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Predicting the degradation process of bearings before they reach the failure threshold is extremely important in industry. 
is
paper proposed a novel method based on the support vector machine (SVM) and the Markov model to achieve this goal. Firstly,
the features are extracted by time and time-frequency domain methods. However, the extracted original features are still with
high dimensional and include super�uous information, and the nonlinear multifeatures fusion technique LTSA is used to merge
the features and reduces the dimension. 
en, based on the extracted features, the SVM model is used to predict the bearings
degradation process, and the CAO method is used to determine the embedding dimension of the SVM model. A�er the bearing
degradation process is predicted by SVM model, the Markov model is used to improve the prediction accuracy. 
e proposed
method was validated by two bearing run-to-failure experiments, and the results proved the e	ectiveness of the methodology.

1. Introduction

Bearing is one of the most important components in rotating
machinery. Accurate bearing degradation process prediction
is the key to e	ective implement of condition based main-
tenance and can prevent unexpected failures and minimize
overall maintenance costs [1, 2].

To achieve e	ective degradation process prediction of
the bearing, 
rstly, the features should be extracted from
the collected vibration data. 
en, based on the extracted
features e	ectively prediction models should be selected [3].
Feature extraction is the process of transforming the raw
vibration data collected from running equipment to relevant
information of health condition. 
ere are three types of
methods to deal with the raw vibration data: time domain
analysis, frequency domain analysis, and time-frequency
domain analysis.
e three types of methods are o�en chosen
to extract the feature. For example, Yu [4] chose the time
domain and the frequency domain transform to describe the
characteristics of the vibration signals. Yan et al. [5] chose the
short-time Fourier transform to extract the features. Ocak
et al. [6] chose the wavelet packet transform to extract the

feature of bearing wear information. Because the frequency
features from FFT analysis results o�en tend to average out
transient vibrations and thus not providing a wholesome
measure of the bearing health status, in this paper, the time
domain and the time-frequency domain characteristics are
used to extract the original features.

Although the original features can be extracted, they
are still with high dimension and include super�uous infor-
mation. So the original features fusion and dimensional
reduction method should be used to deal with the origi-
nal features so as to select the typical features. 
e most
commonly used features fusion and dimensional reduction
method is principal component analysis (PCA) [7, 8]. But
the PCA is mainly used for dealing with the linear data set,
while the bearing vibration features are usually suppressed
by the nonlinear characteristic features, so the PCA cannot
work e	ectively. 
erefore, it is a challenging to 
nd an
e	ective nonlinear features fusion and dimensional reduction
method. In this research a new feature extraction method
local tangent space alignment (LTSA) [9] is chosen.
eLTSA
is an e�cient manifold-learning algorithm, which can be
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used as a preprocessingmethod to transform the high dimen-
sional data into more easily handled low dimensional data
[10]; the method has been used in many 
elds, such as face
recognition, character recognition, and image recognition
[11, 12]. In this paper, the LTSA is used to achieve extracting
the more sensitive features.

A�er selecting the typical features, another challenge is
how to e	ectively predict the bearing degradation process
based on the extracted features. 
e existing equipment
degradation process prediction methods can be roughly
classi
ed into model-based (or physics-based modals) and
data-driven methods [13]. 
e model-based methods predict
the equipment degradation process using the physicalmodels
of the components and damage propagation models based
on damage mechanics [14, 15]. However, equipment dynamic
response and damage propagation processes are typically
very complex, and authentic physics-based models are very
di�cult to build [16]. Data-driven methods, also known as
arti
cial intelligent approaches, are derived directly from
routine condition monitoring data of the monitored system,
which predicts the failure progression based on the learning
or training process. 
e more prior the data is used for the
training process, the more accurate is the model obtained
[17]. Arti
cial intelligent techniques have been increasingly
applied to bearing remaining life prediction recently. Lee et
al. [18] presented an Elman neural networkmethod for health
condition prediction. Huang et al. [19] proposed a back-
propagation network-based method for bearing degradation
process prediction. However, the neural networks have the
drawbacks of slow convergence; di�culty in escaping from
local minima; uncertain network structure, especially when
doing the bearing degradation process prediction problem
with large data, and those problems will be more trouble-
some. 
e SVM [20] is most widely used recently and has a
good identify and regression ability. In this paper, the SVM is
used to predict the bearings degradation process.

Although the SVM is e	ective in predicting the bearing
running state, the prediction error still exists. Because any
prediction methods based on the historical data for future
prediction will more or less have some prediction error, it
is necessary to improve the prediction results. However, the
prediction error has the character of being a	ected by many
factors, �uctuations, showing a great random, and the error
points are not related. So if wewant to achieve high prediction
accuracy, we need to 
nd the discipline of the prediction error
and correct the error of prediction. 
e Markov model [21]
used the state transition matrix to achieve a more precise
prediction. It can be used to achieve the improvement of the
prediction accuracy. So in this research, the Markov model is
used to improve the prediction accuracy.


e remainder of this paper is organized as follows. 
e
methods of features extraction and the theory of dimensional
reduction method LTSA are introduced in Section 2. 
e
SVM model and the Markov model for bearing degra-
dation process prediction are described in Section 3. In
Section 4, the �owchart and the procedure of this research
are introduced.
e case validation and actual application are
presented in Section 5. Finally, the conclusions are given in
Section 6.

2. Methods of Signal Processing and
Dimensional Reduction

2.1. Feature Extraction. 
is section presents a brief discus-
sion on original feature extraction from time domain, time-
frequency domain of vibration signals. Time domain meth-
ods usually involve statistical features that are sensitive to
impulsive oscillation, such as kurtosis, skewness, peak-peak
(P-P), RMS, and sample variance. 
e 5 domain statistical
features are used as original features in time domain has been
used in the literatures [2, 3]:

RMS = √∑�2�� , (1)

where � is the number of discrete points and �� represents
the signal value at those points,

Variance = �2 = 1(� − 1)
�∑
�=1
(�� − �)2, (2)

where � is the mean value.

e �th central moment for a set of data is de
ned as

	� = 1�
�∑
�=1
(�� − �)�. (3)


e normalized forth moment, kurtosis, which is com-
monly used in bearing diagnostics, is de
ned as

Kurtosis = 	4(	2)2 − 3. (4)


e skewness is de
ned as

Skewness = 	3(	2)3/2 . (5)


e peak-peak is de
ned as

peak-peak = max (��) −min (��) . (6)

Empirical mode decomposition (EMD) is a powerful tool
in time-frequency domain analysis. 
e advantage of EMD
is the presentation of signals in time-frequency distribution
diagrams with multiresolution, during which choosing some
parameters is not needed. 
is property is essential in the
detection of bearing faults. 
e EMD energy can represent
the characteristic of vibration signals, and thus it is used as
the input features.
e (intrinsic mode function) IMF energy
data sets are chosen as original features in this paper. 
e
original features for bearing degradation process prediction
based on the original features are shown in Table 1.

2.2. Dimensional Reduction Based on the LTSA. Because the
generated original feature sets are still with high dimension
and include super�uous information, the feature extraction
method LTSA is used to fuse the relevant useful features and
extracts more sensitive features to work as the input of the
proposed prediction model.
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Table 1: Original features for bearing fault diagnosis and perfor-
mance assessment.

Domain Feature

Time domain
RMS, Kurtosis, Skewness,

Peak-Peak, and sample variance

Time-frequency
domain

EMD energy
(��1, ��2, ��3, . . . , ���)


e basic idea of LTSA is to use the tangent space of
sample points to represent the geometry of the local character.

en these local manifold structures of space are lined up
to construct the global coordinates. Given a data set 
 =[�1, �2, . . . , ��],�� ∈ ��, amainstream shape of�-dimension
(� > �) is extracted. 
e LTSA feature extraction algorithm
is as follows [9].

(1) Extract local information: for each ��, � = 1, 2, . . . , �,
use the Euclidean distance to determine a set�� = [��,1, ��,2, . . . , ��,��] of its neighborhood adjacent
points (e.g., � the nearest neighbors).

(2) Local linear 
tting: in the neighborhood of data
points ��, a set of orthogonal basis �� can be selected
to construct the �-dimension neighborhood space
of �� and the orthogonal projection of each point��,�(� = 1, 2, . . . , �) can be calculated to the tangent

space of �(�)� = �	� (��,� − ��). �� is the mean data for

the neighborhood. 
e orthogonal projection in the
tangent space of neighborhood data of �� is composed
of local coordinate Θ� = [�(�),1, �(�),2, . . . , �(�),��] that
describes the most important information of the
geometry of the ��.

(3) Global order of the local coordinates: supposing that
the global coordinates of�� converted by theΘ� is�� =[��1, ��2, . . . , ����], and then the error is

�� = �� [� − (1�) ��	] −  �Θ�, (7)

where the � is the identity matrix; the � is the unit
vector; the � is the points number of the neighbor-
hood; the  � is the transformation matrix. In order to
minimize the error, the�� and � should be found, and
then

 � = �� (� − (1�) ��	)Θ∗� ,
�� = �� (� − (1�) ��	) (� − Θ∗� Θ�) ,

(8)

where theΘ∗� is theMoor-Penrose generalized inverse
of Θ�. Suppose

! = "##	"	. (9)

Let " = ["1, "2, . . . , "�], �"� = ��, "� be a selected
matrix from 0-1; the � are global coordinates, and
their weight matrix is

# = diag (#1,#2, . . . ,#�) ,
#� = (� − (1�) ��	) (� − Θ∗� Θ�) . (10)


e constraints is ��	 = ��.
(4) Extract of the low-dimensional manifolds feature:

since the � is the eigenvalue of matrix !, the corre-
sponding minimum eigenvectors matrix is composed
of eigenvalue. 
e value of section 2 to section � + 1
of matrix !make of the �. � is the global coordinate
mapping in the mainstream form of low-dimensional
transformed from the nonlinear high-dimensional
data set of
.


e procedure of feature extraction can be described as
follow.

(1) Use the time domain analysis methods kurtosis,
skewness, peak-peak, RMS, and sample variance to
extract the statistical features.

(2) Use the EMD method to decompose the collected
vibration signal of each data set and get the IMF com-
ponents; calculate the energy of each IMF component
and get the features of the bearing in this time; then
get the features of the other data sets.

(3) Use the LTSA to reduce the original features dimen-
sions and get the main features; the extracted features
are used as input of the SVM model for bearing
degradation process prediction.

3. The SVM and Markov Model for
Degradation Process Prediction

3.1. SVM Prediction Model. SVM is a machine learning tool
that uses statistical learning theory to solvemultidimensional
functions. It is based on structural risk minimization princi-
ples, which overcomes the extralearning problem of ANN.


e learning process of a SVM regression model is
essentially a problem in quadratic programming. Given a set
of data points (�1, $1) ⋅ ⋅ ⋅ (��, $�) such that �� ∈ �� as input
and $� ∈ � as target output, the regression problem is to 
nd
a function such as

$ = & (�) = '* (�) + -, (11)

where *(�) is the high dimensional feature space, which is
nonlinear mapped from the input space �, ' is the weight
vector, and - is the bias [22].

A�er training, the corresponding $ can be found through&(�) for the � outside the sample. 
e /-support vector
regression (/-SVR) by Vapnik controls the precision of the
algorithm through a speci
ed tolerance error /. 
e error
of the sample is 0, regardless of the loss, when |0| ≤ /; else
consider the loss as |0| − /. First, map the sample into a high
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dimensional feature space by a nonlinear mapping function
and convert the problem of the nonlinear function estimates
into a linear regression problem in a high dimensional feature
space. If we let 5(�) be the conversion function from the
sample space into the high dimension feature space, then the
problem of solving the parameters of &(�) is converted to
solving an optimization problem (12) with the constraints in
(13):

min
12‖'‖2 = 12 (' ⋅ ') (12)

Subject to $� − (' ⋅ 5 (�) + -) ≤ /,
(' ⋅ 5 (�) + -) − $� ≤ /,

� = 1, 2, . . . , 7.
(13)


e feature space is one of high dimensionality and the
target function is nondi	erentiable. In general, the SVM re-
gression problem is solved by establishing a Lagrange func-
tion and converting this problem to a dual optimization, that
is, problem (14) with constraint of (15) in order to determine
the Lagrange multipliers 8�, 8∗� ,

max −12
�∑
�,�=1

(8� − 8∗� ) (8� − 8∗� ) (��, �
)

− / �∑
�=1

(8� + 8∗� ) + �∑
�=1
$� (8� − 8∗� )

(14)

Subject to
�∑
�=1

(8� − 8∗� ) = 0
8�, 8∗� ∈ [0, <] ,

(15)

where 8�, 8∗� are Lagrangemultipliers and 8�, 8∗� ≥ 0. 8�×8∗� =0. < evaluates the tradeo	 between the empirical risk and the
smoothness of the model.


e SVM regression problem has therefore been trans-
formed into a quadratic programming problem. 
e regres-
sion equation can be obtained by solving this problem. With
the kernel function @(��, ��), the corresponding regression
function is provided by

& (�) = �∑
�=1

(8� − 8∗� ) (8� − 8∗� )@ (��, ��) + -, (16)

where the kernel function @(��, ��) is an internal product of
vectors �� and �� in feature spaces 5(��) and 5(��).
3.2. �e Prediction Strategy and the Structure of the SVM
Model. Traditional forecasting methods mainly achieve
single-step prediction; when those methods are used for
multisteps prediction, they cannot get an overall development
trend of the series. Multisteps prediction method has the
ability to obtain overall information of the series which
provides the possibility for long-term prediction. 
ere are
two typical alternatives to build multisteps life prediction
model. One is iterated prediction and the other is direct

prediction.
e comparison of the two strategies can be found
in a number of literatures [23].Marcellino et al. [24] presented
a large-scale empirical comparison of iterated versus direct
prediction.
e results show that iterated prediction typically
outperforms the direct prediction. So, the iterated multisteps
prediction strategy has numerous advantages and will be
adopted in this paper.

In order to determine the structure of the SVM, we
constructed a three layers SVM prediction model. But to
achieve the multisteps time series life prediction a basic
problem should be suppressed. 
at is how many essential
observations (inputs) are used for forecasting the future
value (the output node number is 1), so-called embedding
dimension �. In order to suppress the problem, the CAO
method [25], which is particularly e�cient to determine the
minimum embedding dimension through the expansion of
neighbor point in the embedding space, is employed to select
an appropriate embedding dimension�.
en, the SVM input
node number is determined.

To e	ectively select an appropriate embedding dimension
based on the CAO method, the phase space reconstruction
method should be mentioned. 
e fundamental theorem of
phase space reconstruction is pioneered by Takens [26]. For
an �-point time series X = {�1, �2, . . . , ��}, a sequence
of vectors $� in a new space can be generated as $�(�) ={��, ��+�, . . . , ��+(�−1)�}, where � = 1, 2, . . . , ��, �� = � −(� − 1)A is the length of the reconstructed vector $�, � is the
embedding dimension of the reconstructed state space, and A
is embedding delay time. 
e time delay A is chosen through
the autocorrelation function [27]:

< (A) = ∑�−��=1 ������+�∑�−��=1 (��� )2 , (17)

where ��� = ��−�, � is the average value of the time series.
e
optimal time delay A is determined when the 
rst minimum
value of <(A) occurs.


e embedding dimension � is chosen through CAO
method, de
ning the quantity as follows:

B (�, �) = CCCC$� (� + 1) − $�(�,�) (� + 1)CCCCCCCC$� (�) − $�(�,�) (�)CCCC , (18)

where ‖ ⋅ ‖ is the Euclidian distance and is given by the
maximum norm. $�(�) means the �th reconstructed vector
and D(�, �) is an integer, so that $�(�,�)(�) is the nearest
neighbor of $�(�) in the embedding dimension �. A new

quantity is de
ned as the mean value of all B(�, �)��:
� (�) = 1� − �A

�−��∑
�=1

B (�, �) , (19)

where �(�) is only dependent on the dimension � and time
delay A. To investigate its variation from � to � + 1, the
parameter �1 is given by

�1 (�) = � (� + 1)� (�) . (20)
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By increasing the value of �, the value �1(�) is also
increased and it stops increasing when the time series comes
from a deterministic process. If a plateau is observed for � ≥�0, then �0 + 1 is the minimum embedding dimension. But�1(�) has the problem of slowly increasing or has stopped
changing if � is su�ciently large. CAO introduced another
quantity �2(�) to overcome the problem:

�2 (�) = �∗ (� + 1)�∗ (�) , (21)

where

�∗ (�) = 1� − �A
�−��∑
�=1

EEEE��+�� − ��(�,�)+��EEEE . (22)


rough CAO method, the embedding dimension � of
the SVM prediction model is chosen. 
e structure of the
SVMmodel is determined.

3.3. SOM Clustering Method to Divide the Prediction Error.
State division is the process to determine the mapping
from random variable to the state space. How to obtain
state division is a crux for Markov model. Traditionally, it
is performed by the state division approach described as
follows. Let 
 = {�1, �2, . . . , ��} be the random sequence; letF = {1, 2, . . . , �, . . . , �} denote the state space; given B0 < B1 <⋅ ⋅ ⋅ < B� if random variable �� ∈ [B�−1, B�], where 1 ≤ � ≤ D,1 ≤ � ≤ �, then the variable �� belongs to the state �, and the
division of [B�−1, B�] is usually uniform divided. However, the
uniform dividedmethod depends on the people’s experience,
which will a	ect the prediction precise. In this research, the
SOMneural network [28] is used to divide the state.
e SOM
can be created from highly deviating, nonlinear data. A�er
the data are input, the SOM is trained iteratively.

In each training step, one sample vector
 from the input
data set is chosen randomly, and the distance between it and
all the weight vectors of the SOM, which are originally ini-
tialised randomly, is calculated using some distance measure.

e best matching unit (BMU) is the map unit, whose weight
vector is closest to
. A�er the BMU is identi
ed, the weight
vectors of the BMU, as well as its topological neighbors, are
updated so that they are moved closer to the input vector
in the input space. 
e vectors are updated following the
learning rule:

�� (� + 1) = �� (�) + 8 (�) ℎ (DBMU, D�, �) (
 − �� (�)) , (23)

where ℎ(DBMU, D�, �) is the neighborhood function, which
is monotonically decreasing with respect to the distance
between the BMU DBMU and D� in the grid, and the training
time 8(�) is the learning rate; a decreasing function with 0 <8(�) < 1.

At the end of the learning process, the weight vectors are
grouped into clusters depending on their distance in the input
space. Unlike networks based on supervised learning, which
require that target values corresponding to input vectors are
known, the SOM can be used to cluster data without knowing
the class membership of the input data. 
is character is
suitable for the problem of the prediction error of the SVM

model which is not clear to us, so we should classify the error
without prelearning, and therefore, the function of SOM
method determined is an e�cient and necessary method for
clustering the state. Based on the clustering results, the state
is divided into some districts.

3.4. Markov Prediction Model to Improve the Prediction Accu-
racy. Consider a stochastic process {��, D = 1, 2, . . .} that
takes on a 
nite or countable number of possible values.
Unless otherwise mentioned, this set of possible values of the
process will be denoted by the set of nonnegative integers{1, 2, . . .}. If �� = �, then the process is said to be in state � at
time D. Suppose that whenever the process is in state �; there
is a 
xed probability I�� that it will be next instating �. 
at is

I {��+1 = � | �� = �, ��−1 = ��−1, . . . , �1 = �1}
= I {��+1 = � | �� = �} = I�� (24)

for all states �0, �1, . . . , ��−1, �, � and all D ≥ 0. Such a
stochastic process is known as aMarkov chain. Equation (24)
can be interpreted as stating that for a Markov model, the
conditional distribution of any state ��+1, given the past states�1, �2, . . . , ��−1 and the present state ��, is independent of
the past states and depends only on the present state. 
is is
called the Markovian property. 
e value I�� represents the
probability that the process will, when in state �, next make a
transition into state �. Since probabilities are nonnegative and
since the process must make a transition into some state, we
have that

I�� ≥ 0, �, � ≥ 0; ∞∑
�=1
I�� = 1, � = 1, 2, . . . . (25)

If the process has a 
nite number of states, which means
the state space F = {1, 2, . . . , �, �, . . . , �}, then theMarkov chain
model can be de
ned by the matrix of one-step transition
probabilities, denoted as

I = [[[[
[

I11 I12 ⋅ ⋅ ⋅ I1�I21 I22 ⋅ ⋅ ⋅ I2�
...

... ⋅ ⋅ ⋅ ...I�1 I�2 ⋅ ⋅ ⋅ I��
]]]]
]
. (26)


e initial probability is computed by

I�� = ����� , (27)

where ��� denotes the transition times from state � to state� and �� denotes the number of random variables {��, D =1, 2, . . . , �} belonging to state �.
Markov model adopts state vector and state transition

matrix to deal with the prediction issue. Suppose that the state
vector of moment � − 1 is I�−1, the state vector of moment � isI�, and the state transition matrix is I; then the relationship
is

I� = I�−1I, � = 1, 2, . . . , @. (28)

Update � from 1 to @, and then

I� = I0I�, (29)
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Figure 1: 
e �owchart of the proposed method.

where I� is the state vector at moment @. Equation (29) is
the basic Markov prediction model, if the initial state vector
and the transition matrix are given, which allows calculation
of any possible future state vector.

4. Proposed Method


e �owchart of the proposed method is shown in Figure 1.

e method consists of four procedures sequentially: data
processing and features extraction, merge of the original
features, constructing-training SVM model and predicting,
and Markov model for improving the prediction result. 
e
role of each procedure is explained as follows.

Step 1. Data processing and features extraction. 
e time
domain and time-frequency domain signal processing meth-
ods are used to extract the original features from the collected
mass vibration data.

Step 2. Merge of the original features. 
e LTSA method is
used to extract the typical features and reduce the dimension
of the features.
e extracted features are used for training the
SVMmodel.

Step 3. Constructing the SVM model. 
e SVM model is
constructed; the CAO method is used to determine the
embedding dimension. 
e iterated multistep prediction
method is used to forecast the future value.

Step 4. Markov model for improving the prediction result.

is procedure uses the SOM method to cluster the pre-
diction error before the Markov method; based on the state

division results the Markov model is used to improve the
prediction results obtained by SVM model, to get a more
precise prediction.

5. Validation and Application

5.1. Validation. In order to validate the e	ect of the proposed
method, a validation test is proposed. 
e vibration signals
used in this paper are provided by the Center for Intelligent
Maintenance Systems (IMS), University of Cincinnati [29].

e experimental data sets are generated from bearing run-
to-failure tests under constant load conditions on a specially
designed test rig as shown in Figure 2. 
e rotation speed is
kept constant at 2000 rpm. A radial load of 6000 lbs is added
to the sha� and bearing by a spring mechanism. 
e data
sampling rate is 20 kHz and the data length is 20,480 points
as shown in Figure 3. It took a total of 7 days until the bearing
fails. At the end, one bearing with serious wreck is used to test
the proposed method as shown in Figure 4.


e time domain and time-frequency domain methods
are used to deal with the collected vibration data as described
in Section 2, Table 1.
emeasurements value of kurtosis and
skewness are depicted in Figures 5(a) and 5(b).
e IMF1 and
IMF2 energy are depicted in Figures 6(a) and 6(b).

From the extracted features showed in Figures 5 and
6 we can see the following. (1) 
e bearing is in normal
condition during the time correlated with the 
rst 700 points.
A�er that time, the condition of bearing suddenly changes. It
indicates that there are some faults occurring in this bearing.(2) Di	erent features re�ect the bearing running state in
di	erent shapes. For example, the kurtosis and the IMF1
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indict the bearing running state with an upward trend,
while the skewness indicts the bearing running state with
a downward trend. 
e kurtosis, skewness, and the IMF1,
indicting the bearing running state, have a large �uctuation
a�er the 700-point, while the IMF2, indicting the bearing
running state, have a large �uctuation till a�er the 850-point.
So using these features is not appropriate to re�ect the bearing
running condition. So it is very necessary to extract a sensitive
feature by the original features to appropriately re�ect the
bearing running condition.

(a)

(b)

Figure 4: 
e bearing components with serious wrecked a�er test
with roller element defect and outer race defect.

We performed feature extraction by means of LTSA to
extract a sensitive feature and reduce the dimensionality
of calculated features. A�er LTSA is used (in this article
the parameters of the neighborhood factor � equals 8, the
embedding dimension � equals 1), the bearing running state
features dataset is got. 
e 
rst main projected vector is
chosen as the input of the SVM model. 
e result is shown
in Figure 7. In comparison with the LTSA method, we also
extracted the features through the PCAmethod, and the 
rst
main principal component is chosen. 
e result is shown in
Figure 8.

From Figures 7 and 8 we can see that the LTSA method
can extract an e	ective feature dataset, which is sensitive to
the changes of bearing running state, while the extracted
feature is based on PCA method with a bad e	ect, before the
700 point; we even cannot see the �uctuation of the bearing
running state, and the trend convert is also not obvious, from
which we cannot know the bearing running state e	ectively.

is result indicates that information extracted by LTSA
could be more e	ective than that extracted by PCA.

A�er extracting the typical features, the CAO method
is used to determine the embedding dimension of the SVM
model, based on the theorem of phase space reconstruction.
We 
rst choose the delay time A through the autocorrelation
function.


e optimal time delay A is determined when the 
rst
minimum value of <(A) occurs.

Based on the extracted features dataset, the delay timeA is set to 3 for the projected vector values through the
autocorrelation function as shown in Figure 9.


en the embedding dimension is selected by the CAO
method.
e result is shown in Figure 10; the optimal embed-
ding dimension � for the projected vector is chosen as 10.
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Figure 5: (a) Kurtosis value and (b) Skewness value of bearing vibration data.
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Figure 6: (a) IMF1 energy of bearing vibration data; (b) IMF2 energy of bearing vibration data.

Based on the selected optimal embedding dimension, the
SVMmodel is used to achieve the multisteps prediction. 
e
RBF kernel function is used:

@(��, ��) = exp (− 12S2 CCCC� − ��CCCC2) . (30)

In this research the regularity parameter < is set to 90.3,

the kernel function parameter S2 is set to 20, and the / is
set to 0.001. 
e parameters < and / are selected by Particle
Swarm Optimization algorithm (PSO) [30]. 
e popular size

of the PSO is set to 100, the interaction number of the PSO
method is set to 20, and the 
tness function of the PSO
method is set to choose the parameters which make the SVM
model 
tting error in the training process the smallest. 
e
error goal is set to 0.05, the dimension of the PSO is set to
2, and the inertia weight is set to ' = 0.5, U1 = U2 = 1.2.
Based on the selected typical features, the features dataset is
used to train SVM model and the input features number of
SVM is 9 determined by embedding dimension. 
en, the
trained SVM model is used to predict the bearing running
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Figure 9: Selection of the delay time by the autocorrelation function
value of LTSA1.

state. Before the 700th points, the bearing is working in a
normal state, so the 701–900 points are used to train the SVM
model and the following 85 points are employed for testing. In
order to evaluate the predicting performance, the root-mean
square error (RMSE) is utilized as follows:

RMSE = √∑��=1 ($� − $̂�)2� , (31)

where � represents the total number of data points in the
test set, $� is actual value in training set or test set, and $̂�
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Figure 11: Prediction result based on the SVMmodel.

represents the predicted value of the model. 
e actual value
and the predicted result are shown in Figure 11.

From Figure 11 we can see that the trend of the bearing
running state can be predicted by SVM model. From the
prediction, we can get a general understanding of the bearing
running state in the future, but the predicted result is
not accurate, especially the stage of 70–85 point, through
calculation.
eRMSEof the actual and the predicted result is
0.0469, so the predict result is not satis
ed and the prediction
error of SVMmodel (the predicted results subtract the actual
data) is shown in Figure 12.


en the SOM method is used to divide the error into
some districts, the iteration number if SOM is 2000; the
structure of the state classi
cationmatrix is [3×1].
e results
of the state division by SOM are shown in Table 2.

It can be seen from Table 2 that when there is downward
trend or the point value is less than 0, the state is set to 1 and
when there is upward trend, the state is set to 3. According
to the classi
cation of the SOM model, the Markov state
is divided into the following districts: [−0.10752, −0.00038],[−0.00038, 0.1326], and [0.1326, 0.43612].
eMarkovmodel
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Table 2: 
e result of the state division and the prediction results.

Prediction number Prediction error State Prediction number Prediction error State Prediction number Prediction error State

1 −0.001622 2 31 −0.014505 2 61 −0.009996 2

2 −0.003811 2 32 −0.017872 2 62 −0.015532 2

3 −0.003841 2 33 −0.022864 2 63 −0.041807 1

4 −0.007212 2 34 −0.031673 1 64 −0.022312 2

5 −0.008162 2 35 −0.033233 1 65 −0.034537 1

6 −0.02057 2 36 −0.05774 1 66 −0.060772 1

7 −0.023467 1 37 −0.090116 1 67 −0.10752 1

8 −0.026518 1 38 −0.04199 1 68 −0.096034 1

9 −0.02786 1 39 −0.034686 1 69 −0.12397 1

10 −0.027196 1 40 −0.032578 1 70 −0.13711 1

11 −0.038575 1 41 −0.010655 2 71 −0.13712 1

12 −0.025033 1 42 −0.013265 2 72 −0.03195 1

13 −0.018556 2 43 −0.006294 2 73 −0.02958 1

14 −0.019786 2 44 −0.007407 2 74 −0.19645 1

15 −0.01983 2 45 −0.021696 2 75 −0.18364 1

16 −0.020994 2 46 −0.017219 2 76 0.24355 3

17 −0.032989 1 47 −0.037728 1 77 0.43612 3

18 −0.019086 2 48 −0.011678 2 78 0.20092 3

19 −0.013994 2 49 −0.001478 2 79 −0.05844 1

20 −0.014597 2 50 −0.003989 2 80 0.76262 3

21 −0.013641 2 51 −0.00038 2 81 0.14341 3

22 −0.014209 2 52 −0.00578 2 82 0.28256 3

23 −0.013578 2 53 −0.025056 1 83 0.1326 3

24 −0.022126 2 54 −0.045813 1 84 0.3338 3

25 −0.019049 2 55 −0.01996 2 85 0.18377 3

26 −0.013825 2 56 −0.05286 1

27 −0.012682 2 57 −0.019165 2

28 −0.014012 2 58 −0.039591 1

29 −0.012089 2 59 −0.015265 2

30 −0.01567 2 60 −0.058697 1
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Figure 12: 
e prediction error of the SVMmodel.

is used to improve the prediction error. For example, the 78
point, the Markov state transition matrix from 1–77 point is

I = [
[
0.697 0.2727 0.03030.2326 0.7674 00 0 1 ]

]
. (32)

Chose three points 77, 76, and 75 which are recent to the
78 point and set the transfer step as 1, 2, 3; the state prediction
results based on the Markov model are shown in Table 3.

From Table 3 we can see that the accumulated value of
stage 3 is the largest, so the stage of 78 point is set to 3 and the
result is the same with the SOM clustering method.

In this research, according to the stage of the prediction of

theMarkovmodel, the correct value is calculated by �̃(0)(�) =�̂(0)(�) − /, where / is the median value of the divided stage

area and �̂(0)(�) is the value predicted though SVMmodel.
For the 78 point, the corrected value is 0.57298−(0.1326+0.43612)/2 = 0.2956, where the actual value at this point is

0.37206. 
en other points have also been corrected though
this method. 
e corrected results of the point 70–85 are
shown in Table 4.

From Table 4 we can see that the Markov model makes
the results more precise, which validate the necessary to use
the Markov model to improve the e	ect of the proposed
method. 
e RMSE of the actual and the predicted result
is 0.0091, so the prediction accuracy improved signi
cantly.
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Table 3: Table of the probability status.

Point Status probability Transfer step State 1 State 2 State 3

77 3 1 0 0 1

76 3 2 0 0 1

75 1 3 0.4757 0.4562 0.0681

Total 0.4757 0.4562 2.0681

Table 4: 
e corrected results of the points 70–85 based on Markov model.

Point SVMmodel prediction error Relative error (%) SVM-Markov model prediction error Relative error (%)

70 −0.13711 84.37% −0.1025 63.07%

71 −0.13712 79.91% −0.1235 71.97%

72 −0.03195 16.92% −0.0121 6.41%

73 −0.02958 12.85% 0.0965 41.92%

74 −0.19645 84.44% −0.09512 40.88%

75 −0.18364 84.21% −0.10236 46.94%

76 0.24355 93.60% 0.01043 4.01%

77 0.43612 79.88% 0.03542 6.49%

78 0.20092 54.00% −0.07646 20.55%

79 −0.05844 23.60% −0.01574 6.36%

80 0.76262 344.98% 0.13262 59.99%

81 0.14341 26.80% 0.03562 6.66%

82 0.28256 114.19% 0.20302 82.05%

83 0.1326 49.59% −0.00251 0.94%

84 0.3338 2061% 0.03291 203.20%

85 0.18377 1132.15% 0.06548 403.40%

However, because those points are so far away compared to
the predicted point of 1–69, the results still have some error.

In order to compare the predict e	ect, the most usually
used prediction model BP neural networks is used to predict
the bearing running state based on the selected features.

e learning rate of the neural network and its momentum
coe�cient are 0.01; the weights are initialized to uniformly
distribute random values between −0.1 and 0.1; the iteration
number is 2000; the training error is 0.001; the input number
is 9; the hidden number is 15; the output node number is 1.

e prediction results are shown in Figure 13.

From Figure 13 we can see that the prediction results
based on the BPNN model is not working e	ectively. 
ere
are some peaks while in the same position the actual status is
not obvious.
eRMSEof the predicted result is 0.0932, so the
prediction results of the traditional BPNNmodel is not more
e	ective than the SVM model. In addition, the prediction
method based on the BPNN has the problem of prediction
results which are unstable; when the same data is used to
train and predict, the results are di	erent and even the neural
network may fall into the local optimum as shown in Figures
14 and 15.

With the data, the proposed method has also been com-
pared with other methods that had been proposed in relative
research. (1) 
e principal signal features extracted by PCA
are utilized byHMMto predict the bearing running state [31].(2) 
e time domain and frequency domain features have
been directly used as the input of the prediction model, and
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Figure 13: Prediction result based on the BPNNmodel.

the result has been predicted by Neural Network algorithm
[1]. (3) 
e original features have been extracted by PCA as
the input of the SVMpredictionmodel [32]. (4)
eproposed
method in this research. 
e RMSE of the di	erent methods
predicted results is shown in Table 5.

From Table 5, we can see that the RMSE of di	erent
prediction methods is very di	erent. 
e prediction method
that the original features have been directly used as the input
of the NN model works the worst. 
is is the reason why the
original features are still with high dimension and include
super�uous information, which is not appropriate for state
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Table 5: 
e RMSE results of di	erent prediction methods.

Method

e features extracted by
PCA are utilized by HMM

prediction model


e features directly used as the
input of the Neural Network

prediction model


e features extracted by PCA as
the input of the SVM prediction

model

e proposed method

RMSE 0.0698 0.1023 0.0521 0.0091

Performance is 4.2226e − 006, goal is 1e − 005
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Figure 14: 
e training process curve of the BPNN method.
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Figure 15:
e actual data and the result predicted by BPNN fall into
the local optimum.

prediction; in addition, the NN prediction model has the
drawbacks of slow convergence and di�culty in escaping
from local minima. 
e prediction method based on the
HMMmodelworks notmore e	ective than themethod based
on the SVM model; that is the reason why the HMM is
not appropriate for long time forecast. 
e proposed method
works the best; this is because the LTSA features extraction
method can e	ectively extract the typical features and reduce
the dimension and the SVM-Markov model can predict the
state more precisely than the SVM and Markov model only.
So through the comparison we can get that the proposed
method is very e	ective in bearing running state prediction.

Load
Bearing

Sha�

AC motor

Figure 16: Bearing test tig.

5.2. Application. A�er validating the e	ectiveness of the
proposed method, the method has been used to the actual
application. 
e test rig is shown in Figure 16.


ebearings are hosted on the sha� and the sha� is driven
by AC motor. 
e rotation speed is kept at 1000 rpm and a
radial load of 3 kg is added to the bearing. 
e data sampling
rate is 25600Hz and the data length is 102400 points collected
on the date of 2011.11.25 as shown in Figure 17. Every 2 hours,
the vibration data are collected for one time. 
e collected
data from 2011.11.25 to 2011.12.17 are analyzed a�er running
for 1 year.


e time domain and time-frequency domain methods
are used to deal with the collected vibration data as described
in Section 2, Table 1. 
en the features are normalized

through
_�= (� − �min)/(�max − �min) and processed into the

interval [0, 1]. 
e LTSA is used to reduce the dimensionality
of calculated features and the result is shown in Figure 18.

From Figure 18, we can see that the bearing running state
has a �uctuation and upward trend. Especially at 150 points,
there is a sudden change of trend, which re�ects the bearing’s
working status change at this moment.

A�er extracting the typical features, the CAO method is
used to determine the embedding dimension of the SVM
model. 
e delay time A is set as 2 for the projected vector
values though the autocorrelation function as shown in
Figure 19.


e embedding dimension is selected by the CAO
method. 
e result is shown in Figure 20 and the optimal
embedding dimension � for the projected vector is chosen
as 10.

Based on the selected optimal embedding dimension, the
SVM model is used to achieve the prediction. 
e regularity
parameter < is set as 909.5 and the / is set to 0.01 selected
by PSO method. Based on the selected typical features, the
features dataset is used to train SVMmodel, the 1–130 points
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rst main projected vector of test bearing based on
LTSA method.
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Figure 19: Selection of the delay time by the autocorrelation
function value of LTSA1.

are used to train the SVMmodel, and the following 20 points
are employed for testing. 
e prediction results are shown in
Figure 21.

From Figure 21 we can see that the trend of the bearing
running state can be predicted by SVM model; from the
prediction, we can get a general upward trend similar to the
actual status. In addition, the sudden change of points 8 to
12 (near the 150 points in original signal as mentioned in
Figure 17) is also showed out. However, the results are still not
precise. In order to improve the prediction e	ect, the SOM
method is used to divided the prediction error into some
districts, the iteration number if SOM is 1000; the structure
of the state classi
cation matrix is [3 × 1]. 
e results of the
state division by SOM are shown in Table 6.

Based on the classi
cation of the SOM model, the
Markov state is divided into the following districts[−0.13365, −0.034682], [−0.034682, 0], and [0, 0.053935];
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Figure 20: Selection of the embedding dimension by the CAO
method of LTSA1.
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Figure 21: Prediction result based on the SVMmodel.

the Markov model is used to improve the prediction error.

e corrected results of the points 1–20 are shown in Table 7.

FromTable 7, we can see that theMarkovmodelmake the
results more precise.


rough the validation and actual application result we
can see that the proposed method can predict the future
status of the bearing, which is necessary for us to make some
plan and do maintenance to reduce the risk of unnecessary
accident.

6. Conclusions

(1) 
e time domain and time-frequency domain meth-
ods are used to extract the original features from
the mass vibration data, and in order to reduce
the original features dimension and the super�uous
information of the original features, the multifeatures
fusion technique LTSA is used to fusion the original
features and reduce the dimension.

(2) Use the proposed SVM model to achieve bearing
running state prediction. 
e proposed approach is
validated by real-world vibration signals. 
e results
show that the proposed methodology is of high
accuracy, which is e	ective for the bearing running
state prediction.
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Table 6: 
e result of the state division and the prediction results.

Point Prediction error State Point Prediction error State

1 0 3 11 0.053935 3

2 −0.063821 1 12 −0.0052358 1

3 0.002906 3 13 −0.058422 1

4 0.0074271 3 14 −0.094039 1

5 −0.021835 2 15 −0.032173 2

6 0.024138 3 16 −0.034682 2

7 0.0059543 3 17 −0.014101 2

8 0.016244 3 18 −0.13365 1

9 0.022316 3 19 −0.06811 1

10 0.016692 3 20 −0.070675 1

Table 7: 
e corrected results of the points 1−20 based on Markov model.

Point SVMmodel prediction error Relative error (%) SVM-Markov model prediction error Relative error (%)

1 0 0 0 0

2 −0.0103821 579.21% −0.006361 178.31%

3 0.002906 8.5739% 0.000603 1.7791%

4 0.0074271 20.311% −0.001021 2.7922%

5 −0.021835 274.63% −0.009362 117.75%

6 0.024138 30.429% 0.013254 16.708%

7 0.0059543 12.666% 0.002615 5.5628%

8 0.016244 22.459% 0.010027 13.863%

9 0.022316 33.565% 0.009565 14.386%

10 0.016692 32.417% 0.009473 18.397%

11 0.053935 73.825% 0.021563 29.515%

12 −0.0052358 34.947% −0.002355 15.719%

13 −0.058422 107.06% −0.019347 35.455%

14 −0.094039 122.79% −0.014236 18.589%

15 −0.032173 263.1% −0.009878 80.779%

16 −0.034682 159.3% −0.008969 41.197%

17 −0.004101 355.3% −0.001892 199.5%

18 −0.13365 117.18% −0.050841 44.576%

19 −0.06811 120.92% −0.028323 50.282%

20 −0.070675 135.04% −0.014267 27.152%

(3) 
is research gives an example of combined
approaches for the bearing running state prediction.

rough analysis and validation we can get that the
proposed method takes good use of the advantages
of each part and achieve a high recognition accuracy
and e�ciency.

(4) As the redundancy increases, the complexity of com-
putation increases as well. 
is is one of the main
shortcomings of the proposed method, which will be
explored in the future.
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