(t) is the SOI which exhibits spectral correlation at a particular α, the

vector n(t) is interference and noise vector which has different cycle frequencies

or does not exhibit cyclostationarity.

Instead of calculating the correlation matrix of the received signal in the

conventional method of choosing B, we calculate the cyclic correlation matrix
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which is estimated by

Rα
xx(τ) =〈x(t + τ/2)xH(t − τ/2)e−j2παt〉∞

≈a(f0, θ0)r
α
ss(τ)aH(f0, θ0),

(5.17)

and rα
ss(τ) is the cyclic correlation value of the desired signal s(t). Here n(t)

disappears because evaluating the cyclic correlation at α retains only SOI. Ap-

plying singular value decomposition (SVD) on Rα
xx(τ), we obtain

Rα
xx(τ) = UΣVH = [Us Un]







Σs 0

0 Σn













VH
s

VH
n






, (5.18)

where U and V are unitary matrices, and Σ is a real non-negative diagonal

matrix. Since the rank of Rα
xx(τ)) is one, we have aH(f0, θ0)Un = 0T . So

choosing Un as blocking matrix can effectively block away SOI while keeping the

interference and noise in auxiliary beam regardless of the strength of undesired

signals.

However, in multipath environment, this algorithm is unable to distinguish

the SOI from its multipath components, and consequently, cannot generate nulls

in the multipath direction. In the next part, we will give another algorithm for

improvement.

5.3.2 Proposed Algorithm for Environment With Multi-

path

Let us first note one simple but important property of cyclic correlation.

Lemma 1. If x(t) is a cyclostationary process with cyclic correlation function
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rα
xx(τ) and y(t) = x(t + T ), then rα

yy(τ) = rα
xx(τ)ej2παT .

Consider the same situation as before, except that there are K coherent

signals. The signal received by the i-th antenna is

xi(t) =

K
∑

k=1

βks(t − τk + (i − 1)△k) + ni(t), (5.19)

where the βk and τk are the attenuation in amplitude and phase delay associ-

ated with the k-th multipath and △k is inter-element phase shift which can be

calculated as △k = d
λ

sin θk. With the definition in (4.5), we have the (m, n)-th

element of the cyclic correlation matrix Rα
xx(τ) as

rα
smsn

(τ) =〈sm(t + τ/2)s∗n(t − τ/2)e−j2παt〉∞

=〈
K
∑

k=1

βks(t + τ/2 − τk + (m − 1)△k)×

K
∑

p=1

βps(t − τ/2 − τp + (n − 1)△p)e
−j2παt〉∞.

(5.20)

With Lemma 1, we can further simplify the above equation as

rα
smsn

(τ) =
K
∑

k=1

K
∑

p=1

βkβpr
α
s (τ + τp − τk + (m − 1)△k − (n − 1)△p)×

ejπα(−τp−τk+(m−1)△k+(n−1)△p)

=

K
∑

k=1

βke
−jπατkejπα(m−1)△krα

s (τ)

K
∑

p=1

βpe
−jπατpejπα(n−1)△p .

(5.21)
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We define two vectors

zi =[ejπα(i−1)△1 , . . . , ejπα(i−1)△K ]T , (5.22)

q =
[

β1e
−jπατ1, . . . , βKe−jπατK

]T
, (5.23)

then we have

rα
smsn

(τ) = zT
mqrα

s (τ)qT zn = zT
mFzn, (5.24)

where F = qrα
ss(τ)qT . Combining all the elements to form cyclic correlation

matrix Rα
xx(τ), we obtain

Rα
xx(τ) = [a(α, θ1) . . . a(α, θK)]F[a(α, θ1) . . . a(α, θK)]T = UKFUT

K ,

where UK = [a(α, θ1) . . .a(α, θK)] is a M × K matrix. As rank(F) = 1 in

multipath environment, performing SVD will not be able to resolve the multi-

path component from the direct path component. So spatial smoothing (SS)

technique is employed to de-correlate signals first.

We divide the array into L overlapping subarrays, with N antennas in each

subarray, and min(L, N) ≥ K, so L + N − 1 = M . The l-th to N + l − 1-th

antennas form the l-th subarray, and its received signal is

x(l)(t) = [xl(t) . . . xN+l−1(t)]
T , (5.25)

with cyclic correlation matrix as

R(l)α
xx (τ) = U

(l)
K FU

(l)T
K , (5.26)
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where U
(l)
K = ŪKD(l−1), and here ŪK represents the first N rows in UK and D

is a diagonal matrix which is defined as D = diag{ejπα△1 . . . ejπα△K}. Although

F is still a rank one matrix, by adding L cyclic correlation matrix altogether,

we obtain the new cyclic correlation matrix after spatial smoothing,

R̄α
xx(τ) =

1

L

L
∑

l=1

R(l)α
xx (τ) = ŪK

(

L
∑

l=1

D(l−1)FD(l−1)T

)

ŪT
K . (5.27)

As we have the assumption that min(L, N) ≥ K, we are sure this time R̄α
xx(τ)

has full rank. Then we can apply SVD on R̄α
xx(τ) and get the result

R̄α
xx(τ) = ŪΣ̄V̄H =

[

Ūs Ūn

]







Σ̄s 0

0 Σ̄n













V̄H
s

V̄H
n






, (5.28)

where Σ̄s = diag{η1, η2, . . . , ηK} denotes the singular value matrix for the K

multipath signals, with ηi ≥ ηj for i < j; and Ūs = [us1
, us2

, . . . , usK
] are

the corresponding left singular vectors. The signal path with largest singular

value holds the most energy, and its direction is our interest. So we choose the

blocking matrix as

B = [us2
, . . . , usK

, Ūn]. (5.29)

This new blocking matrix can effectively screen the SOI and enable the multi-

path, interference and noise components to pass into the auxiliary beam. The

improved beamforming structure is shown in Figure 5.4.
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Figure 5.4: Detailed structure for our proposed algorithm

5.4 Simulation Results

Case 1 We employ a 32-element uniform linear array with half-wavelength

spacing to illustrate the performance improvement of our algorithm. A desired

beampattern response pr(f0, θ) of LCMV beamformer is used. The look direc-

tion is set to 0◦, the mainlobe of interest is [−3.0◦, + 3.0◦] and the sidelobe

regions are [−90◦, − 3.6◦] and [+3.6◦, + 90◦]. The environment consists of

two uncorrelated 16-QAM directional interferences of power 30 dB with carrier

frequency of 100MHz and 200MHz, and from −30◦ and 20◦ respectively. The

desired BPSK signal of 0 dB, with baud rate= 16kbps, carrier frequency= 0,

comes from broadside at 0◦. No multipath is present in the system. The signal

to noise ratio is 15 dB, p is set to 3 and n0 is set to 5. As we can see from Figure

5.5(a), there are more interference components at the output of the auxiliary

beam for our improved algorithm than for the algorithm in [4]. This implies

that more interferences are being subtracted in our proposed algorithm, which

results in a much deeper null in the interference direction as shown in Figure

5.5(b).

Case 2 Now, consider the same situation as aforementioned except there
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(a) Comparison of auxiliary beam

(b) Comparison of final output

Figure 5.5: Comparison between the algorithm in Sec 5.3.1 and algorithm in [4],
error limit=10−2

is one strong interference with power 30 dB, carrier frequency 100 MHz, baud

rate 16 kbps, from −30◦ direction. The desired signal reaches array companied

with a multipath component with power −10 dB and direction 40◦. In order
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to resolve the multipath component, we form 2 subarrays, each of them has 31

antennas. We can see from Figure 5.6 that in our improved algorithm, nulls are

directed at both of the interference and multipath signal directions, which can

not be achieved by Sim’s algorithm.

(a) Comparison of auxiliary beam

(b) Comparison of final output

Figure 5.6: Comparison between the algorithm in Sec 5.3.2 and algorithm in [4],
error limit=10−2
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Chapter 6

Iterative Beam Pattern

Synthesis Techniques

6.1 Introduction

To implement high performance beamformer, the antenna array requires func-

tions that can acquire the interference statistics before pattern synthesis process.

The cost of this procedure could turn out to be impractical for several reasons:

• The interference in the system can be time-varying, which is often the case

in communications applications. This would require continuous retrans-

mission of information of the interference parameters from the transmitter

to receiver.

• The computational cost of the solution may render it impractical.

Instead of having a solution where all the interference informations are re-

quired to be a priori, we could choose an implementation which adaptively
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estimates the interference, and as time proceeds, incorporates this information

into a dynamic pattern synthesis formation. Hence come the more and more

popular adaptive beamforming techniques in the past few decades, which can

cancel out interferences without knowing their directions beforehand and point

its mainbeam in the desired signal’s direction. However, in an adaptive beam-

former, sidelobes in directions of no interference are usually left uncontrolled

and can be undesirably high.

In this chapter, we investigate and develop new adaptive beamforming al-

gorithms that are not only able to perform conventional adaptive beamforming

functions, but also able to control the adapted beam patterns including both the

sidelobe area and main beam. The techniques from iterative pattern synthesis

and adaptive beamforming are merged to provide such capability.

In the following part, Section 6.2 presents in brief about the Frost algorithm;

several existing iterative beam pattern synthesis algorithms, especially the al-

gorithm proposed by Zhou, are introduced in section 6.3; in section 6.4, we

present our proposed algorithm in detail; computational cost of the above men-

tioned algorithms are analyzed and compared in section 6.5 to show that our

algorithm is superior in saving computational costs over other algorithms; and

finally simulation results are given in Section 6.6 to illustrate the effectiveness

of our proposed algorithm.
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6.2 Existing Methods on Adaptive Beamform-

ing

In the family of adaptive beamforming techniques, the use of Least Mean Square

(LMS) algorithm to estimate optimal weights of an array is widespread and its

research has been of great interest for some time. The algorithm is referred to as

constrained LMS algorithm [7,21] when the weights are updated in accordance

with certain constrains which reflect prior knowledge of certain parameters or

properties of the problem under consideration, e.g. DOA of user signals, whereas

it is referred to as unconstrained LMS algorithm when the weights are not con-

strained at each iteration. The latter algorithm is often applied when weights

are updated using reference signals and without the knowledge of DOA of de-

sired signal. A significant feature of LMS-type algorithms is their simplicity;

moreover, it does not require measurements of the pertinent correlation func-

tions, nor does it require matrix inversion. Despite all these advantages, we

can only control the value of certain directions rather than the full range of

beam pattern. As a result of this, although the resulting beam pattern satisfies

our expectation on certain directions, it may give high output levels on the re-

maining sidelobe regions, increasing the noise gain. This may be undesirable in

certain applications such as mobile communications because unwanted signals

may come in the system and interrupt the normal system operation [62]. Next

we begin to describe frost adaptive beamforming in brief.

Consider the following optimization problem,

w = arg min
w

Jw subject to CHw = f , (6.1)
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where w is weight vector of length M , C is the M × p constraint matrix, and f

is the p×1 constraint vector with p being the number of linear constraints. The

most commonly used objective function in literature is the one that uses mean

output energy, i.e., Jw = wHRxxw, where Rxx is the M × M autocorrelation

matrix of input signal. We can obtain the solution to (6.1) by using Lagrange

multipliers [21], and the result turns out to be

wopt = R−1
xxC(CHRxxC)−1f . (6.2)

Frost [21] proposed an algorithm to estimate wopt by using steepest descent

algorithms, or more precisely, by using the LMS algorithm for updating the

weight vector.

The narrowband version of constrained LMS algorithm proposed by Frost

[21] uses as an estimate of autocorrelation matrix R̂xx, at time instant k, the

outer product of input signal vector x(k) by itself, i.e. R̂xx = x(k)xH(k). In

this case, the coefficient-update equation becomes:

w(k + 1) =w(k) + µe(k)[I −C(CHC)−1CH ]x(k) + C(CHC)−1[f − CHw(k)]

=P[w(k) + µe(k)x(k)] + f̃ ,

(6.3)

where I is the M × M identity matrix and P is the projection matrix onto

subspace orthogonal to the subspace spanned by constraint matrix C and is

given by

P = I − C(CHC)−1CH ; (6.4)
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f̃ is quiescent weight vector which can be calculated by

f̃ = C(CCH)−1f ; (6.5)

µ is gradient step size and e(k) is the error signal between reference signal and

array output. In case of absence of reference signal, i.e. the reference signal is

zero for all time instants, e(k) is simply the negative of array output.

We notice from (6.3) that the term multiplied by the projection matrix P,

i.e. w(k)+µe(k)x(k), corresponds to the unconstrained LMS solution, and then

it is projected onto the homogenous hyperplane CHw = 0 and moved back to

the constraint hyperplane CHw = f by adding vector f̃ .

Figure 6.1: Geometrical interpretation of Frost adaptive beamformer
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Figure 6.1 shows how weights are updated and how the projection system

works by using a vector diagram for a 2-dimensional weight vector system. Point

A in the figure indicates the quiescent weight vector f̃ . Point C is the position

of the weight vector after the completion of the k-th iteration. It is the cross-

section of the constraint hyperplane H1 and the power surface wH(k)Rxxw(k)

(not shown in the figure). Point B denotes the projection of w(k) onto the

orthogonal complementary subspace of constraint subspace. Vector
−−→
CD is the

gradient vector at k-th time instant, so point D denotes wunc(k + 1) for un-

constrained LMS algorithm. For constrained LMS algorithm, the weights are

updated by adding the gradient vector and then projecting it onto homogenous

hyperplane H0. This operation is indicated by point E in the figure. Then the

quiescent weight vector f̃ is added to restore the constraint. This action moves

the updated weights towards point F. The process continues until the optimal

weight vector is achieved.

6.3 Existing Methods on Iterative Beam Pat-

tern Synthesis

6.3.1 Relationship Between Sidelobe and Interference

To synthesize an array pattern is to find a set of weights such that the array

pattern has a desired shape, e.g. a maximum at the desired signal angle and a

certain sidelobe rolloff. Many algorithms have been developed in this area, and

the literature review for this part has been presented in section 1.2. With the

algorithms mentioned there, we can obtain a beam pattern which is directed
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towards the direction of signal of interest with sidelobe equal to or lower than

certain predefined level. Its major disadvantage is that on directions of inter-

ferences, instead of producing deep nulls, these algorithms can only ensure the

output on these directions is no higher than certain level. Besides, calculation

of matrix inverse is frequently required by these algorithms, which may give

rise to a heavy computational burden. Now, we begin to describe the under-

lying principles which are frequently used in various beam pattern synthesis

algorithms.

The response of an adaptive array pattern to interfering signals depends

on the number of interfering signals in relation to the number of degree of

freedom in the array. An M-element array has M − 1 degrees of freedom in the

array [33]. One degree of freedom is used to form a pattern maximum on the

desired signal. The remaining M − 2 degrees are available to null interference

signals. If M−2 or fewer interference signals are incident on the array, the array

usually forms a null on each interference direction. However, if more than M−2

interference signals are incident, the array does not normally null the individual

interference signals but instead forms a compromise pattern that minimizes the

total interference power at the array output.

The response of an adaptive array to an interference signal also depends on

the interference signal strength. The stronger the interference, the lower the

adapted pattern level. Figure 6.2 and Figure 6.3 illustrate this behavior. In

Figure 6.2, a single interference signal is incident on a ten-element adaptive

array from θi = −30◦. The elements of the array are isotropic and spaced every

half-wavelength; the desired signal is at θd = 0◦. In Figure 6.2(a), the INR is

−10 dB, in Figure 6.2(b), it is 0 dB and in Figure 6.2(c) it is +10 dB. Note
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Figure 6.2: Adapted patterns with one interference signal

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



6.3. Existing Methods on Iterative Beam Pattern Synthesis 110

that the adapted pattern level at θ = −30◦ decreases as the interference power

is increased.

Figure 6.3 shows what happens when there are more interference signals than

the number of degrees of freedom in the array. In Figure 6.3, 20 interference

signals are incident on the same ten-element array from a 28.5◦ angular region

centered at θ = −30◦. The INR (for each interference signal) is again varied

from −10 to +10 dB. Note again the sidelobe drops as the INR is inceased. The

pattern design algorithm described below takes advantage of this behavior to

force the sidelobes down.

6.3.2 Olen and Bell’s Algorithms

Olen’s Algorithm: The underlying idea for this approach is to assume the

given array elements are used as elements of an adaptive array [63]. The

main beam is steered in the desired direction by choosing the steering

vector for that direction. To reduce sidelobe, a large number of inter-

fering signals is assumed to be incident on the array from the sidelobe

region. The adapted pattern is then computed and compared with the

design objectives. At any angle where the sidelobes are too high or too

low, the interference power is increased or decreased accordingly and then

the weights are recalculated. This process is repeated iteratively until a

suitable final pattern is obtained. For a given set of elements, we can find

a set of array coefficients that steer the main beam in a given direction

and yield sidelobes meeting a specified criterion, if such a set of array co-

efficients exists. If the pattern specifications cannot be met with the given

elements, the algorithm finds the best attainable pattern. Because this
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Figure 6.3: Adapted patterns with 20 interference signals
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approach is a numerical technique, it does not yield analytic solutions for

the weights. However, being a numerical technique, it can be used with

much more general types of problems than an analytical approach. The

method easily handles arrays in which the element patterns of different el-

ements are different and the element locations are arbitrary. It can also be

used to obtain patterns whose sidelobe levels vary arbitrarily with angle.

Despite all these advantages, it leaves the mainlobe uncontrolled, and

also, in each iteration, it requires large computation of outer product and

matrix inverse which makes it difficult to realize in real-time DSP chips.

For details of the algorithm, please refer to [1].

Bell’s Algorithm: This algorithm takes a similar form with the previous one,

and explains the beam pattern adaptation from the perspective of a trade-

off between directivity and sidelobe level.

With this algorithm, we can obtain tight sidelobe control by defining a set

of small sectors in the sidelobe region and setting the desired beam pattern

to zero in these regions. The desired weight vector in each sector is just the

all-zero vector. In the limit of infinitesimally small sectors, the pattern

error constraints become constraints on the magnitude squared of the

beam pattern at every point in the sidelobe region. The allowed deviation

can be set to the maximum allowable sidelobe level, and the sidelobe

levels can be controlled directly. By choosing wide but relatively small

sectors, we can still control sidelobe levels fairly accurately. Furthermore,

if we choose to constrain pattern “error” only in the sidelobe region and

not in the main beam, the problem can be greatly simplified. So, the

optimization problem becomes to minimize the total output power subject
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to unit response at look direction and squared magnitude of sidelobe level

is less than our pre-determined value. We can add a loading factor for each

sector in the solution for the previous optimization problem, we are able

to calculate the weight in an iterative manner by adjusting the loading

factor according to whether a constraint is exceeded or not in that sector.

Similar with previous algorithm, it is usually necessary to adjust the sec-

tors included in sidelobe region at each iteration. As sidelobes are pushed

down, the main beam widens, and some sectors previously in the sidelobe

region fall in main beam. The constraints on these sectors must then be

dropped. Please refer to [2] for details.

6.3.3 Zhou’s Algorithm

To overcome the above problems of uncontrolled mainlobe region, Zhou pro-

posed a new pattern synthesis method with iterative weighted least squares [3].

6.3.3.1 Formulation

Let ε be the sum of the weighted pattern errors over the set of angles θ1, θ2, . . . , θN ,

ε =

N
∑

i=1

f(θi)
∣

∣wHa(θi) − pr(θi)
∣

∣

2
, (6.6)

where f(θi) is the weighting function and pr(θi) is the reference pattern. The

problem of pattern synthesis can be formulated as finding the optimal weight

vector wopt that minimize the error ε which can be expressed as

wopt = R−1
aa rd, (6.7)
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where Raa is the covariance matrix and rd is the cross-correlation vector defined

as

Raa =
N
∑

i=1

f(θi)a(θi)a
H(θi), (6.8)

rd =

N
∑

i=1

f(θi)pr(θi)a(θi). (6.9)

The error in (6.6) can be further expressed as [38],

ε = εmin + (w − wopt)
HRaa(w − wopt), (6.10)

where εmin is the minimized error ε and can be calculated as

εmin =
N
∑

i=1

f(θi) |pr(θi)|2 − wH
optRaawopt. (6.11)

The array response at each angular location depends on the weighting function

f(θi). A different value of f(θi) puts a different emphasis on array response at

the particular direction θi. By changing values of f(θi), various array responses

can be achieved, thus a specific or desired array pattern can be obtained.

6.3.3.2 Beam pattern control algorithm

The most common objective for pattern synthesis is to obtain a pattern with

the sidelobe lower than or equal to a specified level over some regions while

maintaining a certain gain at the look direction θd. The reference pattern, pr(θ),

can have the shape in which all the responses in sidelobe regions are zeros and

the mainlobe peak response is certain value A. The main lobe shape is specified

by the designer. While it is impractical to have all zero sidelobe levels, we can
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induce lower and lower sidelobes by increasing the weighting function values in

selected areas. The weighting function f(θi) is adaptively updated through an

iteration procedure which leads to a desired array pattern:

fk+1(θ) =











hk(θn) θn in main lobe region,

max{fk(θn) + Kp[gk(θn) − pr(θn)], 0} θn in sidelobe region,

(6.12)

where n = 1, 2, . . . , N indexes the directions over which we are interested in

controlling the pattern, gk(θn) = |wH(k)a(θn)| is the synthesized pattern mag-

nitude at the k-th iteration. In (6.12), hk(θ) is calculated by

hk(θ) =











fk(θn) if |gk(θn) − pr(θn)| ≤ ǫ,

fk(θn) + Km|gk(θn) − pr(θn)| otherwise,
(6.13)

where ǫ is a small number for an error tolerance between the synthesized pattern

gk(θn) and the desired pattern pr(θn) in main lobe region, and Km and Kp are

iteration constants. The desired pattern pr(θn) is used for weighting function

updating to achieve the pattern convergence.

Next, we use fk+1(θn) to compute the updated weight vector. The covariance

matrix and the cross-correlation vector become

Raa(k + 1) = σ2I +
N
∑

n=1

fk+1(θn)a(θn)aH(θn), (6.14)

rd(k + 1) =
N
∑

n=1

fk+1(θn)pr(θn)a(θn), (6.15)

where a small quantity σ2 is added to each diagonal element of the covariance

matrix to prevent it from being ill-conditioned [15]. The weight vector in the
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next iteration can be calculated by

w(k + 1) = R−1
aa (k + 1)rd(k + 1). (6.16)

The iteration stops when the difference between gk(θn) and pr(θn) is small

enough in the main lobe region and when the sidelobe levels of gk(θn) are equal

to or lower than that of pr(θn).

The weighting function fk(θn) updates in the sidelobe region are equivalent

to the interference updates in Olen and Compton’s synthesis algorithm [1].

The major difference between this two algorithms is that the Zhou’s algorithm

minimizes the output power of a pattern difference while the Olen and Compton

algorithm minimizes the power of the just achieved array pattern. Using a

difference allows features like the mainlobe to be easily specified. Therefore,

this algorithm takes the advantage of controlling the mainlobe shape according

to designer’s specification whereas Olen and Compton’s algorithm is unable to

control the pattern in the mainlobe region. However, the tradeoff is additional

computation for processing in the mainlobe region.

If the full iteration version of the algorithm is allowed to continue updating

after the maximum sidelobe specification is met, all weighting function values

outside of the mainlobe will go to zero except those on the peaks of the side-

lobes. This happens because the polarity of the Kp[gk(θn) − pr(θn)] term in

(6.12) becomes negative for all θn in the sidelobes that don’t correspond to

peak locations. Eventually the left argument of the max function becomes neg-

ative, and fk+1(θn) becomes zero. This is illustrated using a 10-element uniform

linear array in Figure 6.4. The selected desired pattern has a constant -30 dB

sidelobe. Figure 6.4 shows the synthesized pattern along with the weighting

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



6.3. Existing Methods on Iterative Beam Pattern Synthesis 117

functions at different iteration steps using the aforementioned algorithm. The

synthesis process starts with unity values of weighting function. It is clear that

the values of weighting function will only exist on the peaks in sidelobe regions

as k → ∞. So it may not be necessary to deal with such a large number of

processing points every time. We consider an alternative form of the algorithm

that uses a greatly reduced number of processing points.

The new covariance matrix can be written as the sum of the current covari-

ance matrix Raa(k) and a residual covariance matrix R̃aa(k) that represents the

correction needed at the current step, it is the same with rd(k + 1), i.e.

Raa(k + 1) = Raa(k) + R̃aa(k), (6.17)

rd(k + 1) = rd(k) + r̃d(k), (6.18)

where

R̃aa(k) =
∑

n

rk(θn)a(θn)aH(θn), (6.19)

r̃d(k) =
∑

n

rk(θn)pr(θn)a(θn). (6.20)

Here rk(θn) is a residual weighting function that depends on the difference be-

tween the achieved and the desired patterns at the current iteration, and is

defined as

rk(θn) =











sk(θn) θn in mainlobe

max{0, Kp[gk(θn) − pr(θn)]} θn at sidelobe peak
(6.21)
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Figure 6.4: Beam pattern and weighting function evolution for 10-element uni-
form linear array
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where

sk(θn) =











0 if |gk(θn) − pr(θn)| ≤ ǫ,

Km |gk(θn) − pr(θn)| otherwise.
(6.22)

Sidelobe peaks can be found using simple algorithms. The next optimal weight

vector is

w(k + 1) = R−1
aa (k + 1)rd(k + 1). (6.23)

The initial covariance matrix Raa(0) and cross-correlation vector rd(0) can be

simply set up as

Raa(0) = σ2I +
N
∑

n=1

f0(θn)a(θn)aH(θn), (6.24)

rd(0) =
N
∑

n=1

f0(θn)pr(θn)a(θn), (6.25)

where the values of f0(θn) can be a constant of 1 or smaller. The stopping

criterion is the same as before.

6.4 Our Proposed Algorithm

6.4.1 Improvement Based on Zhou’s Algorithm

Although the simulation results in Zhou’s paper show effectiveness of his algo-

rithm, if we take a closer examination on (6.23), it can be found that calculation

of matrix inversion is required for every update of weight vector. This gives rise

to a heavy computational load and makes his algorithm computationally ineffi-

cient. To overcome this problem, we propose an improved algorithm which uses
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constrained optimization technique.

Consider the optimization equation shown below,

w = arg min
w

Jw subject to CHw = f , (6.26)

and this time, we choose (6.6) as the objective function Jw. The problem can

be solved by using Lagrange multiplier. Let λ denote the Lagrangian multiplier

vector, then the cost function at the k-th iteration can be written as,

L(k) =wH(k)Raa(k)w(k) +
N
∑

i=1

fk(θi)|pr(θi)|2 − wH(k)rd(k) − wT (k)r∗d(k)

+ λH [CHw(k) − f ] + λT [CTw∗(k) − f∗],

(6.27)

and the gradient of L(k) with respect to w∗(k) at the k-th iteration is

∇w∗L(k) = Raa(k)w(k) − rd + λTCT . (6.28)

Applying steepest gradient-descent algorithm, and after some mathematical ma-

nipulations, we can get the following iterative equation for updating weight

vector,

w(k + 1) = w(k) − µ∇w∗L(k)

= f̃ + P[w(k) − µRaa(k)w(k) + µrd(k)],

(6.29)

where µ is a constant step size; Raa and rd are calculated by (6.17) and (6.18);

P and f̃ are defined by (6.4) and (6.5). Substituting (6.8) and (6.9) into (6.29),

we can rewrite (6.29) as,

w(k + 1) = f̃ + P

[

w(k) − µ
∑

i

fk(θi)[gk(θi) − pr(θi)]a(θi)

]

. (6.30)
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Several points in mainlobe region and peak points in sidelobe regions are up-

dated in each iteration. To ensure the equivalence between (6.29) and (6.30),

fk(θi) should be updated by

fk+1(θi) = fk(θi) + rk(θi), (6.31)

where rk(θi) is defined by (6.21). To ensure the convergence of the algorithm,

µ should satisfy the condition 0 < µ < 2/sup{λ(k)
max}, where λ

(k)
max is the largest

eigenvalue of the matrix PRaa(k)P.

In (6.30), the weight vector at k +1-th iteration is updated by summing the

quiescent weight vector f̃ with the projection of the linear combination of several

steering vectors onto the orthogonal complementary constrained subspace P.

In this process, no matrix inverse calculation is observed. Because of this,

compared with Zhou’s algorithm, ours is able to save much computational time

per iteration.

If we take a careful examination on (6.3) and (6.30), we can notice that

these two equations bear much resemblance with each other: the weight vectors

in both of these two algorithms are adaptively updated in a similar manner

as the sum of a quiescent weight vector f̃ and a projection vector onto the

orthogonal complementary subspace P. Such characteristic suggests us with

a new algorithm which combines these two equations together, we name it

composite adaptive beamforming algorithm with pattern control (CABPC). The

formula of our proposed algorithm is,

w(k+1) = f̃ +P[w(k)−µ1y(k)x(k)−µ2

∑

i

fk(θi)[gk(θi)−pr(θi)]a(θi)]. (6.32)
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Here, we consider the case of no reference signal in Frost adaptive beammform-

ing, which is equivalent to a constant zero reference signal, so we use −y(k) to

replace e(k) in (6.3). We can see that on one hand, if we let µ1 = 0, (6.32) be-

comes beam pattern synthesis algorithm; on the other hand, if µ2 is set to zero,

(6.32) turns to be Frost adaptive beamforming algorithm. The effect of beam

pattern control and adaptive beamforming can be assigned different emphasis

by adjusting µ1 and µ2 respectively. Moreover, no matrix inversion calculation

is involved in (6.32), which makes our algorithm computationally efficient.

6.4.2 Householder Transform

Next, we introduce the Householder Transform [64] and try to apply it to our

proposed algorithm to further reduce computational load.

The main idea of Householder Transform (HT) is that it performs a rotation

on the second term in (6.32) in order to make sure that the coefficient vector

is never perturbed by directions that are not excited by this term. We use an

orthogonal rotation matrix Q to complete this task, and make the following

definitions:

w̄(k) = Qw(k), x̄(k) = Qx(k),

ā(θi) = Qa(θi), C̄ = QC,

The operation of rotating w(k) can be visualized in Figure 6.1 by rotating the

axis w1 and w2 clockwise by φ to w̃1 and w̃2 which are indicated by dashed lines.
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If the transform matrix Q satisfies the following equations,

QQH = QHQ = I, (6.33)

and

C̄(C̄HC̄)−1C̄H =







Ip×p 0p×(M−p)

0(M−p)×p 0(M−p)×(M−p)






, (6.34)

then we could have the following properties

C̄Hw̄(k) = CHQHQw(k) = f , (6.35)

and the transformed projection matrix

P̄ , QPQH = I − C̄(C̄HC̄)−1C̄H =







0p×p 0

0 I






. (6.36)

If we choose the initial weight vector as

w̄(0) = C̄(C̄HC̄)−1f = QC(CHQHQC)−1f = Qf̃ , (6.37)

we notice that the only the first p elements of w̄(0) are nonzero because

w̄(0) = C̄(C̄HC̄)−1f = C̄(C̄HC̄)−1C̄Hw(0)

=







Ip×p 0

0 0






w(0).

(6.38)

Then the iterative updating equation of our proposed Householder-Transform

CABPC (HT-CABPC) comes out by premultiplying (6.32) by orthogonal rota-
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tion matrix Q,

w̄(k + 1) =Qw(k + 1)

=w̄(0) + QPQH

{

w̄(k) − µ1y(k)x̄(k) − µ2

∑

i

fk(θi)[gk(θi) − pr(θi)]ā(θi)

}

.

(6.39)

Substituting (6.36) and (6.38) into (6.39), the above equation can be further

written as

w̄(k + 1) =







w̄U(0)

w̄L(k + 1)







=







w̄U(0)

w̄L(k)






− µ1y(k)







0

x̄L(k)







− µ2

∑

i

fk(θi)[gk(θi) − pr(θi)]







0

āL(θi)






,

(6.40)

where w̄U(0) denotes the first p elements of w(0); w̄L(k), x̄L(k) and āL(θi)

denote the last M − p elements of w̄(k), x̄(k) and ā(θi) respectively. Therefore,

in (6.40), only the last M − p elements in the weight vector require update in

each iteration, which can greatly reduce the computational requirement when

the number of constraint is large.

Although w̄(k) is rotated and biased by a transformation matrix Q, both

the output signal and beam pattern are unchanged, as

y(k) = w̄H(k)x̄(k) = wH(k)QHQx(k) = wH(k)x(k), (6.41)

g(θi) = w̄H(k)ā(θi) = wH(k)QHQa(θi) = wH(k)a(θi). (6.42)
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Then we are sure that our proposed algorithm minimizes the same objective

function as (6.32).

The transform matrix Q can be calculated with successive Householder

Transform applied to each of the p columns of CK, where K is the square

root of (CHC)−1, i.e., KKH = (CHC)−1. Details of choice of Q can be found

in [?].

6.5 Comparison on Computational Cost

In this section, we give an evaluation of the computations that are required

for the above-mentioned algorithms. Admitted that in reality there can be

different ways to perform certain calculation, we are simply intended to provide

an approximate idea of the computational complexity for each algorithms.

6.5.1 Frost Beamforming

We begin this section with a detailed description of the calculation requirement

of Frost adaptive beamforming.

1. Each iteration in (6.3) requires the evaluation of the inner product y(k) =

wH(k)x(k) = −e(k), between two vectors of size M each. This calculation

requires M complex multiplication and M − 1 complex additions. Using

the fact that one complex multiplication requires four real multiplications

and two real additions, while one complex addition requires two real ad-

ditions, we find that the evaluation of this inner product requires 4M real

multiplications and 4M − 2 real additions.
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2. Evaluation of the product µe(k), where we assume µ is a real scalar,

requires two real multiplications when the data is complex-valued.

3. The algorithm further requires multiplying the the scalar µe(k) by the data

vector x(k). This requires M complex multiplications which correspond

to 4M real multiplications and 2N real additions.

4. Next, the addition of two vectors w(k) and µe(k)x(k) requires M complex

additions, i.e., 2M real additions.

5. The obtained vector [w(k) + µe(k)x(k)] is going to multiply with the

projection matrix P. This operation requires M3 complex multiplications

and M2(M−1) complex additions, so 4M3 real multiplications and 4M3−

2M2 real additions are required to fulfill this multiplication.

6. Finally, vector f̃ is being added to the result in the last step, and the

process of updating weight vector in an iteration is completed. In this

step, M complex additions, i.e. 2M real additions are required.

The results of above analysis are listed in Table 6.1.

Table 6.1: Estimated computational cost of Frost algorithm

Term × +
wH(k)x(k) 4M 4M − 2
µe(k) 2
µe(k)x(k) 4M 2M
w(k) + µe(k)x(k) 2M
P[w(k) + µe(k)x(k)] 4M3 4M3 − 2M2

P[w(k) + µe(k)x(k)] + f̃ 2M
Total per iteration 4M3 + 8M + 2 4M3 − 2M2 + 10M − 2
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6.5.2 Zhou’s Algorithm

Now we apply the above analysis approach to Zhou’s algorithm which is intro-

duced in section 6.3.3. Computational requirements for each iteration in Zhou’s

algorithm are summarized in Table 6.2.

Table 6.2: Estimated computational cost of Zhou’s algorithm

Term × +
gk(θi), i = 1, 2, . . . , N 4MN (4M − 2)N
rk(θi), i = 1, 2, . . . , N 2N 2N
a(θi)a

H(θi), i = 1, 2, . . . , N 4NM2 2NM2

R̃aa(k) 4NM2 4NM2 + 2MN − 2M2

r̃d(k) 4N(M + 1) 4MN + 2N − 2M
Raa(k + 1) 2M2

rd(k + 1) 2M
R−1

aa (k + 1) M3 M3

R−1
aa (k + 1)rd(k + 1) 4M3 4M3 − 2M2

5M3 + 6NM2 + 10MN
Total per iteration 5M3 + 5NM2 + 8MN + 6N −2M2 + 2N − 2M

6.5.3 Our Proposed Algorithm CABPC

With the above results, we can write out the computational load for our pro-

posed algorithm CABPC in Table 6.3 with (6.32) as weight vector updating

equation.

Comparing the results in Table 6.2 and Table 6.3, we find that our proposed

algorithm is superior over Zhou’s algorithm when we choose a large number of

angles for beam pattern synthesis, i.e. N is comparable in size with M .
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Table 6.3: Estimated computational cost of our proposed algorithm CABPC

Term × +
gk(θi), i = 1, 2, . . . , N 4MN N(4M − 2)
gk(θi) − pr(θi), i = 1, 2, . . . , N 2N
rk(θi), i = 1, 2, . . . , N 2N 2N
fk(θi), i = 1, 2, . . . , N 2N
µ2

∑

i fk(θi)[gk(θi) − pr(θi)]a(θi),
i = 1, 2, . . . , N

4MN + 4N + 2M 4MN + 2N + 2M

µ2P
∑

i fk(θi)[gk(θi) − pr(θi)]a(θi),
i = 1, 2, . . . , N

4M3 4M3 − 2M2

Frost algorithm 4M3 + 8M + 2 4M3 − 2M2 + 10M − 2
w(k + 1) 2M

8M3 + 8MN 8M3 − 4M2 + 8MN
Total per iteration

+10M + 6N + 2 +6N + 14M − 2

6.5.4 Our Proposed Algorithm HT-CABPC

Furthermore, by taking advantages of Householder Transform, the computa-

tional load of our algorithm can be further reduced greatly since only the last

M−p elements in the vectors which require update in each iteration are recalcu-

lated. Now we give a brief analysis on this point. Much of the computations in

(6.40) comes from the calculation of x̄(k). This transformation of input signal

can be carried out as

x̄(k) = Qx(k) = Qp . . .Q2Q1x(k), (6.43)

where

Qi =







I(i−1)×(i−1) 0(i−1)×(M−i+1)

0(M−i+1)×(i−1) Q̄i






, (6.44)
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and matrix Q̄i is a (M − i + 1) × (M − i + 1) Householder Transform matrix,

which is given by

Q̄i = I − 2ῡiῡ
H
i . (6.45)

Here we define the vector υi as

υi = [0T
i−1ῡ

T
i ]T , (6.46)

and the matrix Υ as

Υ =

[

υ1 υ2 . . . υp

]

. (6.47)

Now, the calculation of x̄(k) can be carried out according to the following pro-

cess:

Step 1: Let x̄k = x(k); i = 1;

Step 2: For i ≤ p

Step 3: x̄k(i : M) = x̄k(i : M) − 2Υ(i : M, i)×

[ΥH(i : M, i)x̄k(i : M)]

Step 4: i = i + 1

Step 5: Go to Step 2

Step 6: x̄(k) = x̄k;

The computational cost for calculating x̄(k) is described in Table 6.4.

With the above results, we can estimate the computational load for updating

weight vector of (6.40) by our proposed algorithm with Householder Transform.

The analysis is shown in Table 6.5.
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Table 6.4: Estimated computational cost for calculating x̄(k)

Term × +

ΥH(i : M, i)x̄k(i : M), i = 1, 2, . . . , p 2p[2M − (p − 1)] 2p[2M − (p − 1)] − 2p
2Υ(i : M, i), i = 1, 2, . . . , p p[2M − (p − 1)]
2Υ(i : M, i)[ΥH(i : M, i)x̄k(i : N)],
i = 1, 2, . . . , p

2p[2M − (p − 1)] p[2M − (p − 1)]

x̄k(i : M) − 2Υ(i : M, i)[ΥH(i : M, i)x̄k(i : M)],
i = 1, 2, . . . , p

p[2M − (p − 1)]

Total per iteration 5p[2M − (p − 1)] 4p[2M − (p − 1)] − 2p

In the case of N > p, comparing the results in Table 6.1-6.3 with Table 6.5,

we can easily find that equipped with Householder Transform, our proposed

algorithm can lead to a great saving on computations at about from O(M3) to

O(MN). As the data rates of evolving communications systems increases, the

digital signal processors will have less and less time to perform the required cal-

culations. Therefore, this is a very attractive advantage in real communications

applications.

6.6 Simulation Results

In this section, we employ a 21-element uniform linear array with half wave-

length spacing to illustrate the performance of our proposed algorithm. The

desired signal of 10 dB is coming from the boresight of the array. Two inter-

ference of 26 dB and 30 dB arrive at the array from 40◦ and −40◦ respectively.

The noise level is 10 dB. The reference beam pattern has a mainbeam width of

20◦ and 40 dB uniform sidelobe level. The iteration constants Km and Kp are

30 and 300 respectively.
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Table 6.5: Estimated computational cost of our proposed algorithm HT-CABPC

Term × +
x̄(k) 5p[2M − (p − 1)] 4p[2M − (p − 1)] − p
µ1y(k) 2 0
µ1y(k)x̄L(k) 4(M − p) 2(M − p)
gk(θi), i = 1, 2, . . . , N 4MN 4MN − 2N
gk(θi) − pr(θi), i = 1, 2, . . . , N 2N
rk(θi), i = 1, 2, . . . , N 2N 2N
fk(θi), i = 1, 2, . . . , N 2N
µ2

∑

i fk(θi)[gk(θi) − pr(θi)]āL(θi),
i = 1, 2, . . . , N

(4N + 2)(M − p + 1) (4N − 2)(M − p) + 2N

w(k + 1) 4(M − p)
(2M − p)(4N + 5p)+ 4(2M − p)(N + p)+

Total per iteration
O(M, N, p) O(M, N, p)

6.6.1 Beam Patterns

Figure 6.5(a) shows the output of beam pattern synthesis algorithm, which is a

special case in our proposed formula (6.40) with µ1 = 0. We can see although

it has a uniform sidelobe with mainbeam steered towards the desired signal’s

direction, it fails to form nulls on interferences directions because in the process

of pattern synthesis, the algorithm does not take into account of the real-time

input signal x(k) but only fulfills certain predefined pattern shape requirement.

This is a disadvantage especially for some applications such as wireless commu-

nications, in which strong interferences may appear in the system from time to

time without a priori knowledge. In such case, nulls are more preferable as low

sidelobe level is not enough to combat with the effect of strong interferences.

The output of Frost adaptive beamforming algorithm is shown in Figure

6.5(b). Frost adaptive beamforming is also a special case of our propose algo-

rithm if we let µ2 = 0 in (6.40). In Figure 6.5(b), we observe nulls on interference
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directions. However, the remaining sidelobe region is in relative higher level as

compared with Figure 6.5(a) and in irregular shape. Such a beam pattern is

much more unfavorable than the one in Figure 6.5(a) especially when a strong

interference comes into a mobile communications system suddenly, and happens

to come from the direction corresponding to one of the sidelobe peaks.

Figure 6.5(c) shows the result of our proposed algorithm. The two step

size µ1 and µ2 are set to 1. From Figure 6.5(c) we can notice that besides

uniform and well-shaped sidelobe, our algorithm is able to place nulls towards

interferences as well. Then, it can be concluded our proposed algorithm has the

benefits and features from both adaptive beamforming and pattern synthesis.

Moreover, matrix inverse is not required in updating the weight vector, which

makes our algorithm a much more competitive candidate in real application.

6.6.2 Convergence Behavior

Next, we show in Figure 6.6 the convergence behavior of the above three algo-

rithms. The figure indicates the null depth of the beam pattern at the direction

of the interference from 40◦ versus the number of samples. We can find that our

proposed algorithm can achieve the same null depth (even a bit deeper) towards

the interference direction as that of Frost beamformer although at a slower con-

vergence rate. This is because that a number of degrees of freedom are used

in the beginning to push down the sidelobe level instead of concentrating on

interference nulling. As a result, in order to obtain an overall better-balanced

beam pattern, a tradeoff of convergence speed has to be traded off.

Compared with Zhou’s algorithm, despite the relative slow convergence speed,

ours can achieve a much deeper null at the interference direction in that our
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(a) Output of beam pattern synthesis algorithm
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(b) Output of Frost adaptive beamforming
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(c) Output of our proposed algorithm

Figure 6.5: Comparison of various beam pattern outputs
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proposed beamformer is required to satisfy the nulling constraints at interfer-

ence directions while Zhou’s algorithm only aims at pushing down the whole

sidelobe under some level with no directive constraints on certain directions.
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Figure 6.6: Convergence behavior of Frost algorithm, Zhou’s algorithm and our
proposed algorithm

6.6.3 SINR Performance

In Figure 6.7 we present the average output SINR of the three algorithms along

with the optimal output SINR. From this figure, we can see that our proposed

algorithm has the best output SINR among these three algorithms. Compared

with Frost beamformer, our proposed algorithm wins out because it has a regular

and low sidelobe beam pattern which enables it to null out interference and can-

cel out the noise effect at the same time. Although Frost beamformer produces
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nulls towards interference as well, its irregular and comparatively high sidelobe

region makes its output SINR inferior to that of our proposed algorithm. Zhou’s

algorithm simply guarantees a uniform sidelobe and doesn’t incorporate the in-

formation of interferences into its beam pattern shaping process. Therefore it

gives the worst SINR performance, especially in strong interference situations.
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Figure 6.7: Average output SINR of Frost algorithm, Zhou’s algorithm and our
proposed algorithm

6.6.4 Choice of µ1 and µ2

In our proposed algorithm, µ1 and µ2 is closely related with the output perfor-

mance. However as Zhou’s algorithm is an ad-hoc approach, it is not easy to

establish an overall optimal criterion on how to decide the value of µ1 and µ2 to

obtain the best performance. Here we consider two examples to illustrate the
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effects of these two parameters on the output performance and give a general

guideline on the way to choose µ1 and µ2.

We consider two situations for this issue. The first one is the same as that

described in the beginning of this section, and we name it “High Interference”

situation. The second one is the same the “High Interference” situation except

that the INR is −3dB instead, which we name as “High Noise” situation. Figure

6.8 shows the ratio of µ1/µ2 to the optimal output SINR. We find that in “High

Interference” situation, the best performance is achieved when this ratio is set

between 1/2 to 4. Output SINR will decrease when µ1/µ2 falls below this region

in that compared with adaptive interference nulling, sidelobe pattern shaping is

gaining more weight to combat with noise effect, which leads to a relative worse

performance in such an strong interference environment. If µ1/µ2 rises above

this region, chances are that µ1 would not be able to satisfy the requirement for

a stable algorithm, which would result in a diverged solution and a dramatically

decreasing SINR. When it comes to the “High Noise” situation, a choice of µ1/µ2

between 1/4 to 4 will ensure the best performance. This result is reasonable

as in noise limited situation, an overall low sidelobe level is more important to

obtain a high SINR. So we recommend that µ1/µ2 should be between 1/4 and

4. The algorithm would take a risk of becoming instable with a large or small

ratio. In case of high interference, more weights should be placed on adaptive

interference nulling while in case of high noise, sidelobe shaping would be more

emphasized.
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Figure 6.8: Average RMSE versus SNR for environment in case 1
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Chapter 7

Conclusion and Future Work

This chapter summarizes the results of this thesis and describes open topics for

future research.

7.1 Conclusion

This dissertation has addressed issues regarding DOA estimation and beam pat-

tern synthesis techniques. Various problems are discussed and new algorithms

are proposed to overcome the existing problems. Simulation examples and com-

parison with existing algorithms are given to illustrate the effectiveness of the

proposed algorithms. The following is a summary of the contributions:

1. DOA Estimation: In this thesis, a new DOA estimation algorithm for

cyclostationary signals is presented in chapter 4. In our proposed method,

a new operator is introduced by combining all the cycle frequencies of SOIs

together. This allows our proposed algorithm to select desired signals with

different cyclostationary properties simultaneously and ignore the distur-
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bance from undesired signals. In order to select SOIs and eliminate the

interferences and noise, our algorithm only requires a moderate a priori

information of the incoming signals of interests, such as their modulation

type, baud rate and carrier frequencies. To make our proposed algorithm

able to combat with multipath effects, we incorporate spatial smoothing,

a preprocessing technique, with it. Theoretical analysis is presented to

derive the necessary conditions on the size of subarray and number of

subarrays to make our algorithm effective when it is combined with spa-

tial smoothing. We compare our proposed algorithm with MUSIC and

cyclic MUSIC in different signal environments, and the simulation results

confirm the improvement and superiority in estimation performance with

our proposed algorithm in both of the ordinary and multipath cases.

2. Beam Pattern Synthesis Techniques:

(a) Non-iterative Beam Pattern Synthesis Techniques: In chap-

ter 5, we propose a method which can achieve beam pattern shaping

as well as interference and multipath nulling without a priori knowl-

edge of their directions in a non-iterative manner. The main idea is to

use a quadratically constrained minimization problem to control the

main beam pattern and take advantage of the cyclostationary prop-

erty of the transmission signal to ensure that the blocking matrix in

the auxiliary beam lies in the interference subspace. Compared with

other similar methods, ours can form much deeper nulls in the in-

terference directions, resolve multipath components and keep a well-

behaved beam pattern shape especially in environments with strong

interference, which can help to alleviate the problem of co-channel
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and multipath interference in modern wireless communications. Sim-

ulation examples show its effectiveness.

(b) Iterative Beam Pattern Synthesis Techniques: In chapter 6,

we address a new composite adaptive beamforming algorithm with

pattern control ability. The role of pattern control and adaptive

beamforming can be emphasized by changing the step size µ1 and µ2.

Frost adaptive beamformer and pattern synthesis algorithm are in-

cluded in our algorithm and considered as special cases. Constrained

optimization technique is used to overcome the calculation of matrix

inverse which is frequently encountered in pattern synthesis algo-

rithms. Householder Transform is also applied to make each weight

update iteration operate on the minimum possible dimension. Com-

putational costs are analyzed and compared with various relevant

algorithms to show the saving of our proposed algorithm in compu-

tational load. Simulation examples confirm the effectiveness of our

proposed algorithm. Finally, the effect of the choice of µ1 and µ2

on the output performance is briefly discussed and we give a general

criterion on how to determine these two parameters.

7.2 Future Work

Regarding the above conclusions, there are several areas of this work that could

be extended for future research:

1. The effect of mutual coupling among the array elements can be studied

and its effect on beam pattern synthesis and DOA estimation can be
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investigated.

2. Most algorithms proposed in this thesis use linear arrays. We can also

consider the use of planar arrays to achieve a more directed beam. Such

arrays are able to work in 3-D space, that is both azimuth and elevation

angles of incoming signals can be estimated and any direction in space

can be accurately resolved.

3. Real implementation of pattern synthesis algorithms can be considered

based on the result of this work. We can compare the simulation results

with the real application results to further improve our proposed algo-

rithms.

4. In chapter 6, we proposed a new beamforming technique with pattern

control ability. However, this algorithm was presented for narrowband

operation. The technique could be extended to broadband operation for

application to interference nulling for wireless communications.

5. The pattern synthesis algorithm that we develop in chapter 6 are ap-

plicable to any linear filter design problem, especially those that have

mask-type specifications. For the case of digital filter design, we only

need to redefine the steering vector in term of time-delayed responses and

the other procedures are basically the same. This method can provide an

alternative to existing digital filter design algorithms, particularly in cases

where shaped frequency responses are needed.
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