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ABSTRACT 

We present radiative energy loss formulas for beamstrahlung from colliding 

electron-positron beams which experience negligible disruption, as determined 

by numerical simulation. Our computer code uses the correct quantum mechan- 

ical photon number spectrum for synchrotron radiation emitted by relativistic 

electrons to simulate with macroparticles the discrete nature of photon emission. 

For Gaussian beams with small average electron energy loss, we determine energy 

loss formulas valid for all radiation regimes from classical to extreme quantum 

mechanical which depend on only two beam parameters, a quantum radiation 

parameter TO and a beam energy per unit length, IYo. 
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1. Introduction 

When a high energy electron beam and positron beam from an accelerator col- 

lide, the particles in each beam emit synchrotron radiation due to their interaction 

with the electromagnetic fields generated by the opposite beam (beamstrahlung).l 

Because of the intense fields and relatively short bunch lengths involved, the av- 

erage number of photons emitted per electron (positron) can be small, while the 

individual photon energies can be significant fractions of the initial electron en- 

ergy. This discrete, quantum mechanical nature of photon emission will result in 

a beam spectrum quite different from that expected from continuous, classical ra- 

diation loss. A quantitatively correct description of beam energy loss is of direct 

interest to the particle accelerator designer and high-energy experimentalist. 

The simulation of the complete beam-beam interaction including beamstrahlung 

and beam disruption (the focussing of one beam by the fields of the opposite 

beam) is a very involved computational problem. Considerable simplification 

occurs if disruption of the beams can be neglected. For Gaussian beams, the 

disruption parameters for the horizontal and vertical directions are” 

D.+ D = 2&w, 
y 7(1+ R)a; ’ 

where R = u,/o~ is the beam aspect ratio, Nb is the number of beam particles, 

7 = &/mec2, & is the particle energy, re = e2/m,c2, and a; are the Gaussian 

beam widths. For high energy beams there can be accelerators of interest in 

which D is small. 

In this paper we consider beamstrahlung in the limit D + 0, so the two 

colliding beams do not change shape during the collision. Each beam is assumed 
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to be initially monoenergetic with particles radiating according to the local elec- 

tromagnetic fields they experience as they pass through the opposite beam. The 

fields generated by an ultra-relativistic beam are essentially transverse to the 

direction of motion with the electric and magnetic fields locally perpendicular 

and of equal magnitude. Self-fields of a beam are negligible compared with those 

generated by the oncoming beam. The fields of a beam are due to the discrete 

electrons and positrons, but the fields can generally be treated as continuous for 

the purpose of calculating radiation. A particle with a local radius of curvature 

p in the field of a beam will radiate a quantum over a characteristic distance p/7. 

Provided that this radiation length is much greater than the inverse longitudinal 

beam density, 0,/N*, the beam field may be treated as locally continuous with 

scale lengths given by the beam dimensions.3 

2. Quantum Synchrotron Radiation 

With disruption neglected, the analytic expressions for the transverse elec- 

tromagnetic fields generated by a Gaussian beam can be used throughout the 

beamstrahlung simulation. In units of the critical field, FC = mzc3/eA, the elec- 

tric field (which equals the magnetic field H in Gaussian units) at a point (5, y, z) 

relative to the beam center can be written as 

E(G Y, 4/e = (Tol70) f&, Y, 2) 

where 

T 
0 

= 2 Nb re xe70 
6 (1 + R)aya, ’ 

(2) 

70 = &O/mec 2, &e is the initial beam energy, and X, = h/m,c. The function fR 

is given by the following expressions for round (R = 1) and flat (R > 1) beams 
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5 (274’12 +y ’ 
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e--z=/2a: 

(a2 - 1)‘P 

I ( 

z + iy . w  _ e-[(za/2uZ)+(Ya/2u,2)1 ~2(R2 _ 1) uy 

> 

where the complex error function is defined by 

w(c) = e+ 

(4 

(5) 
, 

(6) 

The utility of defining the beam parameter TO in Eq. (2) becomes evident 

when we consider quantum synchrotron radiation from an electron. The quantum 

mechanical photon number and power spectra for the radiation emitted by an 

unpolarized ultra-relativistic electron with energy &  = 7mec2 in a homogenous 

external electromagnetic field, F,,,, can be written as5 

00 

N(w) z $) = 

/ K5/3 (rl) drl + l 

t 

(“)’ (l-p)-’ K2,3 (t)] 3 

(7) 
where a! is the fine structure constant, w is the photon frequency, KV is the 

modified Bessel function of the second kind, [ = ~(IUJ/&)/~T(~ - tLw/&), T = 

III,PV IIXF~Vj1/2/mecFc, and II, is the electron mechanical momentum. The 

expression (7) is valid when I~F&,F~Y11/2 << FC and $i’L,Fj‘” = I? + B  = 0. The 

Lorentz invariant parameter T characterizes the quantum mechanical nature of 
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the radiation. Familiar classical radiation corresponds to Y < 1 in which the 

classical synchrotron frequency is tLwC = 3TE /2, whereas T >> 1 corresponds to 

extreme quantum radiation in which the peak position of the synchrotron power 

spectrum approaches the electron energy. 

The total radiated power from an electron is 

El5 

P= 
/ 

P(w) dw = ; a $ g(T) 
e 

0 

where 

!Ilm = 
r2, T<l 
0.5564 Y213, Y >> 1 ' 

and the photon emission rate is 

N= N(w) oh = - - 5a c 1 h(Y) 
2fiXe7 

0 

where 

T Ye1 
h(Y) N 

l.O12T2/3, T > 1 * 

(8) 

(9) 

(10) 

(11) 

For intermediate values of T, there are no simple analytic forms for the functions 

g(T) and h(T). Table I contains representative values of these functions in the 

range 10V3 5 T 5 103. 

When calculating beamstrahlung in the laboratory frame (i.e. the center of 

mass frame of the two beams) where E, H and the electron momentum n are 

essentially mutually perpendicular, the above formulas may be used locally for 

a given beam electron (positron) with T N 27 E/Fe and E/FC given by Eq. (2) 
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for a Gaussian beam.e The essential approximation made here is that the local 

beam field can be treated as homogeneous. The beam field has longitudinal and 

transverse scale lengths a, and al = o,,~, respectively, relative to the electron 

velocity vector. Provided that for a given electron the radiation length p/7 < a, 

or T >> X,7/0,, the beam field can be viewed as homogeneous longitudinally. 

Similarly if-the transverse deflection distance p/r2 < ul or T >> Xe/gl, the field 

is essentially homogeneous transversely. We restrict our attention in this paper 

to linear colliders in which these conditions are satisfied for most beam particles. 

3. Numerical Simulation 

Without disruption the beamstrahlung simulation is reduced conceptually to 

calculating the relative energy loss A&/& of particles in one beam as they pass 

undeflected through a region of space occupied by the transverse electromagnetic 

fields generated by the oncoming beam. Dimensionally relative energy loss is 

related to radiated power by A&/& = P. (AZ/C)/& where AZ is the distance the 

particle travels as it radiates energy A&. Since power is a function of the beam 

radiation parameter To and aspect ratio R (in the absence of transverse beam 

offsets), only one additional parameter, the beam energy per unit length, must 

be specified in the simulation. We choose to define this parameter as 

5 7OXe 
rp9 ---&--. 

2 
(12) 

Consequently only the three physical parameters Yo, I’0 and R (plus two trans- 

verse beam offsets if necessary) are required to characterize beamstrahlung from 

monoenergetic beams without disruption.7 
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With the beam physics now well defined, it is straightforward to discretize 

the beamstrahlung problem to a form amenable to numerical simulation. Al- 

though it is computationally impossible to track the individual positrons and 

electrons in each beam, it is also unnecessary. Individual particles move along 

smooth trajectories determined by the fields generated by the superposition of 

particles in the oncoming beam. We are not concerned with the stochastic na- 

ture of photon emission from individual electrons but only the simulation of the 

discrete effects of photon emission from many electrons which on average radiate 

according to Eq. (7). Under these conditions we may simulate the actual beams 

with macroparticles and mean fields. Macroparticles represent many real parti- 

cles in a volume element of the beam but have the same charge to mass ratio 

as an electron. Mean fields replace the electromagnetic fields generated by the 

oncoming beam in a volume element by a local, constant field. 

In the present simulation program, the radiating Gaussian beam is taken as 

a box of size 2Nla, x 2N~0, x 2Nllu,, with the integers NJ_ and NII supplied as 

input parameters. This box is divided into 2Nl nl x 2Nlnl x 2Nllnll cubes with 

the integers nl and nil also supplied as input. Each cube is a macroparticle with 

a constant fractional charge (in units of Nb) assigned according to a Gaussian 

charge distribution. The radiating beam moves undeflected along the z-axis 

through a region of space occupied by the transverse fields of the oncoming beam. 

This region is also divided into 2N_~nl x 2Nlnl x 2Nllnll cubes and defines a 

mean field array. The value of the field in each cube is given by Eq. (2) evaluated 

at the cube center. The macroparticle and mean field arrays are moved through 

each other in 4Nllnll- 1 equal steps. The distance AZ travelled by these arrays in 

each step is uJ2nll. Macroparticles radiate according to the constant field value 
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in the mean field cube that they overlap with at a particular step. 

The relative energy loss from a macroparticle at each step is calculated under 

two different assumptions. The first is the assumption of continuous energy loss 

in which the energy change is simply A7/7 = P(T) - (Az/c)/7mec2, and the 

average number of photons emitted per electron is NP = N(T,7) - AZ/C, where 

P(T) and N(T,7) are the total power (8) and emission rate (10) respectively, 

and T = 27E/F,. The step size AZ is assumed to be sufficiently small that A717 

and NP are much less than unity. Since the number of macroparticles is assumed 

to be large, this approach necessarily gives the correct values for all average beam 

quantities (i.e. first moments of distributions). However, because the number of 

photons emitted per electron during the collision is typically not a large number, 

the use of a continuous energy loss algorithm will not give the correct results for 

beam quantities dependent on the discrete effects of photon emission (e.g. r.m.s. 

energy spreads). To obtain such information requires the use of a discrete energy 

loss algorithm. 

The determination of the discrete energy loss from a macroparticle consists 

of two calculations in the simulation. First, if at a given step prr 5 NP, where 

prr comes from a uniform random number generator (0 5 prr 5 l), then the 

macroparticle is allowed to radiate some fraction of its energy. The energy to be 

radiated is determined by inverting the photon number spectrum (7) using the 

following standard technique. 8 The cumulative probability of emitting a photon 

with energy fraction tLw’/& in the range [0, tLw/&] is 

r’I,(hw’/& E [o, hw/&]) = ‘1’ N(w’) d(hw’lE)l j N(d) d&w’/&) 9 (13) 
0 0 

where o 5 II, 5 1. The function lIC can be used as a random number generator 
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with a distribution equivalent to the photon number spectrum. The inverse of this 

function is defined by n(II,) = k~/&, w h ere 0 5 Aw/& < 1. In the simulation 

a probability pr2 from a uniform random number generator is supplied as the 

argument of $2 (represented by a two-dimensional table n(&, T)) to obtain the 

discrete radiated energy loss of a macroparticle, A7/7 = R (~3.2) = Au/&. 

4. Simulation Results 

Using the code just described, we have determined by numerical simulation 

the behavior of eight beam related quantities as a function of To, I’0 and R when 

the beams collide with no transverse offsets and the average electron energy loss 

during the collision is small (typically less than ten percent). This is the regime 

of immediate interest in linear colliders, although the simulation code can treat 

beams with transverse offsets and arbitrarily large energy losses. The first four 

quantities are averages over the beam distribution after the beams have collided. 

They are the final average electron energy loss 

(A&/&o) = ((lo - &)/to) , 

the r.m.s. electron energy spread 

at/E0 = (((A&/&o)~> - (A&/&‘o)~)~‘~ ) (15) 

the average photon number per electron (N,,) and the average photon energy 

@w/&o). 

Four other quantities of interest are the average center of mass energy loss, 

the average center of mass energy squared loss and the associated r.m.s. energy 
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spreads. Center of mass (CM) averages for two finite size beams require infor- 

mation about both beam distributions. We use a definition for these averages 

due to Yokoya,g the so-called “luminosity-weighted” averages. We define a cen- 

ter of mass coordinate system whose origin is the collision point of the bunch 

centers, with the positive s-axis along the direction of beam 1 and the x and y 

axes perpendicular to-the s-axis. In addition zi (~2) is a longitudinal coordinate 

co-moving with beam 1 (beam 2) with origin at the bunch center. The bunch 

centers collide at time t = 0. Since the beams move at the speed of light, a point 

(x, y, s, t) has longitudinal coordinates zr = s - ct and 22 = --s - ct relative to 

the two bunch centers, respectively. 

Using the coordinate system (x, y, s, t), the luminosity is given by 

L = 2f 
J 

nl(x, y, s - ct, t) n2(x, y, -s - ct, t)dx dy ds cdt , (16) 

where f is the accelerator repetition rate, and n denotes the beam particle density. 

The CM energy of two particles in beam 1 and beam 2 at some space-time point 

is W = S1i2 = 2(&r&2)lj2, where S is the CM energy squared. The average 

CM energy loss is defined to be the luminosity-weighted average of AW/Wo = 

(Wo - w>/wo, 

(AW/Wo> = (W/C) / (AW/Wo) 
nl(x, y, s - ct, t) n2(x, y, -s - ct, t) dx dy ds cdt , 

where WO = 2&e. The r.m.s. CM energy spread is 

(17) 

aw/Wo = (((AW/Wo)2) - (AW/Wo)2)‘/2 . (18) 

Similar expressions hold for the average CM energy squared loss (AS/So) and 

r.m.s. spread as/So. 
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For all TO, I’0 and R, we have found the following remarkably simple set 

of radiative energy loss formulas for Gaussian beams without transverse offsets 

when the average energy loss (A&/&o) is small, 

hW ( > - _ 4 SPd 

to 5&i Wo) 

zzul ($) (1+&y2 

(g) =b(Y) (1+(E)) 
z=dl ($) (l+&)liz 

($=2b (Z) 

g=2dl (g) (1+&)1’2 , 

(19) 

(21) 

(22) 

(23) 

(24 

(25) 

(26) 

where the functions g and h are defined by Eqs. (8) and (lo), and the energy loss 

coefficients ai, b and di are given in Table II. The dependence of these expressions 

on the aspect ratio R is essentially contained in YO with residual variations of 

only a few percent for 1 < R < 00. The expressions (19)-(26) when used with the 

coefficients in Table II can be considered accurate to the level of a few percent. 

Analytic expressions exist for some of these formulas in the classical and 

extreme quantum radiation regimes. Equation (19) agrees well with a classical 
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result of Bassetti and Gygi-Hanney’O for (A&/&u) in which their R-dependent 

form factor is well approximated by the factor 1 + R in ‘Y’u.ll Our expressions 

(19)-(22) also agree with analytic results obtained by Yokoya for round beams 

(R = 1) in the classical and quantum regimes. ’ Our simulations indicate that 

these expressions are valid for all aspect ratios with To defined by Eq. (3). 

The formulas for (AW/W ) 0 and aw/Wo in the quantum regime differ from the 

analytic expressions given by Yokoya because we use the exact form W = S1i2 = 

2(&r &2)li2 for the CM energy of two particles rather than the approximation W N 

Wo(l- (A&r + A&2)/2&e) of Yokoya when (A&/&o) < 1. This approximation 

for W is not correct in the quantum regime where particles can radiate substantial 

fractions of their initial energy through one photon. 
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TABLE I 

Represent at ive values of the functions g ( T) 
and h( ‘I’) in the range 10m3 5 ‘Y+ 5 103. 

lO-3 9.94 x 10-7 

10-2 9.45 x 10-5 

10-l 6.55 x 1O-3 

1 1.82 x 10-l 

10 1.84 

102 1.11 x 10’ 

103 5.56 x lo1 

9.99 x 10-4 

9.91 x 1o-3 

9.30 x 1o-2 

7.16 x 10-l 

4.24 

2.13 x lo1 

1.01 x lo2 

TABLE II 

Behavior of the energy loss coefficients ai, 
b and di as a function of the beam radia- 
tion parameter ‘IO when (A&/&o) 2 0.1. 

TO 

2 10-2 

10-l 

1 

10 

102 

;s 103 

al 

0.41 

0.38 

0.31 

0.25 

0.22 

0.20 

- 

a2 - 
30 

30 

33 

43 

53 

63 
- 

b 

0.42 

0.43 

0.44 

0.45 

0.46 

0.47 

& 
0.32 

0.31 

0.27 

0.24 

0.22 

0.21 

- - 
da & - - 
10 10 

10 10 

14 10 

18 11 

22 12 

26 13 
- - 
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