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Beamspace Channel Estimation for Massive MIMO

mmWave Systems: Algorithm and VLSI Design
Seyed Hadi Mirfarshbafan, Alexandra Gallyas-Sanhueza, Ramina Ghods, and Christoph Studer

Abstract—Millimeter-wave (mmWave) communication in com-
bination with massive multiuser multiple-input multiple-output
(MU-MIMO) enables high-bandwidth data transmission to mul-
tiple users in the same time-frequency resource. The strong path
loss of wave propagation at such high frequencies necessitates
accurate channel state information to ensure reliable data trans-
mission. We propose a novel channel estimation algorithm called
BEAmspace CHannel EStimation (BEACHES), which leverages
the fact that wave propagation at mmWave frequencies is predom-
inantly directional. BEACHES adaptively denoises the channel
vectors in the beamspace domain using an adaptive shrinkage
procedure that relies on Stein’s unbiased risk estimator (SURE).
Simulation results for line-of-sight (LoS) and non-LoS mmWave
channels reveal that BEACHES performs on par with state-of-
the-art channel estimation methods while requiring orders-of-
magnitude lower complexity. To demonstrate the effectiveness of
BEACHES in practice, we develop a very large-scale integration
(VLSI) architecture and provide field-programmable gate array
(FPGA) implementation results. Our results show that adaptive
channel denoising can be performed at high throughput and in
a hardware-friendly manner for massive MU-MIMO mmWave
systems with hundreds of antennas.

Index Terms—Millimeter wave (mmWave), massive multiuser
MIMO, channel estimation, nonparametric denoising, beamspace,
Stein’s unbiased risk estimator (SURE), very large-scale integra-
tion (VLSI), field-programmable gate array (FPGA).

I. INTRODUCTION

Millimeter-wave (mmWave) communication [2], [3] and

massive multiuser (MU) multiple-input multiple-output

(MIMO) [4], [5] are expected to be core technologies of next-

generation wireless communication systems. By combining

both of these technologies, one can achieve unprecedentedly

high-bandwidth data transmission to multiple user equipments

(UEs) in the same time-frequency resource via fine-grained

beamforming. The strong path loss of wave propagation at
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mmWave frequencies necessitates the infrastructure basesta-

tions (BSs) to acquire accurate channel state information (CSI)

in order to perform data detection in the uplink (UEs transmit

to BS) and MU precoding in the downlink (BS transmits to

UEs) [6], [7]. To optimally determine the beamforming weights,

accurate CSI is not only of paramount importance for hybrid

analog-digital BS architectures [8]–[10] but also for emerging

all-digital BS architectures [11], [12]. In addition, the trend

towards BS architectures with low-precision data converters

to reduce power consumption, interconnect bandwidth, and

system costs [13]–[15] requires novel algorithms and hardware

designs that denoise the estimated channel vectors.

A. Sparsity-Based Channel Estimation

Fortunately, wave propagation at mmWave frequencies is

predominantly directional and real-world channels typically

comprise only a small number of strong propagation paths,

such as a line-of-sight (LoS) component and a few first-order

reflections [16]. These properties enable the design of sparsity-

exploiting CSI estimation algorithms that effectively suppress

channel estimation errors [17]–[20]. Compressive sensing (CS)-

based methods have been proposed for mmWave channel

estimation in [21], [22], including methods that rely upon

orthogonal matching pursuit (OMP) [22]–[24]. The majority

of such methods uses a discretization procedure of the number

of propagation paths that can be resolved in the beamspace

(or angular) domain [25], which results in a problem widely

known as basis mismatch [26]. To avoid the basis mismatch

problem, sparse channel estimation for mmWave channels can,

for example, be accomplished with atomic norm minimization

(ANM) [27], [28] or Newtonized OMP [29]. ANM estimates

a discrete set of propagation paths off-the-grid by solving a

semidefinite program (SDP). Newtonized OMP (NOMP) is a

more efficient alternative to ANM and iteratively refines the

incident angles of the dominant propagation paths off-the-grid

with a complexity only slightly higher than that of conventional

OMP. Although both of these methods do not suffer from

the basis mismatch problem and exhibit excellent denoising

performance, they entail high computational complexity. Hence,

from a hardware-implementation perspective, such methods

are less attractive, especially in massive MU-MIMO systems

where the complexity is dominated by the large number of

BS antennas. In addition, the performance of both of these

methods strongly depends on algorithm parameters that need

to be tuned for the given propagation conditions.

Another strain of sparsity-exploiting channel-estimation

methods build upon approximate message passing (AMP) [30],
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[31]. While such methods promise high estimation accuracy,

they suffer from a number of drawbacks when implemented in

VLSI. AMP-based methods require at least two matrix-vector

multiplications in each iteration, whose dimension scales with

the number of BS antennas, the number of UEs, and the pilot

sequence length. In addition, each iteration requires multiple

divisions and other nonlinear functions (such as exponentials

and Q-functions). As shown in [32], the presence of such

nonlinear functions in AMP-based algorithms causes finite-

precision issues when implemented with fixed-point arithmetic.

Sparsity has been exploited in many other applications in

communication systems, including beam selection in mmWave

systems [33], channel estimation for angle-division multiple

access [34], and sparse signal recovery via compressive

sensing [35]. Even though these results are not directly related

to channel estimation in mmWave systems, the proposed

adaptive denoising approach might find use in such applications.

B. Contributions

In order to perform denoising-based channel estimation in

real-world systems, we propose a low-complexity and adaptive

channel estimation algorithm for massive MU-MIMO mmWave

systems that can be implemented efficiently in VLSI. Our main

contributions are summarized as follows:

• We propose a novel channel estimation algorithm that

relies on Stein’s unbiased risk estimator (SURE), which

we call BEAmspace CHannel EStimation (BEACHES).

BEACHES exploits sparsity of mmWave channels in the

beamspace domain and adaptively denoises the channel

vectors at a fixed computational complexity that scales

with O(B log(B)), where B is the number of BS antennas.

• We prove that BEACHES minimizes the mean-square

error (MSE) between the noiseless and denoised channel

vector in the large-antenna limit, i.e., when B → ∞,

without requiring tedious parameter tuning.

• We evaluate the efficacy of BEACHES for LoS and

non-LoS mmWave channel models and show that it

performs on par with state-of-the-art channel estimation

algorithms in terms of uncoded bit error-rate, but at orders-

of-magnitude lower computational complexity.

• We develop a very large-scale integration (VLSI) architec-

ture and present corresponding field-programmable gate

array (FPGA) implementation results, which demonstrate

that BEACHES enables high-throughput channel estima-

tion in a hardware-efficient manner.

C. Notation

Lowercase and uppercase boldface letters designate column

vectors and matrices, respectively. For a vector a, the kth

entry is denoted by [a]k = ak; the real and imaginary parts

are indicated with [a]R = aR and [a]I = aI , respectively.

The ℓ1-norm and ℓ2-norm of a vector a is ‖a‖1 and ‖a‖2,

respectively. For a matrix A, we define its transpose and

conjugate transpose as AT and AH, respectively. The N ×M
all-zeros, N×N identity, and N×N discrete Fourier transform

(DFT) matrices are 0N×M , IN , and F, respectively; the DFT

matrix is normalized so that FFH = IN . Vectors in the
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Fig. 1. Considered massive MU-MIMO mmWave uplink system: U user
equipments (UEs) transmit pilots over a mmWave wireless channel, which are
used to estimate the channel vectors associated to each UE at the B-antenna
basestation. This paper focuses on computationally efficient methods that
denoise the measured channel vectors in the channel estimator unit.

DFT domain are designated with a hat as in â = Fa. A

proper complex-valued Gaussian vector a with mean vector m

and covariance matrix K is written as a ∼ CN (m,K) and

its probability density function (PDF) as fCN (a;m,K). A

real-valued Gaussian vector a with mean vector m and

covariance matrix K is written as a ∼ N (m,K) and its PDF

as fN (a;m,K). The expectation operator is E[·]. Optimal

values are designated with the superscript ⋆.

D. Paper Outline

The rest of the paper is organized as follows. Section II

introduces the system model and outlines the concept of

denoising-based beamspace channel estimation. Section III

details the BEACHES algorithm and presents the simulation

results. Section IV proposes a VLSI architecture and provides

FPGA implementation results. We conclude in Section V. All

proofs are relegated to the appendices.

II. SYSTEM MODEL

We now introduce the system model and summarize existing

methods that perform beamspace channel estimation.

A. System Model

We consider a massive MU-MIMO mmWave uplink system

as illustrated in Figure 1. The BS is equipped with B antennas

arranged as a uniform linear array (ULA) and communicates

with U single-antenna UEs in the same time frequency

resource.1 We focus on pilot-based channel estimation, i.e.,

where the UEs transmit orthogonal pilots in a dedicated

training phase and the BS estimates the propagation paths

between the UEs and the BS antenna array. Assuming flat-

fading channel conditions, the BS estimates the B-dimensional

complex channel vector h ∈ C
B for each UE. Furthermore, by

assuming that (i) wave propagation is predominantly directional,

which is valid if the wavelength is much smaller than the

objects interacting with the waves [6], [36], and (ii) the

1An extension of our algorithm and hardware designs to two-dimensional
BS antenna arrays is part of ongoing work.
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distance between UE (as well as the scatterers) and BS is

sufficiently large, we can use the following well-known plane-

wave approximation to model wave propagation at mmWave

frequencies from a given UE to the BS [37]:

h =

L∑

ℓ=1

αℓa(Ωℓ), a(Ω) =
[
ej0Ω, ej1Ω, . . . , ej(B−1)Ω

]T
. (1)

Here, L refers to the total number of paths arriving at the

antenna array (including a potential line-of-sight path), αℓ ∈ C

is the complex-valued channel gain of the ℓth path, and a(Ωℓ)
represents a complex-valued sinusoid containing the relative

phases between BS antennas, where Ωℓ ∈ [0, 2π) is determined

by the incident angle of the ℓth path to the antenna array.

With pilot-based channel estimation methods, we only have

access to noisy measurements of the channel vector h. We

model such noisy measurements in the antenna domain as

y = h+ e, (2)

where e ∼ CN (0B×1, E0IB) represents channel estimation

error with variance E0 per complex entry. Note that for pilot-

based channel estimation methods, the channel estimation errors

are Gaussian and there is a linear relationship between E0 and

the thermal noise variance N0; see Section III-E for the details.

Remark 1. The channel model in (1) is appropriate for flat-

fading channels assuming UEs with a single transmit antenna.

For UEs that are equipped with an antenna array but transmit a

single stream (layer) via beamforming, the channel vectors can

still be modeled as in (1). For channels that exhibit frequency

selectivity, we can consider orthogonal frequency-division

multiplexing (OFDM), where each subcarrier is associated with

a channel vector as in (1). For single-carrier (SC) transmission

in frequency-selective channels or UEs that transmit multiple

streams concurrently, multiple channel vectors would need to

be estimated (one for each tap in the impulse response and

for each layer). An analysis of this scenario is ongoing work.

Finally, we emphasize that BEACHES continues to work if the

channel vectors follow a more realistic propagation model than

the one in (1). The simulation results provided in Section III-E

with mmWave channel models confirm this claim.

Remark 2. In what follows, we ignore system and hardware

impairments, such as timing, frequency, and sampling rate

offsets, I/Q imbalance, and analog-to-digital converter (ADC)

nonlinearities. In cases where the aggregate effect of the

residual hardware impairments can be modeled as Gaussian

noise [38], the model in (1) remains valid. For basestation archi-

tectures with 1-bit ADCs, a specialized version of BEACHES

has been proposed recently in [39]. The design of robust

channel estimation algorithms for more specific system and

hardware impairments is left for future work.

B. Beamspace Representation

The model in (1) describes the channel vector in the

antenna domain, i.e., each entry of the channel vector h is

associated with an antenna element in the BS array. Since

the channel vectors h are modeled as a superposition of L
complex-valued sinusoids, it is advantageous to transform the
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(b) Non-LoS channel

Fig. 2. Examples of a line-of-sight (LoS) channel vector (a) and a non-LoS
channel vector (b) in the discrete beamspace domain. The channel vectors
are generated with the mmMAGIC UMi model at 60 GHz for a 128 antenna
BS with a uniform-linear array (ULA) using λ/2 antenna spacing. One can
clearly see the sparse nature of channel vectors in the beamspace domain.

observed vector y into the discrete Fourier transform domain

according to ŷ = Fy, where F is the B × B DFT matrix.

This transformation is known to convert the noisy channel

vector y = h+e into the so-called discrete beamspace domain

(also known as angular domain) ŷ, in which each entry is

associated with a specific incident angle (with respect to the BS

antenna array) [25]. More importantly, if the number of paths L
is significantly smaller than the number of BS antennas B,

then the beamspace representation ĥ of the noiseless channel

vector h will be (approximately) sparse [19]. In other words,

most of the channel vector’s energy is concentrated on a few

entries, which are associated with the indices corresponding

to the angles of the arriving waves. This key property of

the beamspace representation is illustrated in Figure 2, which

shows the magnitude of ĥ for noiseless LoS and non-LoS

channel vectors generated with the QuaDRiGa mmMAGIC

urban micro (UMi) model at a carrier frequency of 60 GHz [40].

For the LoS case in Figure 2(a), we see that the channel vector

consists of one strong LoS component and two weak first-order

reflections arriving at two distinct angles.2 For the non-LoS

case in Figure 2(b), we see that the arriving waves are (i)

weaker than for the LoS case and (ii) spread across a wider

range of angles. Nevertheless, the channel vector remains to

be sparse in the non-LoS case.

C. Channel Vector Denoising in the Beamspace Domain

The sparse nature of mmWave channel vectors in the

beamspace domain enables the use of algorithms that denoise

the channel vectors at the BS. The main idea behind such

channel estimation methods is to first transform the observed

noisy channel vector y in the antenna domain (2) to the

beamspace domain according to

ŷ = Fy = ĥ+ ê, (3)

where ê = Fe has the same statistics as the antenna domain

channel estimation error vector e. It is then possible to exploit

the fact that most of the arriving signal energy is concentrated

2Note that the strong signal arrived off-the-grid, which causes it to be spread
across multiple angular bins. This is an instance of the off-the-grid problem
that has been studied extensively in the compressive sensing literature [26].
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Fig. 3. The soft-thresholding function η(ŷb, τ) for real values ŷb.

on a few incident angles and to suppress noise associated with

angles that do not pertain to the incoming signals.

To perform denoising, a variety of algorithms have been pro-

posed in the literature (see also the discussion in Section I-A).

While most existing methods, such as OMP, suffer from the

off-the-grid problem [26], more sophisticated methods such

as ANM [27], [28] and NOMP [29], avoid this problem by

identifying the dominant paths in the continuous beamspace do-

main. Unfortunately, such methods exhibit high computational

complexity, especially for a large number of BS antennas B,

which prevents their use in real-time applications. We next

introduce a nonparametric beamspace denoising algorithm that

is computationally efficient, can be implemented in hardware,

and performs on par with sophisticated off-the-grid beamspace

channel estimation algorithms.

III. BEACHES: BEAMSPACE CHANNEL ESTIMATION

We now introduce BEACHES, an efficient algorithm for

channel vector denoising in the beamspace domain.

A. Channel Vector Denoising via Soft-Thresholding

The denoising and sparse signal recovery literature [17]–[20],

[41] describes a number of algorithms that are suitable for

channel-vector denoising in the beamspace domain. The least

absolute shrinkage and selection operator (LASSO) [42]–[44]

is among the most popular methods, which, in our application,

corresponds to the following optimization problem:

η(ŷ, τ) = arg min
ĥ′∈CB

1

2
‖ŷ − ĥ′‖22 + τ‖ĥ′‖1. (4)

Here, we apply LASSO directly to the beamspace repre-

sentation of the observed channel vector (3) and τ ∈ R+

is a carefully-chosen denoising parameter. A closed-form

expression for the solution to (4) in the complex case has

been derived in [45, App. A] and is given by the well-known

soft-thresholding operator η(ŷ, τ) defined entry-wise as

[η(ŷ, τ)]b =
ŷb
|ŷb|

max {|ŷb| − τ, 0}, b = 1, . . . , B, (5)

where we define y/|y| = 0 for y = 0. Figure 3 depicts the

soft-thresholding function η(ŷ, τ), which simply shrinks the

magnitude of its input by τ or sets it to zero if the magnitude

was smaller than τ .

While soft-thresholding is widely used for denoising sparse

signals, its performance strongly depends on the choice of

the denoising parameter τ [42], [46]. Since the propagation

conditions, such as the number of arriving paths (sparsity), the

incident angles (locations of the nonzero components), and

the received signal strength (magnitudes), can vary widely in

wireless communication systems, the design of robust methods

that adaptively select the optimal denoising parameter is critical.

We now develop an adaptive approach that optimally tunes the

denoising parameter τ in a computationally-efficient manner.

Remark 3. BEACHES only requires knowledge of the noise

variance N0, which is typically known as it is determined by

thermal noise originating in the receiver’s RF circuitry.

B. Computing the Optimal Denoising Parameter

We are interested in computing the optimal denoising

parameter τ⋆ that minimizes the mean square error (MSE)

between the denoised beamspace channel vector and the

noiseless beamspace channel vector ĥ, defined as follows:

MSE =
1

B
E

[

‖η(ŷ, τ)− ĥ‖22
]

. (6)

In (6), expectation is with respect to ŷ. In what follows, we

denote the optimal denoised channel vector by ĥ⋆ = η(ŷ, τ⋆).
Unfortunately, determining the optimal denoising parame-

ter τ⋆ that minimizes the MSE in (6) requires knowledge of the

noiseless beamspace channel vector ĥ, which is unknown in

practice. To resolve this issue, we propose to minimize Stein’s

unbiased risk estimate (SURE) as a surrogate for the MSE.

The following result provides an expression for SURE in

the complex domain and shows that SURE is an unbiased

estimator of the MSE that is independent of ĥ. The proof of

the following result is given in Appendix A.

Theorem 1. Let ĥ ∈ C
B be an unknown vector and ŷ ∈ C

B a

noisy observation vector distributed as ŷ ∼ CN (ĥ, E0IB). Let

µ(ŷ) be an estimator of ĥ from ŷ that is weakly differentiable

and operates element-wise on vectors. Then, Stein’s unbiased

risk estimate given by

SURE =
1

B
‖µ(ŷ)− ŷ‖22 + E0

+
E0

B

B∑

b=1

(
∂[µR(ŷ)]b
∂[ŷR]b

+
∂[µI(ŷ)]b
∂[ŷI ]b

− 2

)

, (7)

is an unbiased estimate of the MSE, i.e., satisfies

E[SURE] = MSE. (8)

By setting µ(ŷ) = η(ŷ, τ), we can use Theorem 1 to

obtain the following SURE expression for the soft-thresholding

function. The proof is given in Appendix B.

Corollary 2. For the complex-valued soft-thresholding function

µ(ŷ) = η(ŷ, τ) in (5), SURE in (7) is given by3

SUREτ =
1

B

∑

b:|ŷb|<τ

|ŷb|2 +
1

B

∑

b:|ŷb|>τ

τ2 + E0

3As discussed in Appendix B, the value of SUREτ is undefined for τ = |ŷb|,
b = 1, . . . , B, due to the non-differentiability of the function η(ŷ, τ).
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− E0

B
τ

∑

b:|ŷb|>τ

1

|ŷb|
− 2E0

B

∑

b:|ŷb|<τ

1. (9)

The next result shows that the value of SURE in (9)

converges to the MSE given by (6) in the large antenna limit,

i.e., for B → ∞. The proof is given in Appendix C.

Theorem 3. In the large-antenna limit, where B → ∞, SUREτ

in (9) converges to the MSE in (6), i.e., we have

lim
B→∞

SUREτ = MSE. (10)

From Theorems 1 and 3 it is evident that SURE will

be an accurate proxy for the MSE in massive MU-MIMO

mmWave systems as B is expected to be large. It is crucial to

realize that the SURE expression in (9) is independent of the

true beamspace channel vector ĥ. In fact, the result (9) only

depends on the magnitudes of the observed beamspace channel

vector ŷ, the channel estimation error variance E0 (which is

determined by the thermal noise variance N0), the number of

BS antennas B, and the denoising parameter τ . This insight

combined with the two key properties in (8) and (10) enables

us to perform asymptotically-optimal MSE-based denoising by

solving the SURE-based quantity

τ⋆ = arg min
τ∈R+

SUREτ . (11)

Unfortunately, no closed-form solution to this optimization

problem is known. Reference [46] uses a bisection procedure

to approximate the optimal value of a similar SURE expression

in a sparse signal recovery application. In stark contrast

to such approximate methods, we next propose BEACHES,

a hardware-friendly algorithm that computes the optimal

denoising parameter τ⋆ in (11) using a deterministic procedure

whose complexity scales only with O(B log(B)).

Remark 4. SURE-based denoising was put forward in [42]

for wavelet denoising of real-valued signals. In [47], SURE has

been applied for denoising complex-valued channel observation

in OFDM-based single-antenna systems, exploiting sparsity of

the impulse responses. The method in [47] uses SURE to find

the coefficients of a frequency-domain filter, while the value of

the shrinkage threshold was determined empirically. In contrast

to these results, BEACHES exploits sparsity in the beamspace

domain and determines the optimal denoising parameter τ⋆ in

O(B log(B)) time. We note that BEACHES could be combined

with the method in [47] in order to improve channel estimation

in OFDM-based massive MU-MIMO mmWave systems.

C. The BEACHES Algorithm

Reference [42] outlines an efficient procedure to minimize

SURE for wavelet-denoising of real-valued signals. In what

follows, we propose a similar strategy to minimize (9) for the

complex-valued case. Instead of continuously sweeping the

denoising parameter τ through the interval [0,∞), we first

sort the absolute values of the vector ŷ in ascending order

and call the resulting sorted vector ŷs. We then search for

the optimal denoising parameter τ only between each pair of

consecutive elements of the sorted vector, i.e., τ ∈
(
ŷsk−1, ŷ

s
k

)

for k = 1, . . . , B+1, where we define ŷs0 = 0 and ŷsB+1 = ∞

to account for the first interval (0, ŷs1), and last the interval

(ŷsB ,∞). In the kth interval, SURE in (9) is a quadratic function

of τ given by

SUREτ,k =
1

B

k−1∑

b=1

(ŷsb)
2

︸ ︷︷ ︸

=S

+
(B − k + 1)

B
τ2 + E0

− E0

B
τ

B∑

b=k

(ŷsb)
−1

︸ ︷︷ ︸

=V

−2E0

B
(k − 1). (12)

For each index k ∈ {1, . . . , B + 1}, we compute the value of

τ = τ⋆k that locally minimizes SUREτ,k in the interval τ ∈
(ŷsk−1, ŷ

s
k). Since SURE in (12) is a quadratic function of τ , the

minimal value in each interval is either at the minimum of the

quadratic function (12) or at one of the two interval boundaries4,

i.e., ŷsk−1 or ŷsk. The minimum value of the expression in (12)

is attained by τQk = E0

2(B−k+1)

∑B
b=k(ŷ

s
b)

−1. Since the function

SUREτ,k is convex within each interval
(
ŷsk−1, ŷ

s
k

)
, the optimal

parameter τ⋆k in each interval k = 1, . . . , B + 1, is given by

τ⋆k =







τQk , ŷsk−1 < τQk < ŷsk,

ŷsk−1, τQk < ŷsk−1,

ŷsk, τQk > ŷsk,

(13)

or simply τ⋆k = max{ŷsk−1,min{ŷsk, τQk }}. After identifying

the optimal value τ⋆k in each interval, the parameter τ⋆ that

achieves the global minimum can be found by comparing all

the local minima, i.e., by solving

τ⋆ = arg min
τ⋆
k , k=1,...,B+1

SUREτ⋆
k ,k

. (14)

Our procedure does not need to recalculate SURE in (12)

from scratch while searching through k = 1, . . . , B+1. Instead,

for each value of k, we sequentially update the two quantities

S =
∑k−1

b=1 (ŷsb)
2 and V =

∑B
b=k (ŷ

s
b)

−1, noting that the

magnitudes of the vector ŷs are sorted. Algorithm 1, which

we call BEACHES, exploits exactly this observation. Lines 5

to 14 detail the search procedure described in (14); this part

of the algorithm only involves scalar operations (additions,

multiplications, divisions, and comparisons) all of which scale

with O(1). As a consequence, this iterative search has a

complexity of only O(B). If we assume that the DFT and

inverse DFT in line 2 and line 16 are carried out with a fast

Fourier transform (FFT) and inverse FFT (IFFT), respectively,

and the sorting procedure in line 3 uses a fast sorting

algorithm (e.g., merge sort) with complexity O(B log(B)), then

the complexity of BEACHES is O(B log(B)). Furthermore,

we emphasize that sorting, FFT, iterative scan, and IFFT

are all hardware friendly operations; see Section IV for a

corresponding VLSI design. A detailed complexity comparison

of BEACHES to NOMP and ANM is provided in Section III-F.

4Note that SUREτ and SUREτ,k are not defined for τ = ŷs
k−1

and τ = ŷs
k

.
We evaluate SUREτ,k for two values arbitrarily close to these boundaries, i.e.,
τ = ŷs

k−1
+ ǫ and τ = ŷs

k
− ǫ where ǫ > 0 is small compared to τ .
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Algorithm 1 BEACHES: BEAmspace CHannel EStimation

1: input y and E0

2: ŷ = FFT(y)
3: ŷs = sort{|ŷ|, ‘ascend’}, ŷs0 = 0, and ŷsB+1 = ∞
4: S = 0, V =

∑B
k=1 (|ŷk|)−1 and SUREmin = ∞

5: for k = 1, . . . , B + 1 do

6: τ⋆k = max{ŷsk−1,min{ŷsk, E0

2(B−k+1)V }}
7: SUREτ⋆

k ,k
= S

B
+ (B−k+1)

B
τ⋆k

2 + E0

−E0

B
τ⋆kV − 2E0

B
(k − 1)

8: if SUREτ⋆
k ,k

< SUREmin then

9: SUREmin = SUREτ⋆
k ,k

10: τ⋆ = τ⋆k
11: end if

12: S = S + (ŷsk)
2

13: V = V − (ŷsk)
−1

14: end for

15: ĥ⋆
k = ŷk

|ŷk|
max {|ŷk| − τ⋆, 0}, k = 1, . . . , B

16: h⋆ = IFFT(ĥ⋆)
17: return h⋆

D. Algorithm Simplification for Hardware Implementation

To enable a simpler hardware implementation of BEACHES,

which is described in detail in Section IV, we can ap-

proximate τ⋆k on line 6 of Algorithm 1 by the value ŷsk
instead of computing the optimal value τ⋆k exactly. More

concretely, we avoid the computations in (13), especially τQk ,

and simply use ŷsk in the kth iteration, k = 1, 2, . . . , B. This

approximation is justified by the fact that for large values of B,

the gap between any consecutive pair (ŷsk−1, ŷ
s
k) decreases and

therefore, the three values ŷsk−1, ŷsk, and τQk are typically close.5

While this approximation helps to reduce the complexity of our

hardware implementation, the simulations shown next reveal

that the resulting performance is virtually indistinguishable

from the original BEACHES algorithm. In addition, we avoid

the reciprocal computations 1/B on line 7 in Algorithm 1 by

scaling the SURE expression by B; we also omit the constant

term E0. Both of these tricks do not affect the value of τ⋆

that minimizes this expression.

E. Simulation Results

To demonstrate the effectiveness of BEACHES, we now

present simulation results and a comparison with existing

channel vector denoising methods.

1) Simulated Scenario: We consider a massive MU-MIMO

scenario in which U UEs communicate with a B-antenna BS

over t = 1, . . . , T time slots. The input-output relation of the

flat-fading system in time slot t is modeled by

rt = Hst + nt. (15)

Here, rt ∈ C
B is the received vector at the BS, H ∈ C

B×U

represents the (unknown) MIMO channel, st = [s1,t, . . . , sU,t]
T

5An alternative approach would be to replace τ⋆
k

by 1

2
(ŷs

k−1
+ ŷs

k
), which

results in slightly higher hardware complexity but avoids evaluating SURE
at the boundaries. The error-rate and MSE performance of both of these
approximations is practically the same as the optimal method.

is the transmit vector with entries chosen from a discrete

constellation O and normalized as E
[
‖st‖22

]
= ρ2, and nt ∼

CN (0, N0IB) models thermal noise.

During the channel estimation phase, we sequentially train

each column of H over U time slots. Concretely, in each time

slot t = 1, . . . , U , one UE is active and transmits su,t = ρ,

whereas all others remain inactive. With this training scheme,

the estimate of the uth column of the MIMO channel matrix H

can be modeled as yu = hu + eu as done in (2), where the

channel estimation error corresponds to e ∼ CN (0, E0IB)
with variance E0 = N0/ρ

2 per complex entry. We then

perform denoising independently for each column of the noisy

observation of H to obtain an improved channel matrix H⋆.

During the data transmission phase, all UEs u = 1, . . . , U
transmit a constellation point from the set O to the BS

concurrently and in the same frequency band; with the same

power normalization E
[
‖st‖22

]
= ρ2, as in the training

phase. Data detection uses linear minimum-mean-square-error

(L-MMSE) equalization [48] with the estimated matrix H⋆.

To characterize the performance of BEACHES and other

denoising algorithms, we simulate (i) the uncoded bit error rate

for 16-QAM and (ii) the channel estimation MSE as in (6). The

channel matrices are generated for both a LoS and a non-LoS

conditions using the QuaDRiGa mmMAGIC UMi model [40],

at a carrier frequency of 60 GHz with a ULA using λ/2 antenna

spacing. The UEs are placed randomly within a 120◦ circular

sector with minimum and maximum distance of 10 and 110
meters from the BS antenna array, respectively. In addition,

we enforce a UE separation of at least 1◦ (with respect to the

BS antenna array) and assume optimal UE power control.

Remark 5. To enable the readers to perform numerical

simulations with other system parameters, channel models,

or channel estimation algorithms, our MATLAB simulator is

available at https://github.com/IIP-Group/BEACHES-simulator

2) BER Performance: Figure 4 shows uncoded bit error

rate (BER) simulation results for B = 128 BS antennas with

U = 8 UEs, and B = 256 BS antennas with U = 16 UEs,

for LoS and non-LoS channel conditions.6 In addition to

BEACHES as detailed in Algorithm 1, we show the BER

of the hardware-friendly version described in Section III-D,

called “BEACHES (hw)” and that of our fixed-point hardware

design called “BEACHES (fp).” We also compare our methods

to the following channel estimation methods: (i) Maximum

likelihood (ML) channel estimation, (ii) NOMP with software

package provided by [29], where we manually tune the false

alarm rate Pfa for each scenario to optimize performance,

(iii) ANM-based denoising, where we use the atomic line

spectral estimation toolbox provided by [27] (we use the exact

noise variance and the debiased output). As a reference, the

results for “exact MSE” use the same soft-thresholding function

as in BEACHES, but the optimal denoising parameter τ⋆ is

determined by minimizing the MSE (6), using the noiseless

(ground truth) channel vector. Furthermore, “perfect CSI”

directly uses the noiseless channel vectors.

6The BER at high SNR for the LoS scenario differs slightly to that of our
conference paper [1], due to fewer Monte-Carlo trials in that paper.
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(b) LoS, B = 256, U = 16
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(c) Non-LoS, B = 128, U = 8
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Fig. 4. Uncoded bit error-rate (BER) performance of channel denoising methods for LoS and non-LoS channels. We see that BEACHES performs on par with
atomic norm minimization (ANM) and Newtonized OMP (NOMP), and provides 2 dB to 3 dB SNR improvements over ML channel estimation at BER = 10−3.

From Figure 4, we see that channel vector denoising in the

beamspace domain provides 2 dB to 3 dB SNR performance

improvements at BER = 10−3 compared to conventional

ML channel estimation for the considered scenarios. The

performance gains are more pronounced under LoS conditions,

but significant error-rate performance improvements are also

visible for non-LoS channel conditions. More importantly,

we observe that BEACHES performs on par with all other

denoising-based channel estimation methods in terms of

uncoded BER for the considered scenarios. This observation

indicates that off-the-grid denoising methods, such as NOMP

and ANM, do not provide a critical performance advantage

over BEACHES. Furthermore, our hardware friendly algorithm

“BEACHES (hw)” and the fixed-point version “BEACHES (fp)”

deliver the same performance as BEACHES.

3) MSE Performance: Figure 5 shows the MSE of channel

estimation for the same scenarios and algorithms considered

in Figure 4. In terms of MSE, the performance of ANM and

NOMP is superior to that of BEACHES for LoS channels.

We address this to the fact that the channel realizations are

extremely sparse under such conditions (cf. Figure 2(a)).

For non-LoS channels, all methods perform equally well.

We address this observation to the fact that the beamspace

representation for these non-LoS channels is not sufficiently

sparse (cf. Figure 2(b)) to leverage the off-the-grid capabilities

provided by ANM and NOMP. These simulations also indicate

that the MSE is not a particularly reliable metric to predict the

BER performance of channel estimation methods in massive

MU-MIMO mmWave systems.

F. Complexity Scaling and Runtime Comparison

We now compare the complexity scaling of BEACHES to

that of NOMP and ANM. We furthermore provide a MATLAB

runtime comparison for LoS and non-LoS channels. In what

follows, we assume that the complexity of a B × B matrix

inversion and eigenvalue decomposition scales with O(B3).
1) Complexity Scaling: As mentioned in Section III-C, the

complexity of BEACHES scales with O(B log(B)) and is

dominated by the FFT, IFFT, and sorting operations.

The complexity of NOMP scales with [29]

O(KγB log(γB) +K2B +BK3 +K4), (16)

where γ is the frequency oversampling factor (typically set to 4)

and K represents the number of NOMP iterations, which also
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(a) LoS, B = 128, U = 8
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(b) LoS, B = 256, U = 16
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(c) Non-LoS, B = 128, U = 8
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(d) Non-LoS, B = 256, U = 16

Fig. 5. Mean-square error (MSE) performance of channel denoising methods for LoS and non-LoS channels. We see that BEACHES provides 2.5× to 6×
MSE improvement over ML channel estimation at SNR = 0 dB.

specifies the number of detected complex sinusoids. The exact

value of K is determined internally by NOMP and depends

on a number of factors, including the false alarm rate Pfa, the

SNR, and the channel scenario, all of which affect the sparsity

level of the observation vector. We have observed typical

values for K ranging from 2 to 45 for the simulated scenarios

in Section III-E. For large B, the complexity of NOMP is

dominated by the term KγB log(γB) in (16). Hence, by

ignoring the term BK3 in (16), the complexity of NOMP is at

least Kγ/3 times higher than that of BEACHES—we confirm

this observation in the runtime comparison of Section III-F2.

The complexity of ANM scales with O(K ′B3), where K ′

is the number of iterations of the fast alternating direction

method of multipliers (ADMM) implementation provided

by [27]. Each algorithm iteration requires a projection onto the

semidefinite cone, which can be implemented via an eigenvalue

decomposition whose complexity scales with O(B3) [49]. We

have observed typical values of K ′ ranging from 130 to 360 for

the simulated scenarios in Section III-E. Consequently, ANM

has orders-of-magnitude higher complexity than BEACHES,

especially for a large number of BS antennas B—we confirm

this observation by the runtime comparison detailed next.

TABLE I
MATLAB RUNTIMES IN MILLISECONDS (AND NORMALIZED RUNTIMES) ON

AN INTEL CORE I5-7400 CPU WITH 16 GB RAM.

Scenario BEACHES NOMP ANM

B = 128, LoS 0.57 (1×) 28.36 (50×) 5 221 (9 100×)

B = 128, non-LoS 0.40 (1×) 260.4 (650×) 7 725 (19 000×)

B = 256, LoS 1.64 (1×) 199.9 (120×) 47 968 (29 000×)

B = 256, non-LoS 1.45 (1×) 2 204 (1 500×) 83 750 (58 000×)

2) Runtime Comparison: While the performance in terms

of uncoded BER is comparable for all considered channel

estimation methods, BEACHES exhibits (often significantly)

lower complexity than NOMP and ANM. To reinforce this

claim, we measured their MATLAB runtimes in milliseconds

on an Intel core i5-7400 CPU with 16 GB RAM at a signal-

to-noise ratio (SNR) of 5 dB; at higher SNRs, the runtimes of

NOMP and ANM increase by up to 2× whereas the runtime of

BEACHES remains unaffected. Table I demonstrates that the

runtime of BEACHES is orders-of-magnitude lower than that

of NOMP (up to 1 500×) and ANM (up to 58 000×), while

the speedup is more pronounced for B = 256 BS antennas
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than for B = 128 BS antennas.

Remark 6. MATLAB runtime measurements can only serve as

a proxy to the true complexity as they hide the effect of coding

details. Nevertheless, the extreme speedups for channel vector

denoising shown in Table I confirm the inherent complexity

advantages of BEACHES over ANM and NOMP reflected in

our analytical expressions provided in Section III-F1.

Remark 7. The complexity scaling analysis and runtime

comparison in Table I hides an important aspect: NOMP and

ANM can be used for compressive channel estimation whereas

BEACHES can only be used for beamspace channel vector

denoising. The development of efficient off-the-grid channel

estimation methods specialized to beamspace channel vector

denoising is an interesting open research problem.

IV. VLSI DESIGN AND FPGA IMPLEMENTATION

We now describe a VLSI architecture of the simplified

version of BEACHES described in Section III-D, and present

reference FPGA implementation results.

A. Architecture Overview

Figure 6 provides a high-level overview of the proposed

VLSI architecture that implements the hardware (hw) version

of BEACHES presented in Section III-D. The architecture

consists of three main modules: (i) an antenna-to-beamspace

(A2B) conversion module, (ii) a SURE-based denoiser (SBD)

module, and (iii) a beamspace-to-antenna (B2A) conversion

module. The A2B module transforms the received antenna-

domain channel vector y into the beamspace domain vector ŷ

as given by (3). The same module also converts the individual

entries of the vector ŷ from Cartesian coordinates to polar

coordinates, which simplifies the adaptive denoising procedure.

The SBD module implements SURE-based denoising, i.e.,

first identifies the optimal denoising parameter τ⋆ and then

applies the shrinkage to the magnitudes of the beamspace

vector entries ŷk, k = 1, . . . , B. The B2A module converts the

entries of the denoised beamspace vector ĥ⋆
k, k = 1, . . . , B,

from polar into Cartesian coordinates. The same module also

transforms the denoised beamspace vector ĥ⋆ back into the

antenna domain h⋆. To maximize throughput, the proposed

architecture relies on input/output streaming. Concretely, the

architecture reads a new channel vector entry and generates a

new denoised entry (after a certain processing latency) in each

clock cycle. The streaming nature of the proposed architecture

also reduces control overhead and the need for additional

storage of intermediate results.

B. Architecture Details

The architecture details of the three modules shown in

Figure 6 are as follows.

1) Antenna-to-Beamspace (A2B) Conversion Module: As

shown in Figure 6, the A2B conversion module contains a

streaming FFT that transforms the noisy antenna-domain chan-

nel vector into the beamspace domain. In our implementation,

we use a Xilinx LogiCORE FFT IP with radix-2 pipelined

I/O streaming, which reads and generates one vector entry

per clock cycle. As a consequence, the FFT core completes

computation of the B × 1 beamspace vector ŷ every B clock

cycles. To reduce area, we configured the FFT core to scale

down the intermediate values by a factor of two in each of the

log2(B) FFT stages. This configuration reduces the dynamic

range in each FFT stage and also reduces resource utilization.

Additionally, this scaling approach yields FFT outputs that

have smaller dynamic range compared to the unscaled case,

which allows for more compact fixed-point data representation

and reduces storage requirements in the subsequent modules.

After FFT processing, each complex-valued beamspace

domain sample ŷk is passed through a vectoring CORDIC,

which converts the Cartesian number representation into polar

coordinates. This transform simplifies the soft-thresholding

operation, as it only needs to be applied to the magnitude of

each entry in the SBD module—the phase remains untouched.

The CORDIC is implemented using a Xilinx LogiCORE IP. The

number of microrotations in the CORDIC core is determined by

the IP so that the achieved accuracy is 10 bit; see Section IV-C

for more details on the fixed-point parameters of our design.

2) SURE-based Denoiser (SBD) Module: As shown in

Figure 6, this module consists of a first-in first-out (FIFO)

buffer, a module to perform sort-and-scan (SAS) in order

to determine the optimal denoising threshold, and logic (a

subtractor and a multiplexer) to apply soft-thresholding to the

values in the FIFO buffer. The role of the FIFO buffer is to delay

the inputs of the SBD module so that they are ready as soon as

the optimal threshold τ⋆ has been computed. The FIFO buffer

has a depth of 2B + 5 entries, corresponding to the latency of

the SAS submodule as detailed in the next paragraphs. The

details of the SAS architecture are shown in Figure 7. The

architecture consists of a sort unit and a subsequent scan unit,

corresponding to lines 3 to 14 of Algorithm 1. The following

paragraphs summarize the most important architecture details.

As depicted in Figure 7, the sort unit consists of an array

of B identical processing elements (PEs). The details of the

PEs are shown for the second PE (PE-2), which consists of (i)

a register to keep one of the sorted elements, (ii) a multiplexer

that selects whether the new input data or the value stored in

the previous PE should enter the register, (iii) a comparator

(denoted by “cmp”) that compares the new input value with the

value stored in the PE’s register, and (iv) a control unit (denoted

by “ctrl”) that determines the multiplexer output and whether

the register must be updated. As for the FFT core, the sort unit

is using I/O streaming, i.e., the architecture continuously reads

and generates data. This architecture also allows for a seamless

integration with the scan unit (discussed below), and eliminates

the need to buffer the sorted data separately in a memory for

the scan unit to work on. The sort unit sorts the data as they

enter, by finding the appropriate position within the array for

each new input data, similar to an insertion sort algorithm.

Assume that k entries of a B × 1 vector have already been

sorted and reside in the PEs 1 to k. In the next clock cycle, the

(k+1)th (unsorted) element enters the sort unit and is broadcast

to all PEs. Each PE compares the new element with the value

stored in its own register, and additionally, receives the result

of the same comparison from its preceding PE. For the case
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of sorting in descending order (i.e., PE-B stores the smallest

element), the new input data will be placed in PE-m, if the

new element is larger than the data stored in PEs 1, . . . ,m− 1
and smaller than or equal to the value stored in PE-m. At

the same time, the PEs m, . . . , k will pass their previously

stored values to their adjacent PE (e.g., PE-m to PE-(m+ 1)),
so that no data is lost. This approach is repeated until all B
elements are sorted in all of the PEs at the clock cycle after

receiving the last element. When loading the first element of

the next denoising problem, PE-B will pass its value (which

is the smallest element of the last channel vector) to the scan

unit and will receive the data of PE-(B− 1), and therefore the

sorted data will be flushed at the same time the next problem

is being loaded and sorted.

Remark 8. Although the algorithm complexity of BEACHES

is O(B log(B)), the implemented sorting architecture has a

hardware complexity of O(B2) in terms of the area-delay

product. The reason for this architecture choice is the fact that

this sorting method supports I/O streaming without a significant

overhead in terms of latency and buffering. Furthermore, our

implementation results in Section IV-D demonstrate that this

architecture is efficient for the targeted BS antenna numbers.

The scan unit is depicted in Figure 7. In order to initialize

the cumulative sum of reciprocals denoted by V on line 4 of

Algorithm 1, the scan unit receives the entries of ŷ at the same

time they enter the sort unit. The reciprocal values of the entries

of ŷ are computed sequentially using a look-up-table (LUT)

with 512 entries and are accumulated in a register. Therefore,

the cumulative sum of reciprocals is ready once the scan unit

receives the the last element of ŷ. At the same time, the first

sorted entry of ŷ comes out of the sort unit. As the scan unit

receives the sorted elements ŷsk, it updates the value of the

quantity V according to the line 13 of Algorithm 1. The rest

of the scan unit contains adders/subtractors and multipliers to

compute SURE corresponding to line 7 of the Algorithm 1 (with

modifications detailed in Section III-D). Finally, the registers

and the comparator at the right end of the scan unit in Figure 7,

implement the conditional assignments corresponding to the

lines 8 to 11 of the algorithm.

The critical path of the proposed BEACHES architecture is

in the scan unit as indicated with red color in Figure 7. The

critical path originates in a pipeline flip-flop, goes through a

real-valued multiplier, and ends in another pipeline flip-flop.

For the sake of simplicity, the pipeline registers are not shown.

3) Beamspace-to-Antenna (B2A) Conversion Module: As

shown in Figure 6, the B2A conversion module resembles

that of the A2B module. This module contains a rotation
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CORDIC, implemented by Xilinx LogiCORE IP, to transform

the denoised entries from polar into Cartesian coordinates, and

a Xilinx LogiCORE FFT IP to convert the denoised beamspace

entries into the antenna domain. The FFT core is configured

to perform an IFFT without scaling in any of its stages. The

unscaled configuration results in a word-length growth in every

stage. However, since the beamspace domain signals are already

scaled by the FFT core in the A2B module, the same word-

length as the input channel entries is sufficient to accommodate

the dynamic range of the outputs from the unscaled IFFT.

C. Fixed-Point Parameters

To maximize hardware-efficiency, we use two’s complement

fixed-point arithmetic. The number of bits used for signals in

our implementation has been determined based on extensive

bit error-rate (BER) simulations, with the goal of achieving

near-floating-point performance while minimizing area. For

the antenna domain channel entries, we use 16 bits of which

are 8 fractional bits. Due to the FFT scaling described in

Section IV-B1, 10 bits are sufficient for the beamspace vector

entries. Therefore, the entries of the vectors ŷ and ŷ⋆ are

represented with 10 bits of which are 8 fractional bits, in both

the Cartesian and polar coordinates. Since the SBD module

(shown in Figure 6) operates in the beamspace domain, most

of its signals are represented with 10-bit numbers. For the

quantity E0/B, we use 16-bit numbers with 15 fraction bits.

We have eliminated the term E0 in line 8 of Algorithm 1, since

it is a constant and does not affect the value of the optimal

threshold. For the entries of the LUT which is used to compute

reciprocals in the scan unit, we use 12-bit numbers with 2
fraction bits. Other intermediate signals in the scan unit have

customized word-lengths to accommodate temporary dynamic

range growth caused by multiplications and additions.

The BER and MSE performance of our fixed-point

BEACHES architecture are shown in Figure 4 and Figure 5,

respectively, where “fp” stands for fixed-point performance.

Clearly, the loss due to finite-precision arithmetic is negligible

compared to the reference floating-point MATLAB model.

D. FPGA Implementation Results

To demonstrate the efficacy of BEACHES in practice,

we have implemented our architecture on a Xilinx Virtex-7

XC7VX690T FPGA (speed grade −3) for various BS antenna

configurations (B = 64, 128, 256, 512). The implementation

results are summarized in Table II, and confirm the low

complexity of BEACHES when implemented in hardware. In

fact, the resource utilization (in terms of slices, LUTs, flip-

flops, DSP48 units, and block RAMs) is within a few percent

of the total FPGA resources. Furthermore, we observe that the

resource utilization (measured in terms of LUTs and flip-flops)

increase roughly linearly with the number of BS antennas,

which is mainly due to the fact that the number of comparison

PEs in the SAS module grows linearly in B. Similarly, we

see that the throughput (measured in million vectors denoised

per second) decreases roughly linearly in B. The hardware

efficiency (measured in million entries per LUT) also reduces

approximately linearly in B, which is intuitive as more work

must be carried out by BEACHES for systems with more

BS antennas. Table III shows a detailed area breakdown of

our FPGA designs. We can see that for B = 64, the three

modules (A2B, SBD, and B2A) occupy about the same amount

of resources. However, when increasing B, we see that the

complexity of the SBD unit dominates. This is due to the fact

that the complexity of the sorting module is the only one whose

resources grow linearly in B. Evidently, if one is interested in

further increasing the number of BS antennas B, alternative

sorting engines should be used.

Remark 9. The BEACHES design supporting B = 512 BS

antennas, which achieves the lowest throughput in Table II,

denoises up to 570 000 channel vectors per second. By

assuming a system with U = 16 UEs, this architecture can

denoise up to 35 625 channel matrices per second, i.e., one

channel matrix every 28µs. Since typical coherence times of

mmWave channels are in the order of several milliseconds [50],

channels need to be estimated roughly once every 1000µs.

Therefore, the throughput of our FPGA designs are well above

what is required for mmWave channel estimation.

We conclude by noting that there exists, to the best of

our knowledge, no channel vector denoising implementation

in the open literature that would enable a fair comparison.

Nevertheless, a handful of results in the literature are concerned

with hardware designs for sparsity-based channel estimation

algorithms, such as [23], [51], [52]. The hardware designs

reported in [23] are for wideband single-input single-output

(SISO) channels in 3GPP-LTE systems. These implementations

exploit sparsity in the delay domain and are based on three

serial greedy pursuit algorithms, namely matching pursuit,

gradient pursuit, and OMP. The FPGA design reported in [51]

focuses on channel estimation of indoor SISO systems—

again, this result exploits sparsity in the delay domain. The

results in [52] focus on short-range, point-to-point, indoor

communication with hybrid precoding—a direct comparison

of these methods to our work is difficult. We reiterate that all

these results do not focus on massive MU-MIMO mmWave

denoising in the beamspace domain and require the user to

set certain algorithm parameters. In contrast, BEACHES is

specialized to perform adaptive denoising in the beamspace

domain while only requiring knowledge of the noise variance.

V. CONCLUSIONS

We have proposed a nonparametric channel estimation algo-

rithm for massive MU-MIMO mmWave systems, which we call

BEAmspace CHannel EStimation (BEACHES). BEACHES ex-

ploits channel sparsity of mmWave channels in the beamspace

domain in order to perform adaptive denoising via Stein’s

unbiased risk estimate (SURE). We have established that

BEACHES achieves MSE-optimal performance in the large-

antenna limit. For realistic LoS and non-LoS mmWave channel

models, we have shown that BEACHES performs on par

with sophisticated channel estimation algorithms in terms of

uncoded bit-rate performance but at orders-of-magnitude lower

complexity. As a direct consequence of the nonparametric

nature of our algorithm, BEACHES continues to minimize the
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TABLE II
IMPLEMENTATION RESULTS FOR DIFFERENT NUMBERS OF BS ANTENNAS B ON A XILINX VIRTEX-7 XC7VX690T FPGA.

BS antennas B 64 128 256 512

Slices 1 532 (1.41%) 2099 (1.94%) 3 089 (2.85%) 4 886 (4.51%)

LUTs 4 564 (1.05%) 6 391 (1.48%) 9 394 (2.17%) 14 449 (3.34%)

– logic LUTs 3 970 (0.92%) 5 566 (1.28%) 8 336 (1.92%) 13 523 (3.12%)

– memory LUTs 594 (0.34%) 825 (0.47%) 1 058 (0.61%) 926 (0.53%)

Flipflops 5 561 (0.64%) 7 015 (0.81%) 9 282 (1.07%) 13 133 (1.52%)

DSP48 units 24 (0.67%) 32 (0.89%) 32 (0.89%) 40 (1.11%)

Block RAMs 1 (0.07%) 1 (0.07%) 2 (0.14%) 5.5 (0.37%)

Max. clock frequency [MHz] 303 303 303 294

Latency [clock cycles] 575 972 1752 3301

Latency [µs] 1.8 3.2 5.8 10.9

Throughputa [Mvectors/s] 4.73 2.36 1.18 0.57

Power consumptionb [W] 0.76 0.87 0.98 1.29

Efficiency [Mentries/s/LUT] 66 389 47 410 32 255 20 970

aThe throughput is given in million vectors denoised per second and calculated as f/B, where f is the maximum clock frequency.
bStatistical power estimation at maximum clock frequency and for 1.0 V supply voltage.

TABLE III
FPGA RESOURCE AND LATENCY BREAKDOWN FOR DIFFERENT NUMBERS OF BS ANTENNAS B ON A XILINX VIRTEX-7 XC7VX690T FPGA.

BS antennas B 64 128 256 512

Module A2B SBD B2A A2B SBD B2A A2B SBD B2A A2B SBD B2A

LUTs 1 650 1 517 1 408 1 947 2 798 1 658 2 176 5 331 1 899 2 381 9 985 2 092

– logic LUTs 1 354 1 450 1 177 1 542 2 691 1 345 1 701 5 144 1 503 1 885 9 978 1 669

– memory LUTs 296 67 231 405 107 313 475 187 396 496 7 423

Flipflops 2 470 994 2 097 2 834 1 769 2 412 3190 3312 2780 3 646 6 374 3 113

DSP48 units 9 5 10 13 5 14 13 5 14 17 5 18

Latency [clock cycles] 218 136 221 353 264 355 615 520 617 1134 1032 1135

channel estimation MSE even in scenarios where no sparsity

can be exploited (e.g., for Rayleigh fading channels).

In order to demonstrate the practicality of BEACHES, we

have developed reference FPGA implementations for massive

MU-MIMO mmWave systems with hundreds of BS antennas.

Our results are a proof-of-concept that high-quality mmWave

channel estimation can be performed at high throughput and

in a hardware-efficient manner.

There are many avenues for future work. An adaptation of

BEACHES to single-carrier (SC) transmission in mmWave

channels is a challenging open research problem. The devel-

opment of nonparametric channel estimation methods that do

not need knowledge of the noise variance is part of ongoing

work. An extension of BEACHES to basestation architectures

that use decentralized baseband processing [53] to reduce

interconnect bottlenecks is an interesting open research problem.

Finally, alternative sorting architectures might be necessary

when targeting systems with thousands of antenna elements.
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APPENDIX A

PROOF OF THEOREM 1

We first derive the general form for SURE with complex-

valued signals. The MSE for a weakly-differentiable estimator

function µ(ŷ) is defined as

MSE = 1
B
E

[

‖µ(ŷ)− ĥ‖22
]

. (17)

Note that expectation is with respect to the noisy observa-

tion ŷ. We decompose the complex-valued vector ŷ into

the real part ŷR ∼ N (yR; ĥR, E0

2 IB) and imaginary part

ŷI ∼ N (yI ; ĥI ,
E0

2 IB) and define g(ŷ) = µ(ŷ)− ŷ. Hence,

MSE = 1
B
E

[

‖g(ŷ) + ŷ − ĥ‖22
]

(18)

= 1
B
E
[
‖g(ŷ)‖22

]
+ 1

B
E

[

‖ŷ − ĥ‖22
]

+ 1
B
E

[

2
[

g(ŷ)H(ŷ − ĥ)
]

R

]

. (19)

The last term can be expanded as follows:

2
B
E

[[

g(ŷ)H(ŷ − ĥ)
]

R

]

(20)

= 2
B
E

[

gR(ŷ)T(ŷR − ĥR)
]

+ 2
B
E

[

gI(ŷ)
T(ŷI − ĥI)

]

.

We can now expand 2
B
E

[

gR(ŷ)T(ŷR − ĥR)
]

, which yields

2
B
E

[

gR(ŷ)T(ŷR − ĥR)
]
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= 2
B

∫

ŷ
fCN

(

ŷ; ĥ, E0IB

)
∑B

b=1[gR(ŷ)]b×
([ŷR]b − [ĥR]b)dŷ (21)

= 2
B

∫

ŷI

fN
(

ŷI ; ĥI ,
E0

2 IB

)
∑B

b=1

∫

[ŷR]b
1

(2πE0
2 )

B/2×

exp

(

− ([ŷR]b−[ĥR]b)
2

2
E0
2

)

[gR(ŷ)]b×

([ŷR]b − [ĥR]b)d[ŷR]bdŷI (22)

(a)
= 2

B

∫

ŷI

fN
(

ŷI ; ĥI ,
E0

2 IB

)
∑B

b=1

∫

[ŷR]b
1

(2πE0
2 )

B/2×

exp

(

− ([ŷR]b−[ĥR]b)
2

2
E0
2

)

E0

2
∂[gR(ŷ)]b
∂[ŷR]b

d[ŷR]bdŷI (23)

= 2
B

∫

ŷI

fN
(

ŷI ; ĥI ,
E0

2 IB

)
∑B

b=1

∫

ŷR

1

(2πE0
2 )

B/2×

exp

(

−‖ŷR−ĥR‖2

2
E0
2

)

E0

2
∂[gR(ŷ)]b
∂[ŷR]b

dŷRdŷI (24)

= E0

B
E

[
∑B

b=1
∂[gR(ŷ)]b
∂[ŷR]b

]

, (25)

where step (a) follows from integration by parts. Analogously,

we have

2
B
E

[

gI(ŷ)
T(ŷI − ĥI)

]

= E0

B
E

[
∑B

b=1

(
∂[gI(ŷ)]b
∂[ŷI ]b

)]

. (26)

By remembering that g(ŷ) = µ(ŷ) − ŷ, and replacing (25)

and (26) in the original MSE expression in (19), we obtain

MSE = 1
B
E
[
‖µ(ŷ)− ŷ‖22

]
+ 1

B
E

[

‖ŷ − ĥ‖22
]

+ E0

B
E

[
∑B

b=1

(
∂[µR(ŷ)]b
∂[ŷR]b

+ ∂[µI(ŷ)]b
∂[ŷI ]b

− 2
)]

. (27)

The second term in the MSE expression above equals E0. For

the first and the third terms, we omit the expectation operators

to arrive at the following SURE expression:

SURE = 1
B
‖µ(ŷ)− ŷ‖22 + E0

+ E0

B

∑B
b=1

(
∂[µR(ŷ)]b
∂[ŷR]b

+ ∂[µI(ŷ)]b
∂[ŷI ]b

− 2
)

, (28)

for which the relationship E[SURE] = MSE holds.

APPENDIX B

PROOF OF COROLLARY 2

In the complex domain, the soft-thresholding function has

the following form [45, App. A]:

[η(ŷ, τ)]b =
ŷb

|ŷb|
max {|ŷb| − τ, 0}, (29)

where we define ŷb/|ŷb| = 0 for ŷb = 0. In order to compute

SURE for this shrinkage function, we will first compute its

derivative of real and imaginary parts. For |ŷb| < τ , we have

∂[ηR(ŷ,τ)]b
∂[ŷR]b

= ∂[ηI(ŷ,τ)]b
∂[ŷI ]b

= 0. (30)

For |ŷb| > τ , we have

∂[ηR(ŷ,τ)]b
∂[ŷR]b

= ∂
∂[ŷR]b

[

[ŷR]b − τ [ŷR]b√
[ŷR]2b+[ŷI ]2b

]

=1− τ
[ŷI ]

2
b

([ŷR]2b+[ŷI ]2b)
3/2 (31)

and

∂[ηI(ŷ,τ)]b
∂[ŷI ]b

= ∂
∂[ŷI ]b

[

[ŷI ]b − τ [ŷI ]b√
[ŷR]2b+[ŷI ]2b

]

=1− τ
[ŷR]2b

([ŷR]2b+[ŷI ]2b)
3/2 . (32)

Note that the derivative of [η(ŷ, τ)]b has a discontinuity at

τ = |ŷb| (see Figure 3) and thus, SURE is not defined for this

value. Using (30), (31) and (32), the complex-valued SURE

expression (7) reduces to

SUREτ = 1
B

∑B
b=1 min{|ŷb|, τ}2 + E0

+ E0

B

∑

b:|ŷb|>τ

(

2− τ 1√
[ŷR]2b+[ŷI ]2b

− 2

)

+ E0

B

∑

b:|ŷb|<τ (0− 2) (33)

= 1
B

∑

b:|ŷb|<τ |ŷb|2 + 1
B

∑

b:|ŷb|>τ τ
2 + E0

− E0

B
τ
∑

b:|ŷb|>τ
1

|ŷb|
− 2E0

B

∑

b:|ŷb|<τ 1. (34)

APPENDIX C

PROOF OF THEOREM 3

We now prove the convergence of SURE in (10). In [54,

Lem. 4.14], the authors prove convergence of SURE to MSE in

the real domain for the soft-thresholding function. We follow

the same procedure for the complex domain. Using [45, Thm.

III.15 & III.16], we have that for any pseudo-Lipschitz function

γ : C2 → R the following equality holds:

lim
B→∞

1
B

∑B
b=1 γ(η(ŷb, τ), ĥb)

= E
[
γ(η(H +

√
E0Z, τ), H)

]
. (35)

Here, Z ∼ CN (0, 1) and H is a random variable with the

sparse distribution of a channel coefficient in the beamspace

domain ĥb. Using (35), we have the following result

lim
B→∞

1
B

∑B
b=1 |η(ŷb, τ)− ŷb|2

= Eŷb̃

[
|η(ŷb̃, τ)− ŷb̃|2

]
, (36)

where, ŷb̃ is any element of the random vector ŷ. The expression

above can be rewritten as

lim
B→∞

1
B
‖η(ŷ, τ)− ŷ‖22 = Eŷ

[
1
B
‖η(ŷ, τ)− ŷ‖22

]
. (37)

Now, since
∂[ηR(ŷ,τ)]b

∂[ŷR]b
+ ∂[ηI(ŷ,τ)]b

∂[ŷI ]b
is bounded, it is pseudo-

Lipschitz. Hence, we can use (35) to obtain the following

convergence result:

lim
B→∞

1
B

∑B
b=1

(
∂[µR(ŷ)]b
∂[ŷR]b

+ ∂[µI(ŷ)]b
∂[ŷI ]b

− 2
)

= 1
B
E

[
∑B

b=1

(
∂[µR(ŷ)]b
∂[ŷR]b

+ ∂[µI(ŷ)]b
∂[ŷI ]b

− 2
)]

. (38)

By summing (37) and (38), combined with the fact

that 1
B
E

[

‖ŷ − ĥ‖22
]

= E0, we have established that

limB→∞ SUREτ = E[SUREτ ]. Finally, using Theorem 1, we

also prove that limB→∞ SUREτ = MSE.
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