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Abstract—Intelligent reflecting surface (IRS) is capable of
constructing the favorable wireless propagation environment by
leveraging massive low-cost reconfigurable reflectarray elements.
In this paper, we investigate the IRS-aided MIMO simultaneous
wireless information and power transfer (SWIPT) for Internet
of Things (IoT) networks, where the active base station (BS)
transmit beamforming and the passive IRS reflection coefficients
are jointly optimized for maximizing the minimum signal-to-
interference-plus-noise ratio (SINR) among all information de-
coders (IDs), while maintaining the minimum total harvested
energy at all energy receivers (ERs). Moreover, the IRS with
practical discrete phase shifts is considered, and thereby the
max-min SINR problem becomes a NP-hard combinatorial op-
timization problem with a strong coupling among optimization
variables. To explore the insights and generality of this max-
min design, both the Single-ID Single-ER (SISE) scenario and
the Multiple-IDs Multiple-ERs (MIME) scenario are studied.
In the SISE scenario, the classical combinatorial optimization
techniques, namely the special ordered set of type 1 (SOS1) and
the reformulation-linearization (RL) technique, are applied to
overcome the difficulty of this max-min design imposed by dis-
crete optimization variables. Then the optimal branch-and-bound
algorithm and suboptimal alternating optimization algorithm are
respectively proposed. We further extend the idea of alternating
optimization to the MIME scenario. Moreover, to reduce the
iteration complexity, a two-stage scheme is considered aiming to
separately optimize the BS transmit beamforming and the IRS
reflection coefficients. Finally, numerical simulations demonstrate
the superior performance of the proposed algorithms over the
benchmarks in both the two scenarios.

Index Terms—Alternating optimization, combinatorial opti-
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mization, discrete phase shifts, intelligent reflecting surface (IRS),
simultaneous wireless information and power transfer (SWIPT).

I. INTRODUCTION

The explosive growth in the number of intelligent communi-

cation devices and the proliferation of data hungry wireless ap-

plications both require higher spectral and energy efficiencies

of Internet-of-Things (IoT) networks. Although the massive

multiple-input multiple-output (MIMO) technology is capable

of significantly improving the efficiency of both wireless

information transfer (WIT) and wireless power transfer (WPT)

in emerging IoT networks by exploiting the large array gain,

this is usually achieved at high capital expense [1]–[3]. As

a remedy, it is possible to use much less number of radio

frequency (RF) chains than transmit/receive antennas under

a so-called hybrid implementation, which may also result in

high hardware cost, high signal processing overhead and high

energy consumption of IoT networks, thereby hampering its

practical implementation. As a cost-effective alternative to

the massive MIMO technology, intelligent reflecting surface

(IRS) is capable of achieving unprecedented spectral and

energy efficiencies, especially in complex propagation sce-

narios suffering from severe blockage. However, since IRS

is in essence a reconfigurable metal surface equipped with a

large number of passive reflecting elements, it cannot perform

sophisticated signal processing as the large-scale array and the

active MIMO relay, and is usually deployed with low hardware

cost and low power consumption. In practice, by adjusting

the phase shift and amplitude attenuation (jointly referred to

as reflection coefficients) of each IRS reflecting element, a

favorable wireless propagation environment for both WIT and

WPT is proactively reconstructed [4], [5].

Given the above benefits, the research on IRS-aided commu-

nications for various wireless systems, such as MISO systems

[6], [7], point-to-point MIMO systems [8], multicell multiuser

MIMO systems [9] and MIMO-OFDM systems [10], [11],

have drawn an upsurge of attention. These studies usually

assume the perfect channel state information (CSI) of the

considered IRS-aided wireless systems for characterizing the

performance limits. In practice, since the IRS operated without

the RF chains lacks the baseband processing capability and a

large number of IRS-related channels need to be estimated,

the traditional training-based channel estimation scheme is

not directly applicable. As an alternative, various cascaded

transmitter-IRS-receiver channel estimation schemes using the
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IRS grouping strategy were proposed for both frequency-

flat and frequency-selective channels under the assumption of

uplink-downlink channel reciprocity [10]–[13].

As a parallel trend, a novel radio frequency (RF) energy

harvesting technique has been conceived for overcoming the

energy scarcity issue of IoT networks, considering limited

energy supplies provided by traditional wire cables and bat-

teries [14], [15]. Nevertheless, the new challenges arise in

integrating the RF energy harvesting and the advanced WIT

techniques for realizing sustainable green IoT networks. To

this end, simultaneous wireless information and power transfer

(SWIPT) has been evaluated as an appealing and innovative

technology [16]. Recently, there have been growing concerns

regarding the IRS-aided SWIPT systems with the assumption

of perfect CSI [9], [17]–[19]. For example, Wu et. al [17]

investigated the weighted harvested energy maximization in

an IRS-aided MISO SWIPT system and demonstrated that

the dedicated energy beamforming is actually unnecessary.

As a further development, the maximization of the minimum

harvested energy among all energys receivers (ERs) in this

system was investigated from a fairness perspective [18]. By

deploying multiple IRSs, Wu et. al [19] further investigated the

total transmit power minimization subject to individual QoS

constraints at both information decoders (IDs) and ERs. Pan

et.al [9] considered more general IRS-aided MIMO SWIPT

systems and studied the weighted sum rate maximization of

all IDs, while guaranteeing a certain minimum total harvested

energy at all ERs. A variety of advanced communication

techniques in IoT networks, such as non-orthogonal multiple

access (NOMA) [20], [21], physical layer security [22], [23]

and mobile edge computing (MEC), have also been integrated

with the IRS to achieve better system performance.

In terms of our work, we consider a IRS-aided MIMO

SWIPT system that consists of one multi-antenna base station

(BS), one IRS assisting communication and multiple IoT

devices supporting SWIPT. In particular, two types of IoT

devices are assumed, i.e. multiple single-antenna IDs and

multiple multi-antenna ERs, and the IRS is deployed for as-

sisting the SWIPT from the BS to these IoT devices. From the

fairness perspective, we further investigate the maximization

of the minimum SINR among all IDs by jointly optimizing the

active BS transmit beamforming vectors and the passive IRS

reflection coefficients (also referred to as the IRS reflection

matrix) subject to the minimum required total harvested energy

at all ERs. In contrast to the above IRS related studies with

the assumption of continuous phase shifts, our work considers

the realistic finite-resolution IRS phase shifts. In other words,

the phase shift of each IRS reflecting element is restricted

to a finite number of discrete values [13], [24]. Nonetheless,

since the BS transmit beamforming vectors and the IRS

discrete phase shifts are strongly coupled in both the objective

function and constraints of the max-min SINR problem, this

combinatorial optimization problem is generally nonconvex

and NP-hard, to which the derivation of the globally optimal

solution is still an open challenge.

To the best of our knowledge, this paper presents the

first comprehensive attempt to study the max-min fairness

of the IRS-aided MIMO SWIPT system with realistic finite-
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Fig. 1. An IRS-aided MIMO SWIPT system.

resolution phase shifts. Firstly, we consider the single-ID

and single-ER (SISE) scenario, in which the max-min SINR

problem is simplified to the signal-to-noise ratio (SNR) max-

imization problem. To tackle this intractable problem, we

firstly investigate its feasibility and the tightness of the pre-

defined energy harvesting constraint using the well-known

combinatorial optimization techniques. Specifically, for the

optimization of IRS discrete phase shifts, this intractable max-

min SINR problem can be modeled as a mixed-integer nonlin-

ear programming (MINLP) problem via the special ordered set

of type 1 (SOS1) [25], and then the reformulation-linearization

(RL) technique is applied to reformulate this MINLP problem

as a classical 0-1 linear integer problem (LIP) [26]. Armed

with the above transformations, the optimal branch and bound

algorithm and the suboptimal alternating optimization algo-

rithm are proposed, respectively, depending on the tightness

of the energy harvesting constraint. Furthermore, to avoid high

complexity of solving the LIP for a large number of IRS

reflecting elements, we propose a low-complexity alternative

algorithm using the element-by-element iterative strategy.

Secondly, we consider the general scenario of multiple

IDs and multiple ERs (MIME), in which both the feasibility

and tightness analysis of the max-min SINR problem fol-

low the same methodology as that in the SISE scenario. In

this scenario, the intractable max-min SINR problem can be

equivalently transformed into a power minimization problem,

motivated by the fact that the optimal transmit power is

monotonically non-decreasing with respect to the minimum

SINR among all IDs. We then propose jointly applying the

bisection search and an alternating optimization algorithm

to find a high-quality suboptimal solution to the original

optimization problem. To mitigate the computational burden

of this two-layer iterative optimization, we also develop a low-

complexity two-stage scheme for independently optimizing the

BS transmit beamforming vectors and the IRS discret phase

shifts. Finally, numerical experiments further demonstrate the

excellent output SNR and minimum SINR performance of

our proposed algorithms in the SISE and MIME scenarios,

respectively.

The rest of this paper is organized as follows. Section II

introduces the system model and the problem formulation

for the IRS-aided MIMO SWIPT system. Section III mainly

studies the SISE scenario, where the feasibility and tightness

analysis of the optimization problem are firstly involved,

and then the optimal algorithm and suboptimal alternating

optimization algorithms are proposed respectively depending

on the tightness of the energy harvesting constraint. Section

IV extends the idea of alternating optimization to the MIME
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scenario, and also introduces a low-complexity two-stage

scheme. Section V presents numerical results to demonstrate

the excellent performance of the proposed algorithms. Finally,

Section VI concludes this paper.

Notations: Vectors and matrices are denoted by the bold-

faced lower-case and upper-case letters, respectively. (·)∗, (·)T,

(·)H and (·)−1 denote the conjugate, transpose, Hermitian

and inverse of a matrix, respectively. A � 0 means that the

square matrix A is positive semidefinite. Pha(a) and ℜ{a}
represents the element-wise angle and real-part extraction of

a complex vector a, respectively. Tr(A), ‖a‖ and |a| denote

the trace of a matrix, the Euclidean norm of a vector and the

absolute value of a complex scalar a, respectively. diag(A)
denotes a vector whose elements are the diagonal elements

of A. while diag([a1, · · · , aN ]) denotes a diagonal matrix

whose diagonal elements consist of a N -dimensional vector

a = [a1, · · · , aN ]. A[i, j] and a[i] denote the ith row and jth

column element of A and the ith element of a, respectively.

E[A] and vec(A) denote the statistical expectation operation

and vectorization operation on a matrix A (where all columns

of A are stacked on top of each other ), respectively. A⊗B

is the Kronecker matrix product. CN (µ, σ2) stands for a

circularly symmetric complex Gaussian variable with mean

µ and variance σ2. The words ‘independent and identically

distributed’ and ‘with respect to’ are abbreviated as ‘i.i.d.’ and

‘w.r.t.’, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. An IRS-Aided MIMO SWIPT System

As shown in Fig. 1, we consider an IRS-aided MIMO

SWIPT system composed of an NS-antenna BS, an IRS

equipped with NR passive reflecting elements, denoted by the

set N = {1, · · · , NR}, and two types of IoT devices aiming

for harvesting energy and receiving information, respectively.

Specifically, the IRS is deployed to assist SWIPT from the BS

to KE multi-antenna ERs and KI single-antenna IDs, denoted

by the sets KI = {1, · · · ,KI} and KE = {1, · · · ,KE},

respectively. Note that each ER is equipped with NU antennas

for scavenging more RF energy to be used for future infor-

mation transfer. Moreover, with the aid of a smart controller,

IRS can dynamically adjust the reflection coefficients of all

elements for implementing the favorable wireless propagation

environment [7]. Regardless of nonlinear hardware imperfec-

tions and circuit noise, the ideal IRS reflection coefficients

are modeled as αn = ane
jθn , ∀n ∈ N , where |an| ≤ 1

and θn denote the amplitude and phase shift of the nth IRS

reflecting element, respectively. For ease of practical circuit

implementation, we assume that an = 1 for maximizing the

reflected signal strength, and the phase shift θn of each IRS

reflecting element can only take a finite number of values

ranging from 0 to 2π. Specifically, we define b as the number

of bits devoted to uniformly quantizing the interval [0, 2π),
thereby forming a set of IRS discrete phase shifts denoted by

P = {0,∆θ, · · · , (L − 1)∆θ} with ∆θ = 2π
L

and cardinality

L = 2b.

As demonstrated in [17], there is no need for the BS to

transmit any dedicated energy signal for improving energy

harvesting performance of ERs 1 . Therefore, we assume that

the BS only transmits information signals to serve both IDs

and ERs. Based on this fact, the BS transmitted signal is

given by s=
∑KI

iI=1 viIsiI , where siI ∼ CN (0, 1), ∀iI ∈ KI
denotes the Gaussian signal for ID iI and viI ∈ C

NS×1 is

the associated beamforming vector. The maximum transmit

power at the BS is then given by
∑

iI∈KI
‖viI‖2 ≤ P0.

Furthermore, let’s define hHd,iI ∈ C
1×NS (Hd,iE ∈ C

NU×NS ),

G ∈ C
NR×NS and hHr,iI ∈ C

1×NR (Hr,iE ∈ C
NU×NR ) as

the baseband equivalent channels from the BS to ID iI (ER

iE), from the BS to the IRS, and from the IRS to ID iI
(ER iE), respectively. All channel matrices above consider the

joint effects of large-scale path loss and small-scale fading. We

also assume frequency-flat quasi-static downlink channels and

the uplink-downlink channel reciprocity. Moreover, all signal

processing tasks are considered to be carried out at the BS,

and the BS is capable of acquiring perfect CSI using the

pilot-assisted channel estimation and feedback over a fading

coherence block. Under these assumptions, our work actually

characterizes the fairness performance limit of the considered

IRS-aided SWIPT IoT network. 2 Specifically, by combining

the signal received directly from the BS and that reflected by

the IRS, the received signal at ID iI is then given by

yiI = hHiI s+ niI =
∑

jI∈KI

hHiIvjIsjI + niI , ∀iI ∈ KI , (1)

where hHiI = hHd,iI+hHr,iIΦG denotes the compound downlink

channel from the BS to ID iI . The diagonal matrix Φ =
diag[α1, · · · , αNR

] consists of NR reflection coefficients of

the IRS. niI ∼ CN (0, σiIIND
) represents the additive white

Gaussian noise (AWGN) at ID iI . It follows from (1) that the

SINR of ID iI is expressed as

SINRiI =
|hHiIviI |2

∑

jI 6=iI

|hHiIvjI |2 + σ2
iI

, ∀iI ∈ KI , (2)

Similarly, by neglecting the sufficiently small noise power,

the harvested RF power at ER iE is given by

EiE = ηiE
∑

iI∈KI

‖HiEviI‖2, ∀iE ∈ KE , (3)

where HiE=Hd,iE+Hr,iEΦG and 0< ηiE≤ 1 denotes the

energy harvesting efficiency at ER iE .

B. Problem Formulation

In our work, we jointly optimize the BS transmit beam-

forming vectors viI ’s and the IRS reflection coefficients αn’s

1It is worth noting that by following the same methodology as that in
the later Proposition 3, our considered max-min SINR problem (P1) subject
to the total harvested energy constraint at all ERs (where the active energy
threshold E0 ∈ [Emi

0 , Emax
0 ] is assumed) can be equivalently transformed

into the total harvested energy maximization problem (P1) in [17] subject to
individual SINR constraints at all IDs.

2More practically, most existing works aim to estimate the cascaded BS-
IRS-user channels using the IRS grouping strategy (as introduced in Section I),
based on which the estimated group BS-IRS-user channels generally have
much smaller dimension [11], [12]. Under this channel estimation framework,
the corresponding robust design complexity of the IRS reflection matrix is also
much reduced. However, this topic is beyond the scope of our current work,
and we will consider it as the future research direction.
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to maximize the minimum SINR among all IDs, while guar-

anteeing the minimum required harvested energy at all ERs.

The corresponding optimization problem is formulated as

(P1) : max
{viI

},Φ
min
iI∈KI

SINRiI

s.t.
∑

iI∈KI

‖viI‖2 ≤ P0, Φ=diag[α1, · · · , αNR
],

∑

iE∈KE

∑

iI∈KI

ηiE‖HiEviI‖2 ≥ E0,

Pha(αn) ∈ P, ∀n ∈ N , (4)

where E0 denotes the minimum total harvested energy thresh-

old. Since the IRS reflection coefficients αn’s are coupled with

the BS transmit beamforming vectors viI ’s, problem (P1) is

in essence an NP-hard combinatorial optimization problem,

and the globally optimal solution is hard to obtain. A popular

suboptimal approach is to temporarily omit the limitation of

IRS discrete phase shifts, and then directly map the obtained

continuous phase shifts to the nearest discrete values in P one

by one [27]. Unfortunately, this suboptimal scheme may have

poor inter-user interference suppression capability when the

low-resolution IRS phase shifts are considered, and thereby is

not pursued in our work. On the other hand, problem (P1) can

also be equivalently transformed into a quadratic assignment

problem (QAP) by using SOS1 [25]. However, due to the

tightly coupled continuous and binary variables, it is still

challenging to derive the optimal solution of problem (P1).

III. SISE SCENARIO

In this section, we mainly consider the SISE scenario, i.e.

KI = KE = 1, which can be regarded as a practical scenario

where multiple IDs and multiple ERs use the orthogonal

multiple access technique for communicating with the BS,

thereby resulting in no interference among IDs. In this context,

we firstly perform feasibility and tightness analysis of problem

(P1) using the classical combinatorial optimization techniques,

where the optimal branch-and-bound algorithm and the subop-

timal alternating optimization algorithm are proposed for the

inactive and active energy harvesting constraints, respectively.

To further alleviate the computational burden, we also consider

a low-complexity alternating optimization algorithm using the

element-by-element iterative strategy.

A. Feasibility Analysis

Firstly, in the SISE scenario, problem (P1) is simplified to3

max
vI ,Φ

|hHI vI |2

s.t. ‖vI‖2 ≤ P0, ηE‖HEvI‖2 ≥ E0, (5)

Φ = diag[α1, · · · , αNR
], Pha(αn) ∈ P, ∀n ∈ N .

It is obvious that problem (5) is much easier to solve than

problem (P1) due to the much reduced coupling among

optimization variables. Motivated by the minimum harvested

energy threshold E0, we next study the feasibility of problem

(5) to explore the inherent structure of the optimal solution

3In this section, the subscripts iI and iE are abbreviated as I and E,
respectively, since only a single ID and a single ER are considered.

to problem (5). To be specific, the maximum feasible energy

threshold Emax
0 of problem (5) is determined such that

max
vI ,Φ

ηE‖HEvI‖2 = η1v
H
I HH

EHEvI

s.t. ‖vI‖2 ≤ P0,

Φ = diag[α1, · · · , αNR
], Pha(αn)∈P, ∀n∈N . (6)

For any given Φ, problem (6) is in essence an eigenvalue

optimization problem w.r.t vI , whose optimal solution is ob-

tained as v⋆I =
√
P0µmax(H

H
EHE), where µmax(A) denotes

the unit-norm eigenvector of matrix A associated with its

maximum eigenvalue λmax(A) [28]. Further, substituting the

obtained v⋆I into problem (6) yields

max
Φ

ηEP0λmax(H
H
EHE)

s.t. Φ=diag[α1, · · · , αNR
], Pha(αn)∈P, ∀n∈N . (7)

Since the relationship between λmax(H
H
EHE) with HE =

Hd,E + Hr,EΦG and Φ is not analytical, the globally

optimal solution to problem (7) can only be obtained by

an exhaustive search on all possible combinations of IRS

discrete phase shifts in P , which has the worst-case com-

plexity O(LNR). However, considering that an exhaustive

search is computationally prohibitive for a large NR (i.e.

when NR ≥ 30 and L ≥ 2, we have LNR ≥ 109), we

propose an alternating optimization algorithm to obtain a

locally optimal solution of problem (7). To be specific, we

redefine Hr,E = [h1
r,E , · · · ,hNR

r,E ] and G = [g1, · · · , gNR
]H

with hnr,E ∈ C
NU×1 and gn ∈ C

NS×1, ∀n ∈ N , then problem

(7) can be rewritten in an explicit form of αn = [Φ]n,n as

max
αn

ηEP0λmax(An + αnBn + α∗
nBn),

s.t. Pha(αn) ∈ P, ∀n ∈ N . (8)

where

An =
(

Hd,E+

NR
∑

m=1,m 6=n

αmhmr,Eg
H
m

)(

Hd,E+

NR
∑

m=1,m 6=n

αmhmr,Eg
H
m

)H

+‖gn‖2hnr,E(hnr,E)H

Bn = hnr,Eg
H
n

(

Hd,E +

NR
∑

m=1,m 6=n

αmhmr,Eg
H
m

)H
. (9)

The optimal αn to problem (8) with given {αm}NR

m=1,m 6=n is

further calculated as

α⋆n=argmax
Pha(α)∈P

λmax(An+αBn+α
∗Bn), ∀n∈N . (10)

By iteratively updating αn according to (10) while holding

{αm}NR

m=1,m 6=n fixed, the objective value of problem (7) is

guaranteed to be monotonically non-decreasing within the

iterations, which is also upper-bounded by a finite maximum

harvested energy corresponding to the IRS continuous phase

shifts. Since problem (8) is usually solved exactly with the

unique optimal solution shown in (10), by referring to [29,

Theorem 2], we can conclude that every limit point generated

by this alternating optimization algorithm with the worst-

case complexity O(IALNR), where IA denotes the number

of iterations (all NR IRS discrete phase shifts are updated
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at each iteration), is a locally optimal (Boulingand station-

ary) solution of problem (7), since the discrete non-convex

constraints are imposed on the IRS reflection coefficients

[30]. In particular, numerical simulations in Section V will

verify that this suboptimal algorithm achieves comparable

performance to an exhaustive search by choosing the solution

achieving the maximum objective value from a set of candi-

date solutions obtained from different random initializations.

Once the optimal Φ of problem (7) is obtained, we have

Emax
0 = ηEP0λmax(H

⋆H
E H⋆

E). Correspondingly, the feasible

region of the energy threshold in problem (5) is given by

E0 ∈ [0, Emax
0 ].

B. Tightness Analysis

Additionally, we investigate the tightness of the energy

harvesting constraint in problem (5) as follows. By temporarily

neglecting this constraint, problem (5) reduces to

max
vI ,Φ

|hHI vI |2

s.t. ‖vI‖2 ≤ P0, Φ = diag[α1, · · · , αNR
],

Pha(αn) ∈ P, ∀n ∈ N . (11)

Given any Φ, problem (11) has a similar structure to problem

(6), and thereby the optimal v⋆I =
√
P0hI/‖hI‖ can be

derived, based on which problem (11) is simplified to

max
Φ

P0‖hHd,I + hHr,IΦG‖2,
s.t. Φ=diag[α1, · · · , αNR

], Pha(αn)∈P, ∀n∈N . (12)

In contrast to problem (7), the objective function of problem

(12) is in an explicit quadratic form of Φ. Moreover, using

the special ordered set of type 1 (SOS1) which is defined

as a set of binary vectors with at most one element being

non-zero, i.e. a vector x ∈ C
L×1 satisfying

∑L
l=1 x[l] = 1

and x[l] ∈ {0, 1}, ∀l ∈ L with L = {1, · · · , L}, we can

simply re-express the nth IRS reflection coefficient αn as

αn = aTxn, ∀n ∈ N , where a= [1, ej∆θ, · · · , ej∆(L−1)θ]T

consists of all possible discrete phase shifts, and thus the IRS

reflection matrix Φ is rewritten as Φ = diag
(

(INR
⊗aT )x

)

with x = [xT1 , · · · ,xTNR
]T , based on which problem (12) is

transformed into the following 0-1 QAP (where all constant

terms in the objective function are dropped)

max
x

xTCx+ 2ℜ{xTd},

s.t. x = [xT1 , · · · ,xTNR
]T ,

L
∑

l=1

xn[l] = 1, xn[l]∈{0, 1},

∀l ∈ L, ∀n ∈ N , (13)

where C=
(

diag(hHr,I)GGHdiag(hr,I)
)

⊗(aaH)∈C
LNR×LNR

and d = vec
(

ahTd,I
(

diag(hHr,I)G
)T ) ∈ C

LNR×1, ∀n ∈ N .

Inspired by the range invariance of the product of two binary

variables, we consider applying the well-known RL technique

to re-express this non-convex QAP as a 0-1 LIP which can

be optimally solved by the standard branch-and-bound algo-

rithm [25]. The following proposition presents this equivalent

reformulation.

Proposition 1. Problem (13) can be equivalently linearized

as the following 0-1 LIP whose globally optimal solution is

derived by the standard branch-and-bound algorithm.

max
x,y

d̄Tx+c̄Ty, (14a)

s.t.

L
∑

l=1

yk(n,l,m,q)=xm[q], ∀m,n∈N , n<m, ∀q∈L, (14b)

L
∑

q=1

yk(n,l,m,q)=xn[l], ∀m,n∈N , n<m, ∀l∈L, (14c)

L
∑

l=1

xn[l]=1,xn[l]∈{0, 1},yk(n,l,m,q) ∈ {0, 1}, ∀l, q ∈ L,

∀n,m ∈ N , (14d)

where d̄ = 2ℜ{d}+ diag(C) and c̄ ∈ C
K×1 with K =

L2NR(NR−1)
2 . The vector c̄ is related to C in a relatively

complex manner. Specifically, the index k(n, l,m, q) (1 ≤
k(n, l,m, q) ≤ K ) of c̄ is defined as

k(n, l,m, q) =
(n− 1)(2NR − n) + 2(m− n− 1)

2
L2

+(l−1)L+q, (15)

based on which the k(n, l,m, q)th element of c̄ is given by

c̄[k(n, l,m, q)] =C [̂i, ĵ]+C[ĵ, î], where î= l+(n−1)L and

ĵ = q + (m − 1)L. Note that the formulation (15) shows

an analytical expression of the index k(n, l,m, q) of c̄ (y)

associated with the indices of both sets L and N .

Proof. Let’s recall problem (13) (equivalent to problem (12)),

its involved integer constraints imply

xTCx=
∑

m,n,q,l

Cnlmqxn[l]xm[q]=
∑

m,n,q,l,m 6=n

Cnlmqxn[l]xm[q]

+
∑

n,l

Cnlnlxn[l], ∀m,n∈N , ∀q, l∈L. (16)

where Cnlmq denotes a particular element indexed by

{n, l,m, q} in C. Since xm[q]xn[l] = xn[l]xm[q], we only

consider substituting variables {xm[q]xn[l]} with n <m for

the sake of reducing the size of the newly introduced variables.

Using the RL technique, for ∀m,n ∈ N , n < m, ∀q, l ∈ L,

the term xm[q]xn[l] can be replaced by a new binary variable

yk(n,l,m,q) satisfying yk(n,l,m,q) ≤ xm[q], yk(n,l,m,q) ≤ xn[l]
and yk(n,l,m,q) ≥ xm[q] + xn[l]−1, where k(n, l,m, q) is

the index of vector y ∈ C
L
2
NR(NR−1)

2 . Correspondingly, the

matrix C can also be stacked into a column vector c̄ using

c̄[k(n, l,m, q)] = C [̂i, ĵ] + C[ĵ, î] and the mapping rule in

(15). As a result, the objective function of problem (13) can

be rewritten as (14a).

Furthermore, we explore the implicit constraints on

yk(n,l,m,q)’s. Specifically, by multiplying both sides of
∑L
l=1 xn[l] = 1 by xm[q], we can obtain the constraint

(14b) which also implies yk(n,l,m,q) ≤ xm[q]. Similarly, the

constraint (14c) can be obtained by multiplying both sides of
∑L
l=1 xm[q] = 1 by xn[l], and yk(n,l,m,q) ≤ xm[q] is also

hinted. Finally, combining (14b) and (14c) further yields
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xm[q] + xn[l]− 1 =

L
∑

l
′=1

yk(n,l′ ,m,q) + xn[l]− 1

= xm[q]xn[l] +
∑

l
′ 6=l

xm[q]xn[l
′

] + xn[l]− 1

= xm[q]xn[l] +
∑

l
′ 6=l

(xm[q]− 1)xn[l
′

] ≤ xm[q]xn[l]

= yk(n,l,m,q) (17)

According to the above analysis, it is clear that the QAP

(13) can be equivalently transformed into the LIP (14) by in-

troducing an auxillary vector y. This completes the proof.

Although the branch-and-bound algorithm used for solv-

ing the LIP (14) has the worst-case exponential complexity

O(LNR), it will be shown to be effective for systems of small-

to-medium scale (i.e. NR ≤ 30 and L ≤ 4) via numerical

simulations in Section V. Notice that in each branching pro-

cess, the relaxed linear programming counterpart of problem

(14) is solved at the cost of complexity O
(

(K+LNR)
3L0.5

c +
(K+LNR)

2L1.5
c

)

[31]. Furthermore, assuming the optimal

x to problem (14), the optimal objective value of problem

(12) based on Φ = diag((INR
⊗aT )x) is in fact an upper

bound on that of problem (5), and the resultant harvested

energy is expressed as Emi
0 = ηEP0‖HEhI‖2/‖hI‖2 with

HE=Hd,E+Hr,EΦG and hHI = hHd,I+hHr,IΦG. It is readily

inferred that for all E0 ∈ [0, Emi
0 ), the energy harvesting

constraint can be automatically satisfied at the optimal {vI ,Φ}
to problem (11). In other words, the constraint in problem (5)

is inactive when E0∈ [0, Emi
0 ) and can be ignored without loss

of optimality. However, when E0∈ [Emi
0 , Emax

0 ] is considered,

we have the following lemma.

Lemma 1. When E0 ∈ [Emi
0 , Emax

0 ], the energy harvesting

constraint is active at the optimal solution {v⋆I ,Φ⋆} of prob-

lem (5), which implies ηE‖H⋆
Ev

⋆
I‖2 = E0.

Proof. Please see Appendix A.

In a nutshell, for the case of E0 ∈ [0, Emi
0 ), problem

(5) can be globally solved using the classical combinatorial

optimization techniques, i.e. the SOS1 and the RL technique.

Furthermore, when E0 ∈ [Emi
0 , Emax

0 ] is considered, it is

readily inferred that both the transmit power constraint and the

energy harvesting constraint are active at the optimal solution,

which thus makes problem (5) particularly challenging. In this

context, we propose an alternating optimization algorithm to

find a locally optimal solution of problem (5) by iteratively

optimizing vI and Φ. Firstly, for any given Φ, the optimal vI
to problem (5) is shown in the following Proposition.

Proposition 2. For any E0 ∈ [Emi
0 , Emax

0 ], the globally

optimal vI to problem (5) with the given Φ has the following

form v⋆I =
√
P0µmax(hIh

H
I + β⋆ηEH

H
EHE), where β⋆

denotes the optimal dual variable corresponding to the energy

harvesting constraint, and can be found by the subgradient

method [32].

Proof. Please see Appendix B.

Using the vI obtained from Proposition 2, we next in-

vestigate the subproblem w.r.t. Φ. Specifically, by jointly

utilizing the SOS1 and the RL technique, the quadratic energy

harvesting constraint η1‖HEvI‖2 ≥ E0 can be linearized in

the form of d̄Tx + c̄Ty, similarly to the reformulation of

problem (12) shown in Proposition 1. As such, the subproblem

w.r.t. Φ can also be modeled as a LIP and thus optimally

solved by the standard branch-and-bound algorithm.

C. Low-Complexity Alternating Optimization

Generally, when the number of IRS reflecting elements is

pretty large (i.e. NR ≥ 36), applying the RL technique to

problem (5) usually faces a large computational burden due to

the high dimension of the auxillary binary variable y in the

LIP (14). For example, when NR = 36 and L = 2b = 4 are

adopted, the dimension of y becomes K= L2NR(NR−1)
2 ≈ 104.

which generally implies a high time complexity of the optimal

LIP solution. As an alternative, a low-complexity alternating

optimization algorithm is applied to find a locally optimal

Φ to problem (5) by iteratively optimizing each of the IRS

reflection coefficients (i.e. αn), while holding the others (i.e.

{αm}NR

m=1,m 6=n) fixed. To be specific, for the case of E0 ∈
[0, Emi

0 ), problem (5) reduces to problem (12). Let’s define

hHr,I=[h1r,I , · · · , hNR

r,I ], the objective function of problem (12)

can be rewritten in the following explicit form w.r.t. αn.

P0‖hHd,I+hHr,IΦG‖2 = An+αnBn+α
∗
nB

∗
n, ∀n∈N , (18)

where

An = P0

(

hHd,I+

NR
∑

m=1,m 6=n

αmh
m
r,Ig

H
m

)(

hHd,I+

NR
∑

m=1,m 6=n

αmh
m
r,Ig

H
m

)H

+ P0|hnr,I |2‖gn‖2

Bn = P0h
n
r,Ig

H
n

(

hHd,I+

NR
∑

m=1,m 6=n

αmh
m
r,Ig

H
m

)H
, ∀n ∈ N . (19)

Assuming Bn= |Bn|ejψn , it then follows from (18) that the

optimal αn to problem (12) with any given {αm}NR

m=1,m 6=n is

given by

αn = argmax
Pha(α)∈P

cos
(

Pha(α) + ψn
)

, ∀n ∈ N . (20)

Furthermore, when E0 ∈ [Emi
0 , Emax

0 ] is considered, it is

easily inferred from Lemma 1 that compared to the case of

E0∈ [0, Emi
0 ), the optimization of the IRS reflection matrix Φ

needs to additionally satisfy the energy harvesting constraint

due to its tightness at the optimal solution. Under the overall

framework of the proposed alternating optimization algorithm

for this case, we alternatively consider applying the element-

by-element iterative strategy to solve the subproblem w.r.t. Φ.

Specifically, we firstly rewrite the energy harvesting constraint

in terms of αn as

ηE‖HEvI‖2 = Cn + αnDn + α∗
nD

∗
n, ∀n∈N , (21)

where

Cn=ηE‖
(

Hd,E+

NR
∑

m=1,m 6=n

αmhmr,Eg
H
m

)

vI‖2+ηE‖hnr,E‖2|gHn vI |2,

Dn=ηEv
H
I

(

Hd,E+

NR
∑

m=1,m 6=n

αmhmr,Eg
H
m

)H
hnr,Eg

H
n vI . (22)
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Let’s consider Dn = |Dn|ejθn , the optimal αn to problem

(5) for any given vI and {αm}NR

m=1,m 6=n is expressed as

αn = argmax
α

cos
(

Pha(α) + ψn
)

, (23)

s.t. Pha(α)∈P, cos
(

Pha(α)+θn
)

≥E0−Cn/(2|Dn|).
In a nutshell, for both two distinct cases of E0, the

objective value of problem (5) is non-decreasing over the

iterations, where the individual IRS reflection coefficients

αn’s are successively and uniquely updated according to (20)

or (23) for any given vI , and is also upper-bounded by a

finite value corresponding to the maximum power transmis-

sion [24]. Moreover, by recalling Proposition 2, the unique

optimal solution of the subproblem w.r.t vI in the case of

E0 ∈ [Emi
0 , Emax

0 ] is also available. Therefore, similarly to

that in Section III-A, we can conclude that regardless of the

value range of the energy threshold E0, the proposed low-

complexity alternating optimization algorithm is guaranteed

to converge to a locally optimal solution of problem (5) [29].

The computational complexity of this alternating optimization

algorithm is shown to be O((NRNUNS + L)IA), where IA
denotes the number of iterations.

IV. MIME SCENARIO

In this section, we consider the MIME scenario, where

multiple IDs and multiple ERs operate in the same time-

frequency resource and both are aided by the IRS. Similarly

to the SISE scenario, we firstly study the feasibility and

tightness analysis of problem (P1). Then an equivalent power

minimization reformulation of problem (P1) is introduced.

To tackle the non-convexity of this equivalent problem, an

alternating optimization algorithm is accordingly proposed.

Furthermore, we develop a low-complexity two-stage scheme

for further reducing the iteration complexity.

A. Feasibility and Tightness Analysis

In the general MIME scenario, the feasibility problem of

problem (P1) is formulated as

max
{viI

},Φ

∑

iE∈KE

∑

iI∈KI

ηiE‖HiEviI‖2=
∑

iI∈KI

vHiI H̄EviI

s.t.
∑

iI∈KI

‖viI‖2 ≤ P0, Φ = diag[α1, · · · , αNR
],

Pha(αn) ∈ P, ∀n ∈ N . (24)

where H̄E =
∑

iE∈KE

ηiEH
H
iE
HiE . Similarly to problem (6),

the optimal {viI} to problem (24) for any given Φ is readily

obtained as v⋆iI=
√
piIµmax(H̄E), ∀iI ∈ KI , where piI ’s are

arbitrary nonnegative numbers satisfying
∑

iI∈KI
piI = P0,

indicating that all information beams should be aligned to the

same direction vE for maximizing the harvested energy. Fur-

thermore, substituting the resultant optimal viI ’s into problem

(24) yields

max
{viI

},Φ
P0λmax

(

H̄E)

s.t. Φ=diag[α1, · · · , αNR
], Pha(αn)∈P, ∀n∈N . (25)

Obviously, problem (25) has a similar form to problem
(7), and thereby can also be rewritten in an explicit form of

Algorithm 1 The proposed bisection search for solving prob-
lem (P1).

1: Input: γmin and γmax.
2: repeat
3: Set γ0 = (γmin + γmax)/2.
4: Solve problem (P2) using Algorithm 2 and the obtained

optimal objective value as P ⋆(γ0, E0).
5: if P ⋆(γ0, E0) < P0 then
6: γmin = γ0;
7: else
8: γmax = γ0.
9: end if

10: until (γmax−γmin)≤ǫ, where ǫ>0 is sufficiently small.
11: return The optimal solution {viI ,Φ} to problem (P1).

Algorithm 2 The proposed alternating optimization algorithm
for solving problem (P2).

1: Input: Initial {α(0)
m } and iteration index IT = 0.

2: repeat

3: Given {α(IT )
m }, solve the SDP problem (28) to obtain

the optimal v
(IT+1)
iI

, ∀iI ∈ KI .

4: Set v̄iI = v
(IT+1)
iI

, ∀iI ∈ KI .
5: repeat
6: for n = 1 → NR do

7: Given v̄iI ’s and {α(IT )
m }NR

m=1,m 6=n, calculate αn
according to (33).

8: Update α
(IT )
n = αn.

9: end for
10: until The relative increment in the objective value γmar

of problem (33) is sufficiently small.

11: return α
(IT+1)
n = α

(IT )
n , ∀n = 1, · · · , NR.

12: Set IT = IT + 1.

13: Given v
(IT+1)
iI

’s and {α(IT+1)
n }, calculate the optimal

objective value P (IT )(γ0, E0) of problem (P2).

14: until |P (IT )(γ0, E0)− P (IT−1)(γ0, E0)| ≤ ǫ, where ǫ is
a sufficiently small positive number.

15: return P ⋆(γ0, E0) = P (IT )(γ0, E0).

αn like problem (8). Naturally, for a small-scale system, an
exhaustive search is expected to find the globally optimal Φ,
while for a medium-to-large scale system, we intend to apply
the alternating optimization algorithm proposed for solving
problem (7) to obtain a locally optimal Φ of problem (24).
Additionally, for the MIME scenario, we find that the tightness
analysis of the energy harvesting constraint relies on solving
the minimum SINR maximization problem in the IRS-aided
multiuser MISO system, which is still intractable due to its
strongly coupled variables. As such, an accurate crucial energy
threshold Emi

0 is hard to obtain. More importantly, as will be
illustrated later, the proposed alternating optimization algo-
rithm for the MIME scenario is directly applicable regardless
of the tightness of the energy harvesting constraint. Therefore,
we omit this intractable and trivial tightness analysis here for
simplicity.

B. Equivalent Reformulation

To address the nonconvex problem (P1), we firstly present

the following proposition.

Proposition 3. Consider the following power minimization

problem 4:

4Note that for the arbitrary γ0 and E0, problem (26) is always feasible by
scaling up the power of the BS transmit beamforming vectors viI

’s.
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(P2) : min
viI

,Φ

∑

iI∈KI

‖viI‖2 (26a)

s.t.
∑

iE∈KE

∑

iI∈KI

ηiE‖HiEviI‖2 ≥ E0, (26b)

|hHiIviI |2
∑

jI 6=iI

|hHiIvjI |2 + σ2
iI

≥ γ0, ∀iI ∈ KI , (26c)

Φ=diag[α1, · · · , αNR
], Pha(αn)∈P, ∀n∈N . (26d)

Let’s define the optimal objective values of problems (P1) and

(P2) as γ⋆(P0, E0) and P ⋆(γ0, E0), respectively. Then we

have P0 = P ⋆(γ⋆(P0, E0), E0) which implies that problem

(P2) is an inverse counterpart of problem (P1). Moreover, for

any given E0, it yields

γ̃0 > γ0 ⇒ P ⋆(γ̃0, E0) ≥ P ⋆(γ0, E0). (27)

Proof. Please see Appendix C.

It is worth noting that although this inversion property

has been well studied for the minimum SINR maximization

problem of traditional multiuser MISO systems, its extension

to our work is challenging, since an extra nonconvex energy

harvesting constraint is considered. Armed with the inversion

property in Proposition 3, it can be inferred that the optimal

solution to problem (P1) can be efficiently found by iteratively

solving problem (P2) for different γ0’s until its objective

value satisfies P ⋆(γ0, E0) = P0. Moreover, according to the

monotonically non-decreasing property of P ⋆(γ0, E0) in γ0,

the optimal γ0 = γ⋆(P0, E0) can be uniquely determined by a

simple bisection search. For simplicity, we set the lower bound

γmin of γ0 to zero, while its upper bound γmax is calculated by

with the interference power neglected. The specific algorithm

procedure is further summarized in Algorithm 1.

Although the inverse problem (P2) with the quadratic ob-

jective function is easier to handle than the original problem

(P1), it is still difficult to directly address due to the involved

individual nonconvex SINR constraints. In the sequel, from the

perspective of decoupling optimization variables, we consider

decomposing problem (P2) into two subproblems w.r.t. viI ’s

and Φ, respectively. Moreover, an alternating optimization

algorithm is proposed to derive a high-quality suboptimal

solution of problem (P2).

C. Alternating Optimization

In this subsection, assuming an arbitrary feasible energy

threshold E0, we aim to solve problem (P2) in an iterative

manner. Firstly, for any given Φ, we consider using the SDR

technique to tackle the non-convexity of problem (P1) w.r.t

viI ’s. To be specific, let’s define positive semidefinite matrices

ViI = viIv
H
iI
, ∀iI ∈ KI . Then, by temporarily neglecting the

implicit rank-1 constraints on ViI ’s, problem (P2) is relaxed

to the following SDP problem

min
{ViI

}�0

∑

iI∈KI

tr(ViI ) (28a)

s.t.
∑

iE∈KE

∑

iI∈KI

ηiE tr(HH
iE
HiEViI ) ≥ E0, (28b)

tr
(

hiIh
H
iI
ViI−

∑

jI 6=iI

γ0hiIh
H
iI
VjI

)

−γ0σ2
iI
≥0, ∀iI ∈KI , (28c)

It is further validated in the following proposition that problem

(P2) can be relaxed to problem (28) without loss of optimality.

Proposition 4. The optimal solution of problem (28) satisfies

rank(V ⋆
iI
) = 1, ∀iI ∈ KI with probability one.

Proof. Please see Appendix D.

According to Proposition 4, the optimal viI ’s to problem

(P2) with any given Φ can be found by solving the convex

SDP problem (28) instead. Nevertheless, since the objective

of transmit power minimization in problem (P2) is not a

function of Φ, the optimization of Φ with any given viI ’s

in essence belongs to a feasibility problem. For the sake of

finding the effective IRS reflection coefficients to guarantee

the convergence of the proposed alternating optimization al-

gorithm, we next consider creating an explicit objective for the

optimization of Φ. Specifically, motivated by the fact that there

is at least one constraint in (26b) ∼ (26c) being active at the

optimal solution of problem (P2), we propose maximizing the

minimum margin associated with individual SINRs of all IDs

and the total harvested energy at all ERs for the optimization of

IRS reflection coefficients. Note that this design also enables

future reduction of the total transmit power in the following

optimization of the BS transmit beamforming (i.e. by simply

scaling down the BS transmit beamforming power).

To this end, with the aid of the normalization technique, we

firstly transfer both the output SINR of each ID and the total

harvested energy of all ERs into the following dimensionless

functions to make them commensurable.

SINRiI ,nor=
|hHiIviI |2

γ0(
∑

jI 6=iI

|hHiIvjI |2 + σ2
iI
)
,

Enor=

∑

iE∈KE

∑

iI∈KI

ηiE tr(HH
iE
HiEViI )

E0
, ∀iI ∈KI . (29)

Based on (29), we then define the total harvested energy

margin of all ERs as Emar =Enor−1, and the SINR margin

of each ID as

SINRiI ,mar =SINRiI ,nor−1

≤
|hHiIviI |2−γ0

(
∑

jI 6=iI

|hHiIvjI |2+σ2
iI

)

γ0σ2
iI

=SINRiI ,mar, ∀iI ∈ KI , (30)

where SINRiI ,mar denotes the upper-bound on the SINR

margin of ID iI , and is obtained by neglecting the positive

term
∑

jI 6=iI
|hHiIvjI |2 in the denominator. This upper-bound

also leads to the potential improvement of the output SINR

of each ID, since it has the same numerator as the original

SINR margin and a positive constant denominator. Motivated

by this fact, for finding an effective Φ to problem (P2) with

any given viI ’s, we further formulate the maximization of the

minimum margin over the individual SINRs of all IDs and the

total harvested energy as

max
Φ

min
iI∈KI∪0

{SINRiI ,mar, Emar},

s.t. Emar ≥ 0, SINRiI ,mar ≥ 0, ∀iI ∈ KI , (31)
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where iI = 0 denotes the index of the argument Emar. Further,

by introducing an auxiliary variable γmar, problem (31) can

be equivalently transformed into

max
Φ

γmar, (32)

s.t. γmar ≥ 0, Emar≥γmar, SINRiI ,mar≥γmar, ∀iI ∈KI .
Recall Proposition 1, problem (32) can still be optimally

solved by the branch-and-bound algorithm by jointly applying

the SOS1 and the RL technique to SINRiI ,mar’s and Emar.

Nonetheless, due to the increased number of 0-1 quadratic con-

straints associated with multiple IDs, problem (32) is generally

more time-consuming to address than problem (5) with any

given vI , especially for a large NR (i.e. NR ≥ 36). As a result,

we consider again the element-by-element iterative algorithm

proposed in Section III-C. To be specific, the optimal αn
to problem (32) with any given {αm}NR

m=1,m 6=n is readily

determined by a one-dimensional search over P , which is

formulated as

α⋆n =argmax
Pha(α)∈P

min
iI∈KI∪0

{

Emar({αm}NR

m=1,m6=n, α),

SINRiI ,mar({αm}NR

m=1,m6=n, α)

}

, ∀n∈N . (33)

By iteratively updating individual IRS reflection coefficients

αn’s according to (32) until the relative increment of γmar

becomes sufficiently small, we can obtain a sequence of non-

decreasing minimum margins, implying a certain reduction of

the BS transmit power in the subsequent optimization of BS

transmit beamforming vectors viI ’s.

Overall, the proposed alternating optimization algorithm for

solving problem (P2) consists of optimizing the BS trans-

mit beamforming vectors viI ’s by using the SDR technique

and the IRS reflection matrix Φ by introducing an explicit

optimization objective. Note that the SDR is proved to be

tight in Proposition 4, and thus the unique optimal viI ’s are

available. In contrast, the design of Φ belongs to a feasibility

problem whose optimization objective is inexplicit and non-

unique, which thus makes the convergence result in the SISE

scenario not directly applicable. In fact, since the continuous

objective function of problem (P2) is minimized at each

iteration, we readily infer that this alternating optimization

algorithm yields non-increasing objective values of problem

(P2) over the iterations, which is also lower-bounded due to the

closed feasible set. However, as mentioned above, the iterates

generated by this algorithm cannot be guaranteed to converge

to the B-stationary solution of problem (P2).

As a result, this element-by-element iterative algorithm is

able to converge to a locally optimal solution of problem

(32). Inspired by the design philosophy of the IRS reflection

coefficients and the uniquely optimal solution of the subprob-

lem w.r.t. viI ’s, we can infer that the proposed alternating

optimization algorithm is guaranteed to converge to a high-

quality suboptimal solution of problem (P2).

Additionally, the computational complexity of the proposed

alternating optimization algorithm mainly lies in iteratively

solving a pair of subproblems w.r.t viI ’s and Φ. On the

one hand, the subproblem (28) w.r.t viI ’s is a standard

convex SDP problem with KI LMI constraints of size NS
and KI +1 linear constraints, whose complexity is on the

order of OS1

(

(KINS + KI + 1)0.5K3
IN

6
S

)

[31]. On the

other hand, the adopted element-by-element iterative algo-

rithm for the subproblem (32) w.r.t Φ has the complexity of

OS2

(

IALN
2
RNS(KI+NE)

)

, where IA denotes the number

of iterations. Hence, the total complexity of solving problem

(P2) is given by Iout(IT (OS1
+OS2

)), where IT denotes the

number of iterations between the subproblems (28) and (32).

We will demonstrate in numerical simulations that the pro-

posed alternating optimization algorithm for solving problem

(P2) works well in practice and converges to the maximum

after about 10 iterations.

D. Two-Stage Scheme

In this subsection, to further reduce the computational

complexity of the above proposed alternating optimization

algorithm, we conceive a two-stage scheme for separately

optimizing the BS transmit beamforming vectors viI ’s and

the IRS reflection matrix Φ. Specifically, in the first stage,

we aim to optimize the IRS reflection matrix Φ so that the

weighted total channel power gain is maximized, which can

be formulated as

max
Φ

∑

iI∈KI

wiI‖hiI‖2 +
∑

iE∈KE

wiE‖HiE‖2F ,

s.t. Φ=diag[α1, · · · , αNR
], Pha(αn)∈P, ∀n∈N . (34)

where the weighting factors wiI = 1
γ0σ

2
iI

, ∀iI ∈ KI and

wiE =
ηiE
E0

∀iE ∈KE are chosen, considering the proportional

fairness among the channel gains of all IDs and ERs implied

by the first two constraints in problem (P2). Note that this

IRS reflection matrix design aims to construct the wireless

propagation environment with high information and energy

beamforming gains by adjusting the phases of different chan-

nels from the BS to all IDs and ERs. Since problem (34) has a

similar structure to problem (12), the proposed low-complexity

alternating optimization algorithm in Section III-C can still be

applied to obtain a monotone non-decreasing sequence of the

weighted total channel gains, which ultimately converges to a

locally optimal solution of problem (34).

In the second stage, we aim to design the BS transmit

beamforming vectors viI ’s by solving problem (P1) with Φ

obtained by solving problem (34). In contrast to the above

passive IRS reflection coefficients design, this active BS

transmit beamforming design aims to enhance the minimum

output SINR among all IDs as much as possible by utilizing

both the full power transmission and the effective inter-user

interference suppression. Moreover, by recalling Proposition 3

and Proposition 4, the corresponding globally optimal viI ’s

can also be derived from Algorithm 1.

The overall complexity of the two-stage scheme is on

the order of O
{

IALN
2
RNS(KI + NE) + IBKINS +KI +

1)0.5K3
IN

6
S}, where IA and IB denote the number of iterations

required for finding the optimal Φ to problem (34) and the

optimal viI ’s using bisection search, respectively. Compared

to the above proposed alternating optimization algorithm, this

two-stage scheme generally has much lower computational

complexity since only a single iteration is performed between
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the optimization of Φ and that of viI ’s. As will be illustrated

in numerical simulations, the proposed two-stage scheme

performs comparably to the alternating optimization algorithm

in the high SNR regime.

V. SIMULATIONS

This section presents numerical simulation results for char-

acterizing the performance of our proposed algorithms in terms

of the output SINR performance. As illustrated in Fig. 2, we

consider a three-dimensional coordinate system, where a uni-

form linear array (ULA) with half-wavelength spaced elements

along the x-axis is mounted at both the BS and each ER, while

the IRS installs a uniform planar array (UPA) with elements

spaced along the x-axis and y-axis every quarter-wavelength,

respectively. The locations of the reference antenna at the BS

and IRS are set as (0, 0, 0) m and (0, dR, 1) m, respectively.

In particular, we consider an isotropic radiation pattern at the

BS and thus its antenna gain is 0 dBi. Nevertheless, since

the IRS reflects signal only through the front half-sphere,

it is assumed to have 3 dBi antenna gain [6]. For the sake

of improving energy harvesting efficiency, we also consider

the horizontal projection of the IRS’s location (i.e. (0, dR, 0)
m) as a EH hotspot and assume that all ERs are randomly

located within a circular cluster centered at this hotspot with a

radius of rE m. Similarly, all single-antenna IDs are uniformly

distributed within a circular cluster of radius rI m, centered

at a location (0, 0, dD) m. The large-scale path loss model is

given by PL(d) = β0(d/d0)
−α

, where β0 =−30 dB denotes

the signal power attenuation at a reference distance d0=1 m

and α > 0 is path loss factor, respectively. Considering that

the IRS is usually deployed to assist SWIPT from the BS to

IDs and ERs suffering from severe signal power attenuation,

we set the path loss factor of the BS-ID (BS-ER) channel to

αBU=3.6, while those of the BS-IRS and IRS-ID (IRS-ER)

channels to αBI=2.1 and αIU=2.3, respectively.

Furthermore, the small-scale fading of all wireless channels

is modeled by Rician distribution H =
√

αKR

1+KR
HLoS +

√

α
1+KR

HNLoS, where KR denotes the Rician K-factor. HLoS

and HNLoS are the LoS and NLoS components of channel H ,

respectively. The elements of the NLoS component HNLoS

(GNLoS) are assumed to be Rayleigh distributed with zero

mean and unit variance, while the LoS component GNLoS

(GNLoS) is usually characterized by a product of the array

steering vectors at both communication ends, where the cor-

responding elevation and azimuth angles are assumed to be

uniformly distributed over the intervals θ ∈ [−π
2 ,

π
2 ] and

ψ ∈ [0, 2π), respectively [8]. Unless otherwise stated, the

BS-ID (BS-ER), BS-IRS and IRS-ID (IRS-ER) channels are

modeled using Rician factors KBU
R = 0, KBI

R = 10 dB

and KIU
R = ∞, respectively. Moreover, we set the maximum

transmit power at the BS to P0 = 25 dBm. The noise power

spectral density of −169 dBm/Hz and the system bandwidth

of 10 MHz are assumed, and the energy conversion efficiency

is chosen as ηiE = 0.6, ∀iE ∈ KE . Furthermore, the relative

convergence threshold of all proposed alternating optimization

(Alt-Opt) algorithms is determined as 10−4. The numbers of

antennas at the BS and each ER (i.e. NS and NU ) are specified

Y

Z

X

BS

ID cluster

dR

dD
IRS

ER cluster

rE

1m

 ID  center

rI

Fig. 2. Simulation setup of the general IRS-aided SWIPT system.

later. Note that all simulation points are obtained by averaging

over 100 independent channel realizations.

A. Initialization and Comparison

Recall that we have proposed various kinds of low-

complexity alternating optimization (Alt-Opt) algorithms for

optimizing the SNR performance in the SISE scenario and

the minimum SINR performance among all IDs in the MIME

scenario, respectively. Generally, the initial IRS reflection

coefficients play an important role in ensuring the effectiveness

of the proposed Alt-Opt algorithms. As such, we mainly

consider three different initialization methods for the proposed

algorithms, as elaborated below: 1) Total harvested energy

maximization: The corresponding optimal IRS reflection co-

efficients are obtained by solving problem (8) in an iterative

manner. With this initialization, the feasibility of problem (P1)

can be guaranteed; 2) Total BS-ID channel gain maximiza-

tion: The optimal design of the IRS reflection coefficients aims

to maximize the total BS-ID channel gain of
∑

iI∈KI
‖hHiI ‖2,

and can also be realized by an iterative algorithm. Notice

that this initialization method performs well when the energy

harvesting constraint is inactive (as explained later); 3) Total

BS-ER channel gain maximization: Like in case 2), we

derive the optimal IRS reflection coefficients by maximizing

the total BS-ER channel gain
∑

iE∈KE
‖HiE‖2.

Furthermore, in order to comprehensively evaluate the per-

formance of all our proposed algorithms in both SISE and

MIME scenarios, we also consider the following three bench-

mark schemes for comparisons: 1) Upper-bound scheme: We

solve problem (P1) under the assumption of continuous IRS

phase shifts, i.e. b → ∞ by jointly using semidefinite relax-

ation (SDR) technique and Gaussian randomization proposed

in [6]; 2) Quantization-based scheme (QBS): In this scheme,

we individually quantize the continuous IRS phase shifts

obtained in case 1) into the nearest values in the predefined set

of discrete phase shifts; 3)Without IRS: Assuming Φ=0, the

globally optimal BS transmit beamforming vectors to problem

(P1) are then derived.

B. SISE scenario

In this subsection, we focus on the SISE scenario and study

the maximum achievable SNR of the ID, while guaranteeing

the energy harvesting requirement at the ER. Unless specified

otherwise, we set NS = 4, NR = 32, NU = 3, dR = 10
and dI = 60. The locations of a single ID and a single ER

are denoted by (0, 0, 60) m and (0, 10, 0) m, respectively. Fur-

thermore, b = 2 quantization bits are used for characterizing

the set of IRS discrete phase shifts.
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Fig. 3. Performance of the proposed Alt-Opt algorithms in the SISE scenario.

Fig. 3 (a) firstly shows the convergence behavior (under

one channel realization) of the proposed low-complexity Alt-

Opt algorithm in Section III-C for solving problem (5) under

both the inactive and active energy harvesting constraints,

corresponding to E0 = −22 dBm and E0 = −18 dBm,

respectively. For each case, it can be seen that the Alt-Opt

algorithm converges to the maximum achievable SNR within

10 iterations. Moreover, much of the SNR improvement occurs

in the first a few iterations, which indicates that the proposed

Alt-Opt algorithm has a low complexity. Obviously, the output

SNR achieved under E0 = −22 dBm is higher than that

under E0 = −18 dBm due to the enlarged size of the feasible

solution region.

In Fig. 3 (b), the SNR-energy regions characterized by the

proposed Alt-Opt algorithm in Section III-C and benchmarks

are presented, where both b = 1 and b = 2 are considered

for phase quantization. Other parameters are the same as

those in Fig. 3 (a). It is firstly observed that the upper-bound

scheme using continuous phase shifts realize the largest rate-

energy region. With the aid of the IRS, the proposed Alt-Opt

algorithms with b = 1 and b = 2 both characterize a larger

rate-energy region than the benchmark scheme without IRS.

Furthermore, for the same energy threshold E0, the Alt-Opt

algorithm using b = 2 has a higher output SNR than that using

b = 1. For each scheme, the boundary of the rate-energy region

reveals the optimal trade-off between the maximum harvested
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Fig. 4. Achievable output SNRs as a function of the BS transmit power P0

under different IRS setups.

energy and the achieved output SNR. Specifically, we firstly

identify two types of boundary points, namely (Emi
0 , γmax)

and (Emax
0 , γmi), where the maximum achievable output SNR

γmax is obtained from solving problem (11) using the branch-

and-bound algorithm and the resultant energy threshold is Emi
0 ,

while Emax
0 is derived from solving problem (6) following the

idea of alternating optimization and the resultant output SNR is

γmi = P0

∣

∣hHI µ(HH
EHE)

∣

∣

2
/σ2

I . Then it is readily found from

Fig. 3 (b) that the maximum output SNR is attained provided

that E0 ∈ [0, Emi
0 ). Conversely, for E0 ∈ [Emi

0 , Emax
0 ], the

maximum achievable SNR decreases upon the increase of E0.

Note that the above conclusions coincide with the feasibility

and tightness analysis in Section III-A and Section III-B.

In Fig. 4, we consider two setups of the IRS reflecting

elements, denoted by NR = 8 and NR = 32 corresponding

to small-scale and large-scale systems, respectively, and set

E0 =
(Emi

0 +Emax
0 )

2 dBm for each considered P0. Observe that

different values of P0 usually correspond to distinct thresholds

E0, which however guarantees the active energy harvesting

constraint for each P0. In particular, if problem (5) with

E0 =
(Emi

0 +Emax
0 )

2 dBm is infeasible when considering both

the QBS scheme and the benchmark scheme without IRS,

the corresponding output SNR is set to zero. Fig. 4 (a) and

Fig. 4 (b) then depict the achievable output SNRs as a function

of the BS transmit power P0 for different algorithms under the
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Fig. 5. Achievable output SNR versus: (a) the BS-ID horizontal distance
dBI; (b) the number of IRS reflecting elements NR.

above two IRS setups, respectively.

In Fig. 4 (a) with NR = 8, we clearly find that both

the proposed Alt-Opt algorithm in Section III-C and the

QBS scheme perform close to the proposed RL-based Alt-

Opt algorithm in Section III-B. Moreover, they also approach

the upper-bound scheme with continuous phase shifts and

outperform the benchmark scheme without IRS by a SNR gain

of around 1.2 dB. However, since the QBS scheme utilizes the

SDR technique to obtain the optimal IRS continuous phase

shifts, it generally has a higher computational complexity

than the Alt-Opt algorithm. We also extend this study into

a large-scale system (i.e. NR = 32) in Fig. 4 (b), where the

proposed RL-based Alt-Opt algorithm is not simulated due to

its high complexity caused by the auxillary binary variable of

dimension L2NR(NR−1)/2=7936. Compared to Fig. 4 (a),

we firstly observe from Fig. 4 (b) that a larger performance gap

between the proposed Alt-Opt algorithm in Section III-C and

the upper-bound scheme. This is because the signal directly

from the BS and that reflected by the IRS with discrete phase

shifts cannot be superimposed constructively at the ID as in

the case of continuous phase shifts, hence resulting in certain

performance loss (which becomes even worse for a large NR).

Moreover, we find that a higher SNR gain (about 4.8 dB) is

achieved by both the Alt-Opt algorithm and the QBS scheme

over the benchmark scheme without IRS.
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Fig. 6. Convergence of the proposed Algorithm 1 for solving problem (P1).

Next, we set E0=−20 dBm and the location of a single ID

as (0, dBI, 60) m. Other parameters remain the same as those in

Fig. 3. Then Fig. 5 (a) illustrates the achievable output SNRs

as a function of the BS-ID horizontal distance dBI for the

proposed Alt-Opt algorithm in Section III-C and benchmarks.

We firstly find that all algorithms (except the benchmark

scheme without IRS) achieve the highest SNR at dBI = 10
m denoting the minimum distance between the ID and IRS.

Moreover, due to an expanded set of IRS discrete phase shifts,

the Alt-Opt algorithm using b=2 clearly realizes better SNR

performance than that using b = 1 and also performs very

close to the upper-bound scheme. Nonetheless, the output SNR

achieved by the benchmark scheme without IRS decreases

with the increasing dBI followed by severe signal power

attenuation. Furthermore, Fig. 5 (b) plots the achieved SNRs

versus the number of IRS reflecting elements NR for different

algorithms, where E0=−20 dBm and dBI=10 are set. It is

clear that the maximum output SNRs of all schemes increase

with NR due to the increasing spatial degrees of freedom

offered by the IRS, except the benchmark scheme without

IRS. Also, the proposed Alt-Opt algorithm with b=2 performs

closer to the upper-bound scheme than that with b=1.

C. MIME scenario

In contrast to the SISE scenario, the max-min SINR among

all IDs subject to the minimum total harvested energy at all
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ERs is studied in the MIME scenario. In this subsection, we

aim for illustrating the minimum output SINR performance

of all proposed algorithms in Section IV. Unless specified

otherwise, we set b = 1, NR = 48 and KI = KE = 2. The

locations of multiple ERs and IDs are generated following the

simulation setup in Fig. 2 with rE = 0.5 and rI = 10. All

other parameters are initially chosen as those in Fig. 3 (a).

Fig. 6 firstly shows the convergence of the proposed Al-

gorithm 1, which consists of a simple outer bisection search

and an inner Alt-Opt algorithm between problems (28) and

(32). Specifically, we consider two different energy harvesting

thresholds, namely E0 = −20 dBm and E0 = −18 dBm.

It can be observed from Fig. 6 (a) that for both cases, the

proposed Alt-Opt algorithm for solving problem (P2) with

given γ = 5 dB monotonically converges to the minimum total

transmit power after about 8 iterations. Moreover, a higher

transmit power is achieved when E0 = −18 dBm compared

with the case of E0 = −20 dBm, since a large E0 generally

leads to a small feasible region of problem (P1). Furthermore,

Fig. 6 (b) shows the convergence of the outer bisection search

for the two considered energy thresholds, where the BS trans-

mit power margin, namely |∑iI∈KI
‖viI‖2 − P0|, is adopted

as a performance metric. Note that the bisection search is

not required to find a sequence of monotonically decreasing

power margin, its efficiency is demonstrated only when the

power margin becomes zero. Using this fact, we can find from

Fig. 6 (b) that for each E0, the achieved BS transmit power

margin approaches zero after about 10 searches.

Like in Fig. 4, we also assume two IRS setups in the

MIME scenario given by NR =8 in Fig. 7 (a) and Fig. 7 (b)

as well as NR = 48 in Fig. 7 (c), respectively. Moreover,

both the inactive and active energy harvesting constraints

associated with E0=E
mi
0 /2 dBm and E0=(Emi

0 +Emax
0 )/2

dBm, respectively, are considered in Fig. 7, where Emi
0 and

Emax
0 can be derived by solving problem (P1) without the

energy harvesting constraint using Algorithm 1 and solving

problem (25) following the idea of alternating optimization,

respectively. Specifically, Fig. 7 plots the minimum output

SINRs as a function of the BS transmit power P0 for different

algorithms under the above two IRS setups. We firstly observe

from Fig. 7 (a) with E0=E
mi
0 /2 that all IRS-related schemes

achieve a remarkable improvement of the minimum output

SINR when compared to the benchmark scheme without IRS.

Furthermore, the proposed Algorithm 1 achieves almost the

same performance as an exhaustive search, and meanwhile

performs close to the upper-bound scheme. It also has better

minimum SINR performance than the proposed two-stage

scheme, thanks to its iterative nature. Although the QBS

scheme performs slightly better than the two-stage scheme in

the low-to-medium power regime, it generally has higher com-

putational complexity and suffers from severe performance

loss in the high power regime. This is because the strong

inter-user interference in the high-power regime cannot be

sufficiently suppressed by coarsely quantized phase shifts.

Similar results can also be observed from Fig. 7 (b) with

E0 = (Emi
0 +Emax

0 )/2, where the performance advantage

of all IRS-related schemes over the scheme without IRS

becomes more evident. This is due to the fact that the size
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Fig. 7. Achievable minimum output SINR versus the BS transmit power P0

under different parameter setups.

of the feasible region of problem (P1) is largely reduced by

the more stringent energy harvesting constraint with E0 =
(Emi

0 +Emax
0 )/2, thereby making the advantage of IRS more

pronounced. Further, we extend this study to the case of a

large number of IRS reflecting elements in Fig. 7 (c) with

E0=(Emi
0 +Emax

0 )/2. It can be seen that the performance gain
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of the BS-IRS channel for all studied algorithms.

of the proposed Algorithm 1 over all other benchmark schemes

is obviously enlarged as compared to that in Fig. 7 (b), because

the effectiveness of IRS in cancelling inter-user interference

and supporting energy can be significantly improved by a large

NR. Moreover, in the high-SNR regime, since the achieved

output SINR of each ID is dominated by the optimal active

BS transmit beamforming attaining both the maximum power

transmission and inter-user interference suppression instead of

the passive IRS reflection coefficients, which is also the design

philosophy of the two-stage scheme, the two-stage scheme

achieves a performance close to the proposed Algorithm 1.

Next, by setting NS = 8, Fig. 8 (a) and Fig. 8 (b) show

the minimum output SINRs versus the numbers of IDs KI

and ERs KE for different algorithms, respectively. To draw

meaningful insights, we consider successively adding one

ID within the defined cluster and one ER near the IRS

for Fig. 8 (a) and Fig. 8 (b), respectively. Moreover, we set

E0 = −20 dBm and KE = 2. it is clear from Fig. 8 (a)

that the minimum output SINRs achieved by all algorithms

decrease as the number of IDs KI increases. This is not

surprising since our work concentrates on guaranteeing the

minimum output SINR performance among all IDs by jointly

optimizing the BS transmit beamforming vectors and IRS

discrete phase shifts, and the corresponding attainable design

freedom is much reduced as KI increases. Moreover, both the

proposed Algorithm 1 and two-stage algorithm are superior

to the scheme without IRS, which again demonstrates the

effectiveness of deploying IRS in the MIME scenario.

Furthermore, Fig. 8 (b) plots the minimum output SINRs

versus the number of ERs KE for different algorithms, where

KI = 4 and two energy thresholds, i.e. E0 = −20 dBm and

E0 = −18 dBm, are adopted. For each studied algorithm,

we firstly find that for the case of E0 = −20 dBm, the

achieved minimum output SINR keeps constant regardless of

the increasing KE , which is due to the inactive energy har-

vesting constraint. On the other hand, when E0 = −18 dBm is

considered, it can be seen that the achieved minimum output

SINR firstly increases with KE , and then becomes saturated.

This can be explained as follows. For a small range of KE ,

the energy harvesting constraint with E0 = −18 dBm is quite

likely to be active. In this context, the increasing KE usually

leads to the fact that more BS transmit power is reserved for

improving the output SINRs of all IDs under the premise of

guaranteeing the required total harvested energy. Nevertheless,

when KE increases to a large value (i.e. KE = 7) such that

the energy harvesting constraint becomes inactive, the highest

minimum output SINR is realized and maintained.

Finally, we consider b = 1, 2 and plot the minimum output

SINR performance of the proposed Alt-Opt and Two-stage

algorithms versus the Rician K factor KBI
R of the BS-IRS

channel. We firstly find that both the two proposed algorithms

with b = 2 achieve a higher minimum output SINR than their

respective counterparts with b = 1. Moreover, the performance

gain of the Alt-Opt algorithm over the Two-stage scheme is

more evident for b = 2. For each algorithm, the minimum out-

put SINR performance is sharply reduced for a large KBI
R = 30

dB. This is because in the case of small KBI
R , i.e. KBI

R = −30
dB, the BS-IRS channel tends to be Rayleigh distributed

and usually leads to low correlation among effective BS-ID

channels. In this context, the full spatial multiplexing gain

in MIME scenario can be exploited to suppress inter-user

interference. Nevertheless, when KBI increases to 30 dB, the

BS-IRS channel becomes dominated by the LoS component,

and it is thereby rank-deficient. As such, the effective BS-ID

channels also become strongly correlated, hence the inter-user
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interference cannot be effectively suppressed, thus leading to

the degraded minimum output SINR performance.

VI. CONCLUSIONS

In this paper, we investigated the max-min SINR opti-

mization of the IRS-aided MIMO SWIPT system by jointly

optimizing the active BS transmit beamforming vectors and

the passive IRS reflection coefficients, while guaranteeing the

minimum required total harvested energy. Moreover, we con-

sidered the IRS with discrete phase shifts from the perspective

of practical applications. The resultant combinatorial max-min

SINR problem is generally non-convex and computationally

intractable. To further explore its inherent properties, we firstly

study its feasibility and the tightness of the involved energy

harvesting constraint in the SISE scenario. Then for two

distinct value ranges of the energy threshold, we proposed

the optimal branch-and-bound algorithm and the suboptimal

alternating optimization algorithm, respectively. To avoid the

high complexity of the LIP for a large system, an element-

by-element iterative strategy is also introduced for the IRS

reflection coefficients design. Furthermore, we extended our

work into the MIME scenario and transformed the intractable

max-min SINR problem into an equivalent power minimiza-

tion problem, which can also be efficiently solved by an

alternating optimization algorithm. Moreover, motivated by

the monotonicity of the BS transmit power w.r.t the minimum

output SINR, the classical bisection search was applied to find

a high-quality suboptimal solution to the original max-min

SINR problem. To reduce the iteration complexity, we also

developed a two-stage scheme. Numerical simulation results

demonstrated the convergence and superior performance of the

proposed alternating optimization algorithms over the adopted

benchmarks.
APPENDIX A

We can prove this lemma by contradiction. Let’s assume

{v⋆I ,Φ⋆} to be the optimal solution of problem (5) for some

E0 ∈ [Emi
0 , Emax

0 ]. Consider the contrary, i.e. ηE‖H⋆
Ev

⋆
I‖2 >

E0, and denote the Lagrangian function of problem (5) given

the optimal Φ⋆ as

L(vI , λ, β)

= |hHI vI |2 + λ(P0 − ‖vI‖2) + β(ηE‖HEvI‖2 − E0) (35)

where λ ≥ 0 and β ≥ 0 denote the optimal dual vari-

ables corresponding to the transmit power constraint and the

energy harvesting constraint, respectively. Furthermore, the

Karush–Kuhn–Tucker (KKT) necessary optimality conditions

of problem (5) given the optimal Φ⋆ are expressed as

(hIh
H
I + β⋆ηEH

H
EH⋆

E)v
⋆
I = λ⋆v⋆I , (36a)

hIh
H
I + β⋆ηEH

H
EHE � λ⋆INS

(36b)

λ⋆(‖v⋆I‖2 − P0) = 0, β⋆(ηE‖H⋆
Ev

⋆
I‖2 − E0) = 0 (36c)

It follows from ηE‖H⋆
Ev

⋆
I‖2 > E0 and (36c) that β⋆ = 0.

We can also prove λ⋆ > 0 by contradiction. Assume the

contrary, i.e. λ⋆ = 0, we then have hIh
H
I v⋆I = 0 from

(36b) and thus |hHI vI | = 0 holds, which contradicts to the

optimization objective of maximizing |hHI vI |. As a result,

‖v⋆I‖2 = P0 holds due to (36c). The uniquely optimal

v⋆I =
√
P0hI/‖hI‖ can be further derived based on β⋆ = 0

and (36b). Accordingly, the harvested energy at the ER is

given by ηEP0‖H⋆
Eh

⋆
I‖2/‖h⋆I‖2 = Emi

0 > E0. This is in

contradiction to the initial condition of E0 ∈ [Emi
0 , Emax

0 ],
hence Lemma 1 must hold. This completes the proof.

APPENDIX B

For any given Φ, let’s recall the Lagrangian function of

problem (5), as shown in (35), we then have the following

dual problem

min
λ,β

max
vI

L(vI , λ, β), s.t. λ≥0, β ≥ 0. (37)

According to [32], it is known that the dual problem (37) is

always convex. As a result, in order to guarantee the upper-

bounded dual function L(vI , λ, β) in terms of the uncon-

strained vI , we must have hIh
H
I +βηEH

H
EHE − λI � 0,

based on which the dual problem (37) reduces to

min
λ,β

λP0 − βE0,

s.t. hIh
H
I +βηEH

H
EHE�λI, λ≥0, β ≥ 0. (38)

Based on the Lagrange dual theory, the optimal objective

value G(λ⋆, β⋆) = λ⋆P0 − β⋆E0 of problem (38) actually

provides an upper bound on that of problem (5), i.e. |hHI v⋆I |2≤
G(λ⋆, β⋆). By recalling the KKT necessary optimality con-

ditions of problem (5) in (36), we can prove λ⋆ > 0 and

‖v⋆I‖2=P0 as in Appendix A. Based on this fact, multiplying

both sides of (36a) by (v⋆I )
H further yields |hHI v⋆I |2=λ⋆P0−

β⋆ηE‖HEv
⋆
I‖2 = G(λ⋆, β⋆), where the last equality holds

due to ηE‖HEv
⋆
I‖2 =E0 when E0 ∈ [Emi

0 ,Emax
0 ], as proved

in Lemma 1. The equality |hHI v⋆I |2=G(λ⋆, β⋆) indicates that

the strong duality holds for the nonconvex problem (5) with

any given Φ. As a result, we can conclude that the optimal v⋆I
is actually a dominated eigenvector of hIh

H
I + β⋆ηEH

H
EHE

associated with its maximum eigenvalue λ⋆. Moreover, since

the dual problem (38) is always convex, the subgradient

method can be applied to obtain the optimal {λ⋆, β⋆}. This

completes the proof.

APPENDIX C

Let’s define the optimal solution of problem (P1) lead-

ing to the optimal objective value γ⋆(P0, E0) as {v1
iI
,Φ1},

while {v2
iI
,Φ2} denotes the optimal solution of problem

(P2) with γ0 = γ⋆(P0, E0) and the corresponding optimal

objective value is defined as P ⋆(γ0, E0). We then prove

P0 =P ⋆(γ⋆(P0, E0), E0) by contradiction. Suppose the con-

trary, i.e. P0 6= P ⋆(γ⋆(P0, E0), E0), the two cases P0 <
P ⋆(γ⋆(P0, E0), E0) and P0 > P ⋆(γ⋆(P0, E0), E0) are then

discussed, respectively.

Firstly, it is noted that the optimal v1
iI

’s of problem

(P1) must satisfy
∑

iI∈KI

‖v1
iI
‖2 = P0, which can be easily

proved by contradiction. We find that the case of P0 <
P ⋆(γ⋆(P0, E0), E0) clearly contradicts the optimality of

{v2
iI
,Φ2} for problem (P2), since the optimal {v1

iI
,Φ1} to

problem (P1) is also feasible to problem (P2) with γ0 =
γ⋆(P0, E0) and provides a smaller objective value P0. Sec-

ondly, for the case of P0 > P ⋆(γ⋆(P0, E0), E0), it is clear

that the optimal {v2
iI
,Φ2} to problem (P2) is also feasible
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to problem (P1) and the resultant power consumption being

less than P0. Moreover, considering that SINR({cv2
iI
,Φ2}) ≥

SINR({v2
iI
,Φ2}), ∀iI ∈ KI for some c≥ 1, we can always

find a constant c > 1 so that {cv2
iI
,Φ2} is also feasible

to problem (P1) and simultaneously leads to a larger value

of the minimum output SINR. This is a contradiction to

the optimality of {v1
iI
,Φ1} for problem (P1). As a result,

P0=P
⋆(γ⋆(P0, E0), E0) must hold.

Next, we prove (27) by contradiction. Specifically, the

optimal solutions of problem (P2) corresponding to the optimal

objective values P ⋆(γ10 , E0) and P ⋆(γ20 , E0) with γ10 < γ20
are denoted by {ṽ1

iI
,Φ1} and {ṽ2

iI
,Φ2}, respectively. Clearly,

{ṽ2
iI
,Φ2} is also feasible to problem (P2) with γ0 = γ10 ,

and thus we have P ⋆(γ20 , E0) ≥ P ⋆(γ10 , E0). Moreover, the

optimal objective value P ⋆(γ0, E0) is observed to be continu-

ous in arguments {γ0, E0}, since both the quadratic objective

function and constraints of problem (P2) are continuous and

the set of feasible solution is closed and bounded. As such, we

can conclude that P ⋆(γ0, E0) is monotonically non-decreasing

w.r.t γ0. This completes the proof.

APPENDIX D

Recall [33, Lemma 3.1], the separable SDP problem (28)

with 1 + KI linear constraints always admits an optimal

solution V ⋆
iI

’s such that
∑

iI∈KI

(rank(V ⋆
iI
))2 ≤ 1+KI , based on

which we have rank(V ⋆
iI
) = 1, ∀iI ∈ KI to meet individual

SINR constraints. However, this theorem only shows the

existence of the optimal rank-1 solution to problem (28). Next,

we prove that the optimal solution of problem (28) is rank-1

with probability one by using its KKT necessary and sufficient

conditions, i.e.

Q⋆
iI
− λ⋆iIhiIh

H
iI

= Z⋆
iI
, (39a)

Q⋆
iI

= INS
−β⋆

∑

iE∈KE

ηiEH
H
iE
HiE+

∑

jI 6=iI

λ⋆jIhjIh
H
jI
, (39b)

Z⋆
iI
V ⋆
iI

= 0NS
, ∀iI ∈ KI , (39c)

where β⋆ ≥ 0, λ⋆iI ≥ 0 and Z⋆
iI

� 0 denote the optimal

dual variables associated with constraints (28b), (28c) and

ViI � 0, respectively. It follows from (39a) and (39c) that

(Q⋆
iI

− λ⋆iIhiIh
H
iI
)V ⋆

iI
= 0NS

, ∀iI ∈ KI . Next, two cases

of β⋆, i.e. β⋆ = 0 and β⋆ > 0, are studied to prove the

rank-1 optimality of problem (28c). Firstly, for the case of

β⋆=0, we naturally have Q⋆
iI

≻ 0, ∀iI ∈ KI . Further, based

on (Q⋆
iI

− λ⋆iIhiIh
H
iI
)V ⋆

iI
= 0NS

and V ⋆
iI

6= 0 required for

meeting the SINR requirement of ID iI , we have rank(V ⋆
iI
)=

rank(Q⋆
iI
V ⋆
iI
) = rank(λ⋆iIhiIh

H
iI
V ⋆
iI
) = 1, ∀iI ∈ KI .

Secondly, for the case of β⋆ > 0, under the general assump-

tion of independently distributed channels hiI ’s and HiE ’s, it

follows from (39b) that rank(Q⋆
iI
)≥NS−1, ∀iI ∈ KI , with

probability one [34]. Using this fact, on the one hand, it can

be inferred from (39a) and (39b) that for some iI ∈ KI with

λ⋆iI = 0, we have Z⋆
iI

= Q⋆
iI

and rank(Q⋆
iI
) = NS − 1 to

ensure the nonzero V ⋆
iI

. Correspondingly, the rank-1 optimal

V ⋆
iI

can be obtained. On the other hand, for some īI ∈ KI
with λ⋆

īI
> 0, rank(Q⋆

īI
) = NS holds with probability one.

Otherwise, by jointly referring to Z⋆
iI

� 0 and (39a), it

yields Q⋆
īI

� λīIhīIh
H
īI

implying the null space of Q⋆
īI

, i.e.

Null(Q⋆
īI
) which is rank-1 due to rank(Q⋆

īI
) ≥ NS−1, also

lies in that of hīIh
H
īI

. Recall (39b), since the eigenspace of

Q⋆
īI

is uniquely and jointly determined by the independently

distributed channels hiI ’s and HiE ’s, it is almost impossi-

ble to realize hH
īI

Null(Q⋆
īI
)hīI = 0, ∀īI ∈ KI . As such,

rank(Q⋆
īI
) = NS can be established with probability one.

Furthermore, the rank-1 optimal V ⋆
īI

can also be proved for

β⋆ > 0, similarly to the case of β⋆ = 0. Overall, we finally

conclude that the optimal solution of the convex problem (28)

satisfies rank(V ⋆
iI
)=1, ∀ii ∈ KI . This proof is completed.
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