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Abstract

We propose BeamSeg, a joint model for seg-

mentation and topic identification of docu-

ments from the same domain. The model as-

sumes that lexical cohesion can be observed

across documents, meaning that segments de-

scribing the same topic use a similar lexical

distribution over the vocabulary. The model

implements lexical cohesion in an unsuper-

vised Bayesian setting by drawing from the

same language model segments with the same

topic. Contrary to previous approaches, we as-

sume that language models are not indepen-

dent, since the vocabulary changes in consec-

utive segments are expected to be smooth and

not abrupt. We achieve this by using a dy-

namic Dirichlet prior that takes into account

data contributions from other topics. BeamSeg

also models segment length properties of doc-

uments based on modality (textbooks, slides,

etc.). The evaluation is carried out in three

datasets. In two of them, improvements of up

to 4.8% and 7.3% are obtained in the segmen-

tation and topic identifications tasks, indicat-

ing that both tasks should be jointly modeled.

1 Introduction

Documents exhibit a content organization that ag-

gregates related text passages in topically coher-

ent segments. Understanding the document struc-

ture at the segment level enables efficient content

navigation. This has become more relevant with

the number of available documents on the Web.

The current information landscape allows access

to documents describing the same subject, provid-

ing alternative views or complementary informa-

tion. This is advantageous in a variety of scenar-

ios. For example, students have at their disposal

several learning materials and might need to find a

particular topic segment that best suits their learn-

ing needs. Finding such documents is an easy task

since search engines are capable of returning doc-

uments conveying related information. However,

if search engines are effective in retrieving these

documents, the task of putting them into a co-

herent picture remains a challenge (Shahaf et al.,

2012). Automatically finding document segments

– text segmentation – and identifying which ones

discuss the same topic – topic identification – ad-

dresses this issue (Jeong and Titov, 2010).

Text segmentation and topic identification have

been used as intermediate steps in a variety of nat-

ural language processing tasks, including summa-

rization (Radev et al., 2004), opinion mining (Mu-

rakami et al., 2009), semantic and information re-

trieval (Purver, 2011; Amoualian et al., 2017). The

improvements they brought spurred research in

text segmentation. Invariably, all works resort to

the lexical cohesion theory (Halliday and Hasan,

1976), which postulates that discourse structure

is correlated to the use of cohesive vocabulary.

Thus, segments can be identified by detecting vo-

cabulary changes. Most approaches either con-

sider segmentation and identification separately

and/or do not take into account all documents in

the dataset (single-document approach). Recently,

some works studied these phenomena in collec-

tions of related documents (Jeong and Titov, 2010;

Mota et al., 2016). These multi-document mod-

els assume that documents describing the same

topic have similar lexical cohesion properties; an

example of this phenomenon with similar seg-

ments but in different documents is depicted in

Figure 1. Thus, better likelihood estimations can

be obtained if all documents are taken into ac-

count (Mota et al., 2016). In this work, we expand

the multi-document lexical cohesion idea by hy-

pothesizing that vocabulary relationships between

different segments exist. For example, if a word is

heavily used in one segment, it is likely that it con-

tinues to appear in the following one, though less

frequently. Modeling such interactions can lever-
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age topic segmentation algorithms. We also ex-

plore the role of modality in the multi-document

scenario. Previous approaches treat all documents

equally, but it is plausible that we can improve seg-

mentation by making assumptions about the ex-

pected segment length on a document modality ba-

sis. For example, segments in slide presentations

are expected to be shorter than in video lectures.

We propose BeamSeg, a Bayesian unsupervised

topic modeling approach to breaking documents in

coherent segments while identifying similar top-

ics. The generative process assumes that segments

can share the same topic and, consequently, are

generated from the same lexical distribution. Lex-

ical cohesion is achieved by having higher seg-

mentation likelihoods when the probability mass

is concentrated in a narrow subset of words. This

is in the same spirit as topic modeling approaches

such as Latent Dirichlet Allocation (LDA) (Blei

et al., 2003), but here the inherent topics are con-

strained to the linear discourse structure. To model

interactions between lexical distributions, we use

a dynamic prior, which assumes that the word

probabilities change smoothly across topics. To

model segment length characteristics, we assign

prior variables conditioned on document modality.

The linear segmentation constraint has been

used to make inference tractable by exhaustively

exploring the segmentation space to obtain the

exact maximum-likelihood estimation (Eisenstein

and Barzilay, 2008). Given a multi-document set-

ting, this is not feasible, as segments can share top-

ics. We address this issue using a beam search

algorithm, which allows the inference procedure

to recover from early mistakes. In our experi-

ments, we show that BeamSeg is able to perform

well when segmenting learning materials, where

previously single-document models obtained bet-

ter results (Mota et al., 2018). We also observe that

topic identification is more accurately determined

in a joint model, as opposed to a pipeline approach

(performing the tasks sequentially), indicating that

both problems should be modeled simultaneously.

We summarize our contributions as follows:

• A novel joint model for topic segmentation

and identification with a dynamic prior.

• An inference procedure based on a beam

search algorithm.

• A study on how different modality-based seg-

ment length priors influence segmentation.

The source code is available in the following

repository: github.com/pjdrm/BeamSeg.

2 Related Work

Following the lexical cohesion theory, segmenta-

tion algorithms identify spans of text with promi-

nent vocabulary changes. The main difference be-

tween algorithms is how lexical cohesion is im-

plemented: some resort to lexical similarity; the

remaining follow a probabilistic approach.

Lexical approaches rely on a similarity metric

between sentences, usually the cosine. A clas-

sic method is TextTiling (Hearst, 1997), which as-

sumes that topic boundaries are found in consec-

utive sentences with a low similarity value; sev-

eral other works built on this idea (Galley et al.,

2003; Balagopalan et al., 2012). C99 (Choi, 2000)

is another lexical approach, and uses a similar-

ity matrix in a divisive clustering to obtain seg-

ments. MinCut (Malioutov and Barzilay, 2006)

casts segmentation in a minimum cut graph par-

titioning problem. The graph has a node for each

sentence; edges are weighted using lexical similar-

ity. Long-distance textual relationships are mod-

eled by connecting all sentences. Affinity Prop-

agation Segmentation (Kazantseva and Szpakow-

icz, 2011) also models such relationships but uses

affinity propagation clustering (Frey and Dueck,

2007). The algorithm creates a factor graph and

maximizes the segment similarity sum function.

Alemi and Ginsparg (2015) proposed the Content

Vector Segmentation (CVS) sentence vector rep-

resentation based on segment word embeddings.

Using this representation in C99 improves bag-of-

words results.

In another line of research, Wang et al. (2017)

combined learning to rank and a convolutional

neural network to learn a coherence function be-

tween text pairs; higher-ranked pairs are likely to

be segments. Despite a promising approach, state-

of-the-art results were not achieved. Also fol-

lowing an approach using neural networks, is the

SECTOR algorithm (Arnold et al., 2019), which

uses a topic embedding trained based on utterance

topic classification. Following the network archi-

tecture from (Koshorek et al., 2018), two stacked

LSTM layers are used to decode word embedding

representation of utterances. To recover segmenta-

tion, a TextTiling approach is applied to the topic

embedding layer. The evaluation results show that

SECTOR is able to improve a C99 baseline.

github.com/pjdrm/BeamSeg
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Just as we introduced average

velocity we will now describe

average acceleration. Notice

when velocity changes ... over

time. And ... introduce an

average acceleration ... The

average acceleration between

time t2 ... And the dimension

... secs per time squared.

Acceleration We say ...

changing velocity are

“accelerating” Acceleration is

the “Rate of change of velocity”

You hit the accelerator to speed

up ... it’s true you also hit ...

friction is slowing ... Average

acceleration Unit of

acceleration: (m/s)/s=m/s2

The acceleration of a particle ...

rate of change of velocity ...

time. Average acceleration ... is

v2 - v1 t2 - t1 ... Acceleration

may be positive, negative or

zero. Zero acceleration means

we have constant velocity. Note

that the direction and

acceleration need not coincide.

Figure 1: Examples of segment excerpts from video, slide presentation, and PDF documents describing the acce-

laration topic. Words in bold depict shared vocabulary across segments.

Probabilistic approaches to segmentation fol-

low a setup similar to the LDA model: words

are assigned to topics such that probability mass

is distributed on a small set of topically rele-

vant words. In order to adapt this idea to seg-

mentation, the model needs to be able to deter-

mine if sentences belong to the same topic (or

mixture of topics). An example of such adapta-

tion is the single-document segmentation model

PLDA (Purver et al., 2006), where topic propor-

tions are shared by sentences within the same seg-

ment. Segmentation is then determined through

a binary topic shift sentence variable. Models

such as TopicTiling (Riedl and Biemann, 2012),

Structured Topic Model (STM) (Du et al., 2013),

and NTSeg (Jameel and Lam, 2013) extend this

LDA-based approach to segmentation. In all these

approaches, topic identification is not possible

since all segments are a mixture of topics.

In this paper, we adopt a probabilistic multi-

document view on segmentation. Only two other

models follow this approach: MultiSeg (Jeong

and Titov, 2010) and Bayesseg-MD (Mota et al.,

2016). MultiSeg uses a two-level LDA model

where documents are generated using local and

global topics. Local topics are specific to a doc-

ument; global topics are shared between docu-

ments. Documents are mixtures of topics, but each

segment is generated by a single topic, lending it-

self to a joint model of segmentation and topic

identification. The multi-document aspect of the

model stems from topic proportions being inferred

from the whole dataset. In the experiments, this

joint modeling outperforms a pipeline strategy that

performs these tasks sequentially.

The other multi-document model, Bayesseg-

MD, is an extension of Bayesseg (Eisenstein

and Barzilay, 2008). In Bayesseg, sentences

from the same segment are assigned the same

topic. The inference procedure affords an ex-

act maximum-likelihood estimation by exploring

the segmentation space with a dynamic program-

ming algorithm. This approach cannot be ap-

plied to multi-document segmentation since the

hidden topic variables are integrated out; other

single-document models following this approach

also have this problem (Eisenstein, 2009; Malmasi

et al., 2017). Bayesseg-MD sidesteps this problem

by using lexically similar sentences from other

documents. The word counts of such sentences are

added to the segment likelihood estimation to re-

duce data sparseness. Despite using all documents

for segment likelihood estimations, topic identifi-

cation is not available. In this paper, we address

these issues by designing an inference algorithm

that explicitly tracks segment topic assignments.

3 BeamSeg Model

We implement lexical cohesion in a Bayesian set-

ting in a generative process where segments with

the same topic are drawn from the same multino-

mial language model. Thus, all u utterances with

a topic k have their bag-of-words representation

xu drawn from language model φzu ; zu is the hid-

den topic variable of u. We constrain the model

to yield linear segmentations by having topics oc-

curring at most once per document. This induces

higher likelihood segmentations to have language

models concentrating probability mass on a small

subset of the vocabulary. Conversely, low likeli-

hood segmentations spread the probability mass

on a broad set of words. This modeling behavior

is attuned to the lexical cohesion theory. Multi-

document segmentation emerges by assuming that

topics are shared across documents.

During inference, we want to find the hidden
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set of language models Φ and the topic vector as-

signment z that maximize the likelihood of the

joint distribution of the model. Since we only

care about segmentation, this process can be sim-

plified by analytically marginalizing out the hid-

den language models Φ. This enables search to

be carried out only in the segmentation space.

Therefore, inference amounts to finding the seg-

mentation ẑ = argmax
z
p(X|z)p(z). Using the

marginalized joint likelihood, an approximation of

ẑ is obtained using a beam search algorithm.

3.1 Language Models

Using the previous setup, we define the joint like-

lihood as follows:

p(X|z,Φ) =

K
∏

k

p(φk|β)

U
∏

u

p(xu|φzu), (1)

where X is the set of all U utterances in the

dataset; K is the number language models; and

β are the Dirichlet prior parameters from which Φ
is drawn.

The marginalization process is performed by

appealing to the conjugacy between multinomial

language models and the Dirichlet prior. This al-

lows the conjugate Dirichlet distribution to inte-

grate to one, leaving the marginalized joint likeli-

hood expression with the normalizing constants:

p(X|z) =

∫

p(X|z,Φ)p(Φ|β)dΦ (2)

=
(Γ(Wβ)

Γ(β)W

)K
K
∏

k=1

∏W
w=1

Γ(nk
U,w + β)

Γ(nk
U + β)

,

where W is the vocabulary set; nk
U,w is number of

times word w is assigned topic k in all U utter-

ances of the document collection; nk
U is number

of times topic k appears in U ; and the symbol Γ
refers to the Gamma function. The resulting ex-

pression in Equation 2 corresponds to the product

of the individual topic likelihoods, comprised of

segments from different documents.

3.2 Segment Length Prior

The ẑ = argmax
z
p(X|z)p(z) expression we

want to maximize to obtain the most likely seg-

mentation puts a prior, p(z), on the segment length

of documents. Given the approach of searching

the segmentation space only during inference, we

do not require the mathematical conveniences of

conjugacy for the segment length prior. In this per-

spective, we can plug in different distributions to

see how they behave during the segmentation task.

One of such distribution is the Beta-Bernoulli,

which has been used before in a probabilistic ap-

proach to segmentation (Purver et al., 2006):

p(z) =

(

Γ(2γ)

Γ(γ)2

)D D
∏

d=1

Γ(nd
1 + γ)Γ(nd

0 + γ)

Γ(Ud + 2γ)
,

(3)

where D is the number of document in the dataset,

Ud is the total number of utterances in document d,

nd
1 is the number of segments in d, nd

0 the number

of non-segment boundary utterances in d, and γ

the hyperparameter of the Beta distribution.

We also propose a Gamma-Poisson distributed

segment length prior. In this setup, we assume that

the document topic shift probabilities are drawn

from a Gamma prior parameterized by α and β:

p(z) =

(

βα

Γ(α)

)D D
∏

d=1

Γ(nd
1 + α)

(Ud + β)n
d
1
+α

(4)

Applying priors based on document modality

can be done by assuming they are known a priori,

which is the approach we take. It is only neces-

sary to have dedicated hyperparameters for each

modality and apply them accordingly when com-

puting segmentation likelihood. This means we

are encoding in the model our prior beliefs about

the segment length of each modality. Nonetheless,

if the lexical cohesion in a hypothesized segment

is strong enough, the model will identify it even if

the length is not inline with the prior.

3.3 Dynamic Language Model Prior

The previous priors assume that language model’s

draws are independent of each other, and, thus

cannot encode relationships between them. This

is not a reasonable assumption in datasets with

documents following an overarching subject. We

hypothesize that in these cases, language mod-

els change smoothly across topics by establishing

a dynamic between the previous and the current

prior parameters. This time series modeling of

topics can be found in other works (Blei and Laf-

ferty, 2006b,a; Du et al., 2013; Jahnichen et al.,

2018). In BeamSeg, we adopt a similar perspec-

tive to topic tracking (Watanabe et al., 2011) for

modeling such interactions. We factor the β in

αkφ̂k′ , a precision and mean language model word
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probabilities parameters. Assuming some order-

ing between the topics, k indexes the topic pa-

rameters, and k′ the parameters of the previous

topic. The αk precision represents the persistence

of word usage throughout topics; φ̂k models the

language model dynamics by assuming that the

mean word probabilities at k are the same as those

at k′. This entails that there is a single chain of

language models, which contrasts with the multi-

ple chains in the original topic tracking model.

To compute the likelihood of the joint under this

prior, it is necessary to determine the parameters

for all k ∈ K. This is a two-fold process, where

we first update the αk precision parameter using

the expression derived from Minka (2000):

αk = αk

W∑

w

φ̂k′w(Ψ(nkw + αkφ̂k′w)−Ψ(αkφ̂k′w))

Ψ(nk + αk)−Ψ(αk)
,

(5)

where nkw is the number of times word w appear

in k; nk is the total number of words in k; and Ψ is

the digamma function. Then, we update the mean

word probability parameters:

φ̂kw =
nkw + αkφ̂k′w

nk + αk

(6)

The update equations are sequentially applied

according to a fixed topic order. By following

this process, we model long-range dependencies

by taking into account the data contribution at each

k. Finally, we plug-in the obtained prior parame-

ters in the join likelihood formula in Equation 2.

3.4 Beam Search for Inference

Following Bayesseg (Eisenstein and Barzilay,

2008), inference is viewed as an optimization

problem, where the target segmentation maxi-

mizes the objective function defined by the joint

likelihood. Contrary to Bayesseg, we assume that

language models aggregate segments from dif-

ferent documents, making an exhaustive explo-

ration of the segmentation space intractable. To

address this problem we combine beam search

and a greedy segmentation procedure. Other

considered inference alternatives include Gibbs

sampling (Bishop, 2006) and Variational Infer-

ence (Ghahramani et al., 2008). The difficulty in

applying Gibbs sampling is its slow convergence

to the stationary distribution, due to the tight cou-

pling of the variables induced by the linear seg-

mentation constraint. A similar problem occurs

in the variational inference procedure from Eisen-

stein (2009), where variational parameters and

segmentation are iteratively estimated.

We define z
∗

j as the segmentation that maxi-

mizes the objective function up to utterance j.

Considering the topic assignment zj = k and the

previous segmentation zj−1, the value for the ob-

jective function is written,

s(k, j, zj−1) = p({x0...xj}|zj−1, zj = k) (7)

Using a recursive definition, we obtain the opti-

mal segmentation using:

z
∗

j = argmax
k∈K

s(k, j, z∗j−1) (8)

This is a greedy approach since it makes in-

cremental decisions to find the highest likelihood

segmentation. This is an error-prone procedure

since we should take into account subsequent ut-

terances to discover higher likelihood segmenta-

tions. Moreover, once a mistake is made, we can-

not recover from it. To address this problem, we

add a beam search feature to the algorithm. This

is achieved by keeping track of all topic assign-

ments, instead of just the highest likelihood one.

At the end of each recursive step, we prune the

top-n segmentations.

4 Experiments

We now describe the experimental setup and re-

port the results for the target tasks.

4.1 Datasets

Currently, there are two multi-document segmen-

tation datasets with different document modalities.

One of the datasets is comprised of learning ma-

terials describing the subject of Adelson-Velsky

and Landis’ (AVL) trees (Mota et al., 2016). The

available modalities are video transcripts, PPT,

and HTML. In total, the dataset contains 10 doc-

uments, 85 segments, and 17 topics. The other

dataset also contains learning materials but from

the Physics domain (Mota et al., 2018). In ad-

dition, this dataset also has PDF modality. The

dataset has 141 documents, 739 segments, and

135 topics from 7 different Physics subjects. This

dataset does not provide topic identification labels
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for the segments. Therefore, we manually anno-

tated it with this information. In this context, we

made an inter-annotator agreement study for the

‘Introduction to Kinematics’ subject with two an-

notators. A 0.69 Fleiss-kappa (Shrout and Fleiss,

1979) agreement value was obtained, showing that

annotators had a similar perception of whether

segments share the same topic. Most of the dis-

agreement cases are due to considering textual and

plot-based explanations as different topics.

In addition to the previous datasets, we also

used Biography documents from Jeong and Titov

(2010). The dataset contains 116 documents re-

garding 29 personalities; 4 documents per per-

sonality with a total of 240 segments; the num-

ber of topics is 405; all documents have the same

HTML modality. The Biography domain has dif-

ferent topic development characteristics from the

previous domains. The documents have fewer and

shorter segments when compared with the AVL

and Physics domains, leaving less room for topics

to be described. All datasets were preprocessed by

stemming and stop words were removed.

4.2 Segmentation Experiments

In the experiments, we benchmark syntax simi-

larity and probabilistic approaches: C99, CVS,

Bayesseg, PLDA, Bayesseg-MD, and MultiSeg.

The hyperparameter tuning of the models is done

on a development set. In the Biography dataset,

we use documents from one of the personalities.

For MultiSeg we use the configurations provided

by the authors. In the Physics domain, we use ten

documents from one of the subjects. The obtained

tuning is also used for the AVL trees domain since

both datasets have pedagogical content. The Gibbs

sampling for PLDA run for 20000 iterations with

a burn-in period of 1000 and a lag value of 200. In

BeamSeg, we investigate the role of two factors in

segmentation: using the dynamic vs. an indepen-

dent language model prior, and using a modality-

based segment duration prior vs. using a single

prior variable. The beam size was set to 200.

To measure performance, we use the standard

Window Difference (WD) metric (Pevzner and

Hearst, 2002). WD slides a window through a

document and penalizes segmentations according

to the difference between the number of expected

segment boundaries and the predicted ones. This

gives partial credit to near-miss situations. The

metric is calculated as follows:

WD =
1

N − k

N−k
∑

i=1

|ref − hyp| 6= 0, (9)

where N is the length of the document and k the

window size. WD is a penalty score between 0

(the best value) and 1. For consistency, we take the

output segmentations from all systems and evalu-

ate it using the same software (the python module

segeval (Fournier, 2013)).

The WD average results for the baseline are in

Table 1. In the Biography dataset, MultiSeg is

the best performing model, improving the WD of

Bayesseg-MD by 0.05. In the AVL dataset, the

best results are obtained by Bayesseg-MD. The

difference to the second best result, Bayesseg, is

0.02. For the Physics dataset, the single-document

model Bayesseg achieves the best results with a

WD difference of 0.01. These results show that

the performance of the algorithms varies across

the different datasets. This suggests that the dif-

ferent modeling approaches do not generalize well

to the different characteristics of the datasets. The

Biography dataset is characterized by short seg-

ments, which does not leave much room for lex-

ical cohesion to be observed. This contrasts with

the AVL and Physics datasets where the segments

are longer and describe an overarching topic.

Table 1: Segmentation baseline average WD results.

Bio AVL Physics

C99 0.61 0.59 0.54

PLDA 0.58 0.55 0.49

CVS 0.54 0.45 0.43

Bayesseg 0.53 0.39 0.42

Bayesseg-MD 0.42 0.37 0.43

MultiSeg 0.37 0.41 0.44

The results using different prior configurations

are in Table 2. In the table, the LMP and SLP

columns correspond to the language model and

segment length priors. In the Biography dataset,

we can see that using the dynamic LMP instead of

the independent improves the the Beta-Bernoulli

and Gamma-Poisson results by 0.01 and 0.09,

respectively. In the AVL dataset, the dynamic

LMP improves the best WD results of the in-

dependent LMP by 0.02. When comparing the

scope results of the dynamic LMP in the AVL

dataset, we observe further improvements when
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Table 2: BeamSeg average WD results. The SLP

column depicts the Beta-Bernoulli (BB), and Gamma-

Poisson (GP) distributions. The scope indicates if the

SLP is modality-based (M) or if there is one variable

for the whole dataset (D). The Biography dataset has

one modality, and, thus, only the D scope exists.

LMP SLP Scope Bio AVL Physics

Ind

BB
D 0.54 0.39 0.45

M – 0.40 0.42

GP
D 0.58 0.40 0.40

M – 0.43 0.42

Dyn

BB
D 0.53 0.44 0.54

M – 0.38 0.42

GP
D 0.49 0.38 0.47

M – 0.37 0.40

using the modality-based SLP; the results differ-

ences are 0.06 and 0.01, respectively. In the

Physics dataset, a dynamic LMP combined with

the modality-based Gamma-Poisson SLP obtains

the best results tied with the independent LMP and

dataset-based Gamma-Poisson SLP. It should be

noted that the former configuration better gener-

alizes across the different datasets since it obtains

better results in the Biography and AVL datasets;

the WD differences are 0.09 and 0.03, respec-

tively. Looking at the scope results of the dynamic

LMP, we observe that the Beta-Bernoulli and the

Gamma-Poisson perform better when using the

modality prior (0.12 and 0.07 improvements).

WD is a metric that assesses the overall quality

of a segmentation, accounting for different types

of errors. This can make the WD scores of two

very different segmentations to be close, which

is the case of the previous results. For example,

a segmentation that has no segments and another

that only has misplaced segments will have sim-

ilar WD scores despite being different. To show

that the different prior configurations output sig-

nificantly different segmentations, we provide the

counts of the exact segment boundary matches in

Table 3. From these results, we can observe that

using a dynamic LMP can increase the number of

boundary up to 229. A similar observation can be

made when comparing the dataset and modality

scopes, where the increases are up 27 segments.

These increases in exact boundary matches show

that despite the small differences in WD the im-

pact on how the segmentation looks like is signifi-

Table 3: Number of exact segment boundary matches

between hypothesis and reference segmentations.

LMP SLP Scope Bio AVL Physics

Ind

BB
D 88 1 16

M – 1 8

GP
D 15 1 5

M – 1 20

Dyn

BB
D 147 3 34

M – 4 39

GP
D 244 2 19

M – 5 46

cant. Therefore, we conclude that using a dynamic

LMP with a modality Gamma-Poisson SLP is nec-

essary to achieve the best results.

Comparing BeamSeg’s results to the baseline,

we see that in the Biography dataset MultiSeg per-

forms better by a 0.12 margin. The main dif-

ference between the segmentation of the two ap-

proaches is that BeamSeg outputs fewer segments,

which is a disadvantage since this dataset has

a high number of short segments. In the AVL

dataset, the performance is similar to Bayesseg-

MD. Looking at the individual documents shows

that BeamSeg has better results in five out of ten

documents, one tie, and two documents where the

WD difference is 0.01. This leaves Bayesseg-MD

to perform significantly better only in two docu-

ments. Therefore, BeamSeg is more consistent

in this dataset. In the Physics dataset, BeamSeg

improves the Bayesseg baseline by 4.8%. Taking

into account the result analysis, we conclude that

BeamSeg’s performance depends on the character-

istics of the datasets. In datasets where topic de-

velopment is prominent across the segments (AVL

and Physics), BeamSeg is the model with the most

consistent results. This is only possible when

using a dynamic LMP and a modality Gamma-

Poisson SLP, showing that both modeling aspects

are relevant to obtain the best segmentation.

To understand the behavior of the priors we pro-

vide a segmentation example in Figure 2. From

the example, we see that the main difference be-

tween the independent and dynamic LMPs is the

number of segments. In the independent LMP, the

number of segments is low, especially when using

the dataset SLP. For the modality SLP, the num-

ber of segments is higher but they tend to be mis-
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placed. When using dynamic LMP, the behavior

changes at the SLP level. The dataset SLP outputs

more segments than the modality version. How-

ever, most segments do not match the reference.

The modality SLP finds fewer segments, but they

tend to be more accurate. This makes sense since

the over-segmentation of the dataset SLP might be

related to the bias towards documents with short

segments, and the modality prior is able to adjust

to a wider variety of documents.

Sentences

Dyn-GP-D
Dyn-GP-M

Ind-GP-D
Ind-GP-M

Reference

Figure 2: Physics document segmentation using dif-

ferent prior configurations in BeamSeg. Bars with the

same color represent segments of the same prior con-

figuration. The names of the configurations start with

the LMP type, followed by the SLP, and its scope.

4.3 Topic Identification Experiments

We use the previous datasets to evaluate topic

identification and compare multi-document joint

models to a pipeline approach. In the pipeline

approach, we evaluate clustering and graph-

community detection algorithms. The clustering

algorithms take the golden standard segments and

identify segments sharing the same topic if they

are assigned the same cluster. Several clustering

algorithms are surveyed (Aggarwal and Reddy,

2014): DBSCAN, Mean Shift, and NMF. For

the graph-community detection approach, word

communities are obtained from the segments.

Then, based on lexical similarity, segments are

assigned to one of the communities (Mota et al.,

2018). If two segments are assigned to the same

community, they share the same topic. Several

graph-community detection algorithms are sur-

veyed (Fortunato, 2010): Bigclam, Label Propa-

gation, CNM, Walktraps, and Leading Eigenvec-

tor. For conciseness, we only report the results of

the best algorithms.

To measure the performance, we use the stan-

dard B3 clustering metric (Amigó et al., 2009).

B3 decomposes uses item-wise precision and re-

call. Precision represents how many items in the

same cluster belong to its class. Recall represents

how many items from a class appear in the cluster.

The final B3 value combines precision and recall:

B3 =
1

0.5( 1

Pre
) + 0.5( 1

Rec
)

(10)

The baseline results are depicted in Table 4. In

this benchmark, the pipeline approach performs

better than the joint model in all datasets. The

differences range between 0.04 and 0.14 in B3

score. The DBSCAN clustering approach obtains

the best performance in the Biography dataset by

a 0.09 margin.The Louvain graph-community de-

tection approach obtains the best results in the

AVL and Physics datasets with result differences

to DBSCAN of 0.04 in both cases.

Table 4: Topic identification baseline results.

Bio AVL Physics

DBSCAN 0.66 0.33 0.34

Louvain 0.57 0.37 0.38

MultiSeg 0.52 0.29 0.30

Table 5 shows the results for different prior con-

figurations. In the Biography domain, we observe

that the dynamic LMP improves the results of

both SLPs; 0.03 and 0.16, for the Beta-Bernoulli

and Gamma-Poisson, respectively. In the AVL

datasets, three different configurations obtain the

best performance. In the Physics dataset, the dy-

namic LMP modality Gamma-Poisson SLP per-

forms better. In this case, using a modality SLP

instead of the dataset affords a 0.11 improvement.

Comparing the independent and dynamic LMPs,

we see that the former improves the results by

0.05. This shows that both modeling aspects are

contributing for the best results.

Table 5: BeamSeg topic identification results.

LMP SLP Scope Bio AVL Physics

Ind

BB
D 0.51 0.35 0.36

M – 0.39 0.38

GP
D 0.37 0.38 0.35

M – 0.36 0.37

Dyn

BB
D 0.54 0.39 0.30

M – 0.32 0.34

GP
D 0.53 0.38 0.31

M – 0.39 0.41
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Comparing BeamSeg’s best results to the base-

line, we observe that it is only outperformed

by DBSCAN in the Biography dataset (a 19.7%

difference). DBSCAN obtains better results by

putting segments it cannot group in individual

clusters, which keep the larger clusters clean. In

BeamSeg, the number of identified topics (clus-

ters) is lower, a 385 difference to DBSCAN, which

ends up forcing wrong topic segment assignments.

In the AVL dataset, BeamSeg improves the Lou-

vain baseline by 5.1%. The topic identification

behavior of both approaches is different from the

Biography dataset. Louvain only outputs 7 clus-

ters whereas the reference has 17 topics. This

is related to the topic development aspect across

segments, which makes them hard to distinguish.

BeamSeg obtains a higher B3 score because it is

able to identify 15 topics, a number closer to the

reference, and, consequently, assign topics more

appropriately. In the Physics dataset, BeamSeg

improves the baseline by 7.3%. The topic iden-

tification patterns are similar to the ones observed

in the AVL dataset with BeamSeg outputting more

topics than Louvain, 70 and 48 topics, respec-

tively. Another observation is that the perfor-

mance differences between the Biography and the

other datasets are related to the topic structure

complexity. In the Biography dataset, there is a

tendency for the topic order to persist across docu-

ments, whereas in the other datasets the interweav-

ing of the topics is not as regular. This is depicted

in Figure 3, where color changes represent a topic

changes and similar topics have the same color. In

Figure 3a (Biography domain) we can see that the

colors sequences in different documents are sim-

ilar whereas in Figure 3 (Physics domain) the se-

quence is not constant. Connecting the topic struc-

ture differences with the topic order assumptions

in BeamSeg explains the performance differences.

5 Conclusions and Future Work

In this work, we propose BeamSeg, an unsuper-

vised Bayesian algorithm that jointly segments

documents and identifies topical relationships us-

ing a beam search procedure to find high likeli-

hood segmentations during inference. Relation-

ships between topics are modeled using a dynamic

prior encoding that word distributions change

smoothly in documents with an overarching sub-

ject. BeamSeg also models segment length proper-

(a) Documents from the Biography domain.

(b) Documents from the Physics domain.

Figure 3: Topic identification examples.

ties based on document modality. To evaluate seg-

mentation, single and multi-document algorithms

were used as a baseline. For topic identification,

we compared BeamSeg to MultiSeg, another joint

model, as well as a pipeline approach. In both

tasks, BeamSeg obtains the best results in two

of the datasets used for evaluation. The conclu-

sion from the evaluation is that BeamSeg is effec-

tive in datasets with prevalent topic development

throughout document segments. To achieve the

best performance, it is necessary to use a combina-

tion of a dynamic LMP with a modality Gamma-

Poisson SLP. Therefore, the proposed modeling

assumptions fit the data well. This supports the hy-

pothesis that lexical cohesion is a cross-document

phenomenon and can be used to leverage multi-

document segmentation and topic identification.

Regarding future work, one of the concerns is

that the proposed inference procedure is a maxi-

mum likelihood estimation approach. Ideally, we

want to access the full posterior distribution since

it finds more accurate parameters. Another con-

cern is the raw assumption that there is a shared

topic ordering among all documents. We believe

that addressing these issues will allow BeamSeg to

improve its results and to consistently perform in

datasets with different characteristics.
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