
Vol. 10, Issue 1/2014, 68-77 DOI: 10.2478/cee-2014-0009 

 

BEARING CAPACITY ANALYSIS USING MESHLESS 
LOCAL PETROV-GALERKIN METHOD  
 
Juraj MUŽÍK1,* 

 

1
Department of Geotechnics, Faculty of Civil Engineering, University of Žilina, Žilina, Slovak Republic. 

* 
corresponding author: juraj.muzik@fstav.uniza.sk. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

1. Introduction 
 
In the Local Petrov-Galerkin method, the problem domain is represented by a set of arbitrarily 

distributed nodes. The weighted residual method is used to create the discrete system equation. 

The  weighted residual method is, of course, in integral form, and a background mesh of cells is still 

required for the integration. The major idea in MLPG is, however, that the implementation 

of  the  integral form of the weighted residual method is confined to a very small local subdomain 

of  a  node. This means that the weak form is satisfied at each node in the problem domain in a local 

integral sense. Therefore, the weak form is integrated over a "local quadrature domain" that 

is  independent of other domains of other nodes. This is made possible by use of the Petrov-Galerkin 

formulation, in which the weight and trial functions can be chosen independently. 

 

 

2. Shape functions in meshless sense – Moving least squares method (MLS) 
 

The creation of the shape or trial functions is the crucial part of meshless numerical analysis. 

The moving least squares method (MLS) is used to construct the shape function based on set 

of  scattered nodes. There is no predefined relationship between nodes such as an element in finite 

element analysis. 

Consider the task of finding an approximate solution u
h
(x), knowing the true solution, 

ua  at  selected points xa. Then in a least squares sense minimization of the expression [u
h
(xa) − ua]

2
 

for each a is the objective. Suppose a polynomial approximation is chosen so that 
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The approximation is then written in matrix form 
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Using the above the least squares functional is written with the approximation substituted 

in  for  u
h
(x) 
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Now, recall that compact support for each node a is intended. Therefore, the local solution 

is  influenced by the local nodes. Whereas, nodes far away have no influence. Hence, each 

summation term, indexed by a, in the least squares functional is weighted by a weight function wa, 

which limits the term’s influence to point a and usually several surrounding nodes. Based on this 

intuition the functional J is modified and becomes a weighted least squares functional as follows 
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Next, it is necessary to minimize J with respect to each gi. However, before this operation, 

it  is  helpful to write the functional in matrix form. Then the functional J is written as: 
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where 
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Notice that each row of the P matrix is just p
T
(xa) for each row a. And, the size of this matrix 

is  n  by k. 

 



Stavebné a Environmentálne Inžinierstvo   Vol. 10, Issue 1/2014, 68-77 

 
 

For W, an n by n matrix results 
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where the diagonal terms wa are defined as 4
th
 order quartic spline function with q = |x-xa|/ρa 
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The g vector is k by 1 and the u vector is n by 1.Now, set ∂J/∂g = 0. This yields the following 

 

  0 WPuPg
T

.                                                                                                                     (9) 

 

Transposing the whole equation yields 
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.                                                                                                                (10) 

 

Multiplying through gives 

 

0 WuPWPgP TT

                                                                                                             (11) 

 

and finally 

 

WuPWPgP TT 
.                                                                                                                  (12) 

 

Now define the moment matrix A = P
T
WP and B = P

T
W. Note that A is k by k and B is k by n. 

Using these definitions Eq. (12) becomes  

 

BuAg 
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Solve now for the unknown coefficients g 

 

BuAg 1
.                                                                                                                              (14) 

 

Substitute this into the first part of Eq. (…) 

 

    BuApgp 1 xxu TTh

.                                                                                                   (15) 

 

The approximations u
h
 are usually written as 
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Comparison of Eq. (16) with Eq. (15) reveals that the vector of MLS shape functions is 

 

  BApφ 1 xTT

.                                                                                                                    (17) 

 

Notice that the A and B matrices depend on W. The W matrix in turn is a function of the xa and 

the evaluation point x. Hence every time a new evaluation point x is chosen the matrices A
−1

 and B 

are recomputed to calculate the MLS shape functions based on the Equation (17). 

 

 

3. Weak formulation of equilibrium equations 
 

Consider a solid mechanics boundary problem defined over domain Ω. For a field node I, 

the  governing equation is satisfied using a locally weighted residual method, leading to a weak form 

equation for this node. The local weighted residual form defined over a local quadrature domain Ωq 

bounded by Γq is defined as 
 

 




q

ijijI bW 0d, ,                                                                                                                      (18) 

 

where WI is the test function usually centered at node I. Equation (18) is applied to all the nodes 

in  the  domain Ω. 

When the local weighted residual formulation rather than the global energy principle 

is  used  to  create discretized equation system node by node, the compatibility of the shape functions 

in whole domain is not required. As long as the field approximation is continuous at any point 

in  the  local quadrature domain Ωq, the shape function is differentiable and the resultant integrand 

is  integrable, the solution will exists. So the local weak-form method only requires the local 

compatibility in the local quadrature domain Ωq. The RPIM shape function satisfies all these 

requirements and brings advantage of its delta function property. The first term on the left hand side 

of  the Equation (18) can be integrated by parts 
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where nj is the jth component of the unit outward normal on the boundary. Substituting Equation (19) 

back to the Equation (18) the following form is obtained 
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The boundary of the local quadrature domain is composed by three parts qtquqiq   

(Fig.1) where 

 Γqi is the internal boundary of the quadrature domain, which does not intersect 

with  the  global boundary Γ; 

 Γqt is the part of the natural boundary that intersect with the quadrature domain; 

 Γqu is the part of the essential boundary that intersect with the quadrature domain. 

 

 

Fig.1: Domains and their boundaries. Global boundary Γ including essential (displacement) boundary 

Γu, natural (force or free) boundary Γt; quadrature domain of ΩQ and its boundary including the interior 

boundary ΓQi that is located within the problem domain, the essential boundary ΓQu that intersects with 

Γu and natural boundary ΓQt that intersects with Γt. 

 

Therefore, the equation (20) can be rewritten as 
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iIijjIjijIjijIjijI bWWnWnWnW 0dddd ,  .                                      (21) 

 

For the local quadrature domain located entirely within global domain, there is no intersection 

between Γq and the global boundary Γ. For such a case there is no integral over Γqt and Γqu 

and  Equation (21) is simplified to 
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In this local weak form, (Eqs. (21) and (22)) the Petrov-Galerkin method can be used, in which 

the trial and test functions are selected from different function spaces. Because the resulting integrals 
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are complicated there is need to simplify them by proper choice of the test function. The promising 

approach is to use the Heaviside step function as the test function. The Heaviside function (23) 

is  defined as value of 1 over the quadrature domain and 0 outside. 
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Using the Heaviside step function as the test function, the volume integrals in the Equations 

(21) and (22) vanish except those for the body force term, resulting in following formulation 
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and for the quadrature domain completely within the global domain  
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Basically this formulation is similar to the local boundary element formulation (LBIE), except that 

no fundamental solution and no special care is needed for singularities. To obtain the matrix form 

of  the governing equation in the terms of displacement u following notation is used 
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where φi is nodal shape function used to interpolate a displacement field in the terms of nodal 

displacements (ui,vi). Next the relation between the displacement field and strains should be defined 

in  the context of geometrically linear (infinitesimal) deformation theory 

 

Buε  ,                                                                                                                                    (27) 

 

where strain-displacement matrix B is defined using shape functions derivatives with respect 

to  spatial coordinates 
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The stress components are obtained from the constitutional equation defined using standard 

elastic matrix D 

 

Dεσ  ,                                                                                                                                    (29) 

 

where matrix D is defined in terms of Young modulus E and Poisson number ν  
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Finally the boundary traction t is defined using outward unit vector components and stress 

components 
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Substituting (28), (30) and (31) into (24) and (25) the following formulations are obtained 
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4. Numerical example of the bearing capacity calculation 
 

The bearing capacity analysis performed by MLPG use the elastic-perfectly plastic stress-strain 

law with Tresca failure criterion (34). 

 

ucF 
3

cos
,                                                                                                                     (34) 

 

where σ and θ are the second and third stress invariant and cu is the undrained cohesion of  the  soil. 

The plastic stress redistribution is accomplished using “initial stress” algorithm. The MLPG 

implementation uses regular node field generated with nodal spacing dc=0.5 [m]. The model consists 

of 340 nodes regularly distributed over rectangular domain defined by width wx = 50 [m] and height 

wy  = 17 [m] and represents the undrained clay layer. In the middle of the model upper boundary 

the  strip footing with length of b = 6 [m] is located. The loading stress q is increased incrementally 

to  failure. The elasto-plastic soil is described by three parameters, namely the Young modulus E, 

Poisson number ν and the undrained cohesion cu. Bearing failure in this domain occurs when 

q  reaches Prandtl load given by 

 

  uULT cq  2
.                                                                                                                     (35) 

 

The rectangular support domain used for interpolation has half-size ds= 2.9dc = 1.45[m]. 

The  quadrature domain used for numerical integration is composed as very simple mesh 

of  the  rectangular shape with half size rq = 2.1dc = 1.05 [m]. The quadrature domain is divided into 

4  regular sections with 16 (4x4) Gauss points in each section. 

 

 

Fig. 2: Displacements as vectors and shadings at failure computed by FEM (Plaxis). 
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Fig.3: Displacements as vectors and shadings at failure computed by MLPG. 

 

 

The computed results for this example are given and show the applied stress, the vertical 

displacement under loaded nodes and the number of iterations at each stage of calculation. These 

results have been plotted in (Fig. 4) in the form of a dimensionless bearing capacity factor q/cu versus 

centerline displacement. The number of iterations to achieve convergence for each load increment 

is  also shown. It is seen that convergence was achieved in 139 iterations when q/cu = 5.1, but 

convergence could not be achieved within the iteration limit of 250 when q/cu = 5.2. In addition, 

the  displacements are also increasing rapidly at this level of loading, indicating that bearing failure 

is  taking place at a value very close to the Prandtl load of 5.14. 

 

 

Fig.4: Plot of bearing stress q/cu versuscenterline displacement (Prandtl solution – red line) – MLPG 

solution. 

 

 

5. Conclusions 
 

The described meshless numerical method MLPG represents alternative to the conventional 

numerical methods most usually used in geotechnical engineering, like FEM. The area 

of  the  meshless methods based on local weak form is still under development. The influence 

of  the  nodal meshless shape function types (RPIM, MLS), and shape function parameters 

should  be  also investigated with the corresponding types of engineering problems. The article also 

represents the ability of MLPG to solve the bearing capacity tasks with accuracy comparable 

with  geotechnical FEM implementations. This can be a positive outlook for the application 

of  meshless methods in slope stability analysis. However, as the present study is one of the first 
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in  this category, it is too soon to conclude generally, and more theoretical and experimental research 

is needed. 
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