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Abstract—Support vector machines (SVMs) have improved
generalization performance over other classical optimization
techniques. Here, we introduce an SVM-based approach for
linear array processing and beamforming. The development
of a modified cost function is presented and it is shown how it
can be applied to the problem of linear beamforming. Finally,
comparison examples are included to show the validity of the new
minimization approach.

Index Terms—Beamforming, complex support vector machines,
support vector machines (SVMs).

I. INTRODUCTION

UPPORT vector machines (SVMs) have shown several
advantages in prediction, regression, and estimation over
some of the classical approaches in a wide range of applica-
tions due to its improved generalization capabilities. Here, we
introduce the basic framework of the SVM approach as applied
to linear array processing.
Array signal processing involves complex signals, for which
a complex-valued formulation of the SVM is needed. We in-
troduce this formulation by introducing the real and imaginary
parts of the error in the primal optimization and then proceeding
as usual to solve a complex valued constrained optimization
problem. The resulting algorithm is a natural counterpart of the
real valued support vector regressor, which can be immediately
applied to array signal processing. The adjustment of the param-
eters into this cost function leads to an improved robustness of
the method in the presence of any additional noise in the signal.
We apply the newly developed formulation in optimizing the
beamforming from an array antenna of six elements as a proof
of concept. Several examples illustrate the advantage of SVMs
over minimum mean square error (MMSE)-based algorithms
due to its improved generalization ability. The first examples
compare the behavior of both algorithms in an environment in
which interfering signals are close to the desired ones, thus pro-
ducing non-Gaussian noise. The last example illustrates the im-
proved generalization ability of the SVM when small data sets
are used for training, which is common in several communica-
tion applications.

II. THE SUPPORT VECTOR APPROACH
AND THE COST FUNCTION

Let x[n] be spatially sampled data. A linear beamformer can
be written as

d[n] = wx[n] + €[n] @)
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where x[n] is the vector of M elements of the array output and
e[n] is the output error.

Coefficients w are usually estimated through the minimiza-
tion of a certain cost function on €[n].

The SVM approach can be applied to the adjustment of this
model. The main idea of SVMs is to obtain the solution which
has the minimum norm of w. Due to the minimization of the
weight vector norm, the solution will be regularized in the sense
of Thikonov [1]), improving the generalization performance.
The minimization has to be subject to the constraints

din] - w”x[n]
—d[]+wx[]
lnl, €'l

not to be trivial. &, and £/, are the “slack” variables or losses.
The optimization is intended to minimize a cost function over
these variables. The parameter ¢ is used to allow those &, or &,
for which the error is less that € to be zero. This is equivalent
to the minimization of the so-called e-insensitive or Vapnik loss
function [2], given by
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The functional to be minimized is then
Ly = Wl +C Y Le (6,€1) “

subject to &,,, &, > 0 where C is the tradeoff between the mini-
mization of the norm (to improve generalization ability) and the
minimization of the errors [2].

The optimization of the above constrained problem through

Lagrange multipliers a;, o/} leads to the dual formulation [3]
Li=—(a—a)"R(a—a)+(a—a )y — (a+a')le (5)
to be minimized with respect to (o; — o).

It involves the Gram matrix R of the dot products of the data
vectors x[n]. This matrix may be singular and thus producing an
ill-conditioned problem. To avoid this numerical inconvenience,
a small diagonal 41 is added to the matrix prior to the numerical
optimization.

We present here a modified derivation of the SVM regressor
which leads to a more convenient equivalent cost function

(Fig. 1)
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Fig. 1. Cost function applied to the SVM beamformer.

where ec = ¢ + 7C.

This cost function provides a functional that is numerically
regularized by the matrix /. As it can be seen, the cost function
is quadratic for the data which produce errors between ¢ and
ec, and linear for errors above ec. Thus, one can adjust the
parameter ec to apply a quadratic cost for the samples which are
mainly affected by thermal noise (i.e., for which the quadratic
cost is maximum likelihood). The linear cost is then applied
to the samples which are outliers [4], [5]. Using a linear cost
function, the contribution of the outliers to the solution will not
depend on its error value, but only on its sign, thus avoiding the
bias that a quadratic cost function produces.

Finally, we generalize the derivation to the complex-valued
case, as it is necessary for array processing.

III. SUPPORT VECTOR MACHINE BEAMFORMER

The output vector of an M -element array receiving K signals
can be written in matrix notation as

x[n] = As[n] + g[n] )
where
A = [a(b1)---a(bh)]
a(f;) = [1e_jki .. .e—j(M—l)kl} T
sln] = [s1ln] -~ sln]]”
gln] = lor[n] - gnfol]” ®)

are respectively the M x K steering matrix and vectors, the
received signals, and the noise present at the output of each array
element.

The output vector x[n] is linearly processed to obtain the de-
sired output d[n]. The expression for the output of the array pro-
cessor is

yln] = wx[n] = d[n] + €[n] ©

where w = [w; - - - wy] is the weight vector of the array and
€[n] is the estimation error.

For a set of N observed samples of {z[n]} and when nonzero
empirical errors are expected, the functional to be minimized is:

1 N
SIWIP+ > La(elnl.2.7.C). (10)
n=1

Thus, according to the error cost function (6), we have to min-
imize
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where £[n], and ¢’[n] stand for positive, and negative errors in
the real part of the output, respectively. ([n] and (’[n] repre-
sent the errors for the imaginary part. Note that errors are ei-
ther negative or positive and, therefore, only one of the losses
takes a nonzero value, that is, either &[n] or '[n] (either ([n] or
¢’[n]) is null. This constraint can be written as {[n]¢'[n] = 0
(¢[n]¢'[n] = 0). Finally, as in other SVM formulations, the pa-
rameter C' can be seen as a tradeoff factor between the empirical
risk and the structural risk.

It is possible to transform the minimization of the primal
functional (11) subject to constraints in (12), into the optimiza-
tion of the dual functional or Lagrange functional. First, we in-
troduce the constraints into the primal functional by means of
Lagrange multipliers, obtaining the following primal-dual func-
tional:
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with the dual variables or Lagrange multipliers constrained to
s By Ans Nns 0y Bry AL, ml, > 0 and with &, G, &L, ¢ > 0.
Note that cost function (1) has two active segments, a quadratic
one and a linear one.

The following constraints must also be fulfilled:

/
apag, =0

B3, =0. , (14



Besides, the Karush—Kuhn-Tucker (KKT) conditions [2] force
An&n =0, A&, =0andn,(, = 0,7, = 0. Functional (13)
has to be minimized with respect to the primal variables and
maximized with respect to the dual variables. By minimizing
L,q with respect to w; we obtain an optimal solution for the
weights

N

w = Z X" [n]

n=0

15)

where ¢, = a,, — o, + j(Bn — 3,,)- This result is analogous to
the one for the real-valued SVM problem, except that now La-
grange multipliers o, and 3,, for both real and imaginary com-
ponents have been considered. Optimizing L,4 with respect to
&, and (,, and applying the KKT conditions leads to an analyt-
ical relationship between the residuals and the Lagrange multi-
pliers. This relationship is given by

(—C, Re(e) < —ec
% (Re(e) +€), —ec < Re(e) < —¢
(a—a')=1¢ 0, —e < Re(e) <e
% (Re(e) —e), e < Re(e) <ec
L C, ec < Re(e)
(—C, Im(e) < —ec
% (Im(e)+¢e), —ec <Im(e) < —e¢
(B-p)=10, —e<Im(e)<e (16)
%(Im(e)—s), e <Imle) <ec
L C, ec < —Imf(e).

As mentioned earlier, it is possible to continue toward the
purely dual formulation of the problem that can be solved using
quadratic programming (QP) as usually is done in the literature
but, this approach is computationally intensive, and lacks the re-
quired flexibility for our communications problem at hand. Al-
ternative optimization methods such as those relying on the it-
erative reweighted least squares (IWRLS) have been introduced
in [6] with a clear advantages in terms of computational cost and
flexibility of operation.

Using (15), the norm of the complex coefficients can be
written as

N N
IWiI* =" > dwrxilx[il.

1=0 j=ng

7)

By using matrix notation again and storing all partial corre-
lations in (17), we can write

RJ[j,i] = x[7]x"[{] (18)
so that the norm of the coefficients can be written
[w||* = %" Rep (19)

R being the matrix with elements R[j,7], and ¢ =
(%ny - --9n)T. By substituting (15) in functional (13), the
dual functional to be maximized is as follows:

L= 59" R~ Re[¢"R(a - o)
+1Im ['II)HR(,B - BI)}
+ Re [(a—a)Ty] = Im [(B-B)"y]

—(a+a)le— (B+B)1e+ L¢ (20)

L¢ being a function of 1.
Intervals I; and I> must be treated separately.
e Using (16) into interval I; yields oz,(fl) = [31(7'1) = C. Then,
the last term of the functional for I; becomes

Le(1p) = CT (21)

where I is the identity matrix.
e Using (16) into interval o, then ag,/@) = (1 /’y)f,(,? and
() — (1/ 7)4,52?. The last term for this interval becomes

Lo(l) = %w;’ s (22)
1o being the elements of interval I5.
Both terms can be grouped as
Y Y
Lo = 271y + (1 - 5) ODy, 23)

Dy, being a diagonal matrix with terms corresponding to I; set
to 1 and the remaining set to 0. As the last term of L¢ is just a
constant, it can be removed from the optimization.

By regrouping terms and taking into account that ¢y# Ry =
H Re(R)1, the functional (20) can be written in a more com-
pact form as

Ld:—%z/JHRe (R—I— %I) Y+ Re[pTy]—(a+ o'+ + F)1e.
(24)

IV. EXAMPLES
A. Bit Error Rate Performance

We first compared the algorithm with the regular least squares
(LS) approach for an array of six elements. The desired signals
come from the angles between —0.17 and 0.257, with ampli-
tudes 1 and 0.3, and the interfering signals come from within
the range of —0.057, 0.17, and 0.37 with an amplitude of 1.

In order to train the beamformer, a burst of 50 known symbols
is sent. Then, the bit error rate (BER) is measured with bursts of
10000 unknown symbols.

In the first two examples, we fix vy of (6) to 106 and then
the product vC' is adjusted to the noise standard deviation. That
way, most of the samples which are corrupted only by (thermal)
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Fig. 2. BER performance for example 1. SVM (continuous line) and regular
LS (dashed line) beamformers.
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Fig. 3. BER performance for example 2. SVM (continuous line) and regular
LS (dashed line) beamformers.

noise will fall in the quadratic area, whereas the outliers pro-
duced by interfering signals will fall in the linear area.

We calculated the BER performance of LS and SVM for dif-
ferent noise levels from O to —15 dB. Each BER has been eval-
uated by averaging the results of 100 independent trials. The
results can be seen in Fig. 2.

In the next case, the desired signal coming from the angles
of arrival (AOA) —0.17 and 0.257, with amplitudes 1 and 0.3,
where the interfering signals come from the AOAs —0.02,
0.27, 0.37 with amplitude 1 (see Fig. 3).

In the last example, the interfering signals are much closer
to the desired ones, thus biasing the LS algorithm. The better
performance of the SVM is due to its better robustness against
the non-Gaussian outliers produced by the interfering signals.

B. Robustness Against Overfittng

One advantage of SVMs is that their generalization ability is
controlled by the regularization imposed by the minimization of
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Fig. 4. BER performance against the number of training samples. SVM
(continuous line) and regular LS (dashed line) beamformers.

the weight vector norm. We highlight this fact by calculating the
BER for different number of training samples. The results are
shown in Fig. 4.

V. CONCLUSION

We introduce in this work a way to apply the SVM framework
to linear array beamforming. SVMs have a clear advantage over
MMSE-based algorithms in those cases in which small data
sets are available for training and where non-Gaussian noise
is present, due to the fact that the generalization ability of the
machine is controlled. In order to make the algorithm adequate
to array processing purposes, we first apply an alternative
cost function which is suitable in problems in which there are
Gaussian noise and other non-Gaussian sources, as multiuser
interference which may produce outliers in the signal. Also, this
cost function provides a natural way to explain the numerical
regularization present in any SVM.

Ongoing work is being done in the application of nonlinear
SVMs for beamforming and detection of AOA.
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