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ABSTRACT Bearing fault diagnosis is an important technique in industrial production as bearings are one

of the key components in rotating machines. In bearing fault diagnosis, complex environmental noises will

lead to inaccurate results. To address the problem, bearing fault classification methods should be capable of

noise resistance and be more robust. In previous studies, researchers mainly focus on noise-free condition,

measured signal and signal with simulated noise, many effective approaches have been proposed. But in

real-world working condition, strong and complex noises are often leads to inaccurate results. According

to the situation, this work focuses on bearing fault classification under the influence of factory noise and

the white Gaussian noise. In order to eliminate the noise interference and take the possible connection

between signal frames into consideration, this paper presents a new bearing fault classification method

based on convolutional neural networks (CNNs). By using the sensitivity to impulse of spectral kurtosis

(SK), noises are repressed by the proposed filtering approach based on the SK. Mel-frequency cepstral

coefficients (MFCC) and delta cepstrum are extracted as the feature by the reason of satisfactory performance

in sound recognition. And in consideration of the connection between frames, a feature arrangement method

is presented to transfer feature vectors to feature images, so the advantages of the CNNs in the fields of image

processing can be exploited in the proposed method. The proposed method is demonstrated to have strong

ability of classification under the interference of factory noise and the Gaussian noise by experiments.

INDEX TERMS Bearing fault, convolutional neural network, fault diagnosis, spectral kurtosis.

I. INTRODUCTION

Rotating machines are indispensable important equipments

in industry, such as induction motor and turbine, etc. Rolling

element bearings (REB) are one of the most common com-

ponents in rotating machineries, and they are also one of the

most brittle parts [1]. The reasons of failures including heavy

loads, inadequate lubrication, friction caused by foreign mat-

ters owing to bad sealing, etc. Therefore, effective bearing

fault classification methods should be presented to ensure the

safe operation of equipments.

Localized faults in REBs result in specific spectral charac-

teristics, called the bearing fault frequencies. The previous

bearing diagnosis methods mainly include fault frequency

calculation, signal processing, and envelope analysis [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Aysegül Ucar.

Through the processes, fault types can be recognized gener-

ally. But it should be mentioned that it is hard for traditional

methods to distinguish all the fault types and to evaluate

damage degrees. Such as, different radiuses of damages in

the inner race will cause similar bearing fault frequencies.

In recent years, many advanced approaches about machine

learning based fault diagnosis and fault feature extraction

have been proposed [3]–[5].

In a real factory environment, noises contain impulses on

a wide frequency range which may result in violent spec-

tral changes, and this increases the difficulty of diagnosis.

To address this problem, a bearing fault classification method

based on convolutional neural networks (CNNs) for heavy

noise environment is proposed in this paper.

Spectral kurtosis (SK) is a statistical indicator which can

reveal the non-Gaussian components and the corresponding
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FIGURE 1. Framework of the proposed method.

frequency location in a signal, which was first introduced

by Dwyer [6]. If a signal contains series of transients, its

SK will be distinctly different from the signal which obeys

a Gaussian distribution. Based on the theory above, Jerome

Antoni demonstrated the high potential of the SK to detect

and characterize non-stationary signals [7], and used the SK

as a tool for vibration monitoring and rotating machines fault

diagnosis [8]. Recently, SK has been used as feature for fault

detection [9], etc.

CNNs was put forward in the late twentieth century, and

shows a strong capacity in the field of image processing.

Several classical and efficient CNNs models have been pro-

posed, such as LeNet-5 [10] which is identified as the ini-

tial CNNs model, AlexNet [11] for images recognition, and

so on. Meanwhile, CNNs have been successfully applied

in the fields of medical image retrieval and video classi-

fication [12], [13], etc. Compared with traditional manu-

ally engineered features, CNNs can extract effective features

from input data automatically through multilevel convolu-

tion and pooling operation, which tends to be more effi-

cient than the features of artificial selection. On account

of the satisfactory performance of CNNs, the model was

introduced in the area of 1D signal, such as speech and

sound recognition, fault detection [14]–[17], etc. In recent

years, CNNs have been applied in the field of fault diagnosis.

In [18], 1D CNN is built for bearing fault diagnosis, and

in [19], authors present a method that transforms bearing

signals to explore feature images for CNN to classify bear-

ing data. To take advantage of the strength of CNNs in the

fields of 2D data classification, and in consideration of the

possible connection between signal frames, a feature map

arrangement method is presented to transform 1D feature

vectors to 2D feature matrixes for precisely expressing the

data and a CNN is built for fault classification. otherwise,

in some cases, training data are insufficient for training an

accurate fault classifier presented in this work, the proposed

feature map arrangement methods can address the problem

generally.

Normally, bearing fault results in non-Gaussian compo-

nents, while other parts obey Gaussian distribution [8], so the

SK curve can be seen as the amplitude-frequency response

of a filter which can remove Gaussian noises from the

raw signal. Meanwhile, the non-Gaussian parts in factory

noises have no effect with the result if the noise is quite

static. To provide a relatively stable input for the fault

classifier, Mel-frequency cepstral coefficients (MFCC), and

delta cepstrum are extracted as the feature due to the sat-

isfactory application in the fields of sound and vibration

signal processing. At last, a CNN is established as a fault

classifier.

In this work, in consideration of the connections between

signal frames and reducing the impact of erroneous frames,

a novel bearing fault classification method is presented which

transforms 1D bearing data to 2D feature matrix and builds a

CNNas the fault classifier.Meanwhile, based on the character

of outlier sensitively, in response to Gaussian noise effect,

a simple filtering method based on SK is presented in this

paper. The rest of this paper is organized as follows.

The framework of the proposed bearing fault classification

method and the main process are introduced in section II.

In section III, this paper briefly recall the definition of SK

and presenting the filtering method. A brief introduction of

MFCC and delta cepstral is described in section IV. In section

V, the feature arrangement method and the applied architec-

ture of CNNs in this paper are introduced. In section VI,

several experiments are presented to demonstrate the effec-

tiveness of the proposed method.

II. FRAMEWORK OF BEARING FAULT

CLASSIFICATION METHOD

The proposed method mainly includes 5 processes: framing

and windowing, filtering, feature extraction, feature arrange-

ment and classification. The frame work is shown in Fig. 1.

In the process of filtering, the SK of the raw data

should be calculated first. Then thresholding the SK curve

to ensure that the modified SK can be transformed to the

amplitude-frequency response of filters, and filtering the

input data. To represent the bearing fault signals, MFCC and

delta cepstrum are extracted as the two-input-channel fea-

tures. To maintain the continuity and comparability between

samples in the same class, a vector arrangement method

is proposed to transfer 1D feature vectors to 2D feature

matrixes. At last, on account of the satisfactory performance

in 2D signal processing, such as face, license plates detection,

and recognition [20], a CNN is established to give the label

of input samples. The detailed processes are described in the

following sections.

III. FILTERING BASED ON SPECTRAL KURTOSIS

A. SPECTRAL KURTOSIS

Kurtosis has been employed in the signal-processing com-

munity to solve ’blind’ problems, it is very sensitive to

non-Gaussian signals, the kurtosis of a signal x is:

k(x) =
E[(x − µ)4]

δ4
− 3 (1)
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where µ and δ are the mean and standard deviation of the

signal. The spectral version of kurtosis, SK, is the kurto-

sis computed at the output of a perfect filter-bank at each

frequency band [8], and it is commonly defined as the nor-

malized fourth-order cumulate of the Fourier transform [21].

In order to simplify calculating, Antoni [7] presented to

estimate the SK with the short-time Fourier transform

(STFT)-based estimator.

Let Y (n) be a sampled signal, then for a Nw wide analysis

window w(n) and a given temporal step P, the STFT of

process Y (n) over frequency index f is defined as:

Yw(iP, f ) =

+∞
∑

n=−∞

Y (n)w(n− iP)e−j2πnf (2)

Then, the definition of the 2mth order empirical spectral

moment of Yw(iP, f ) is:

Ŝ2mY (f ) =
〈

Yw(iP, f )2m
〉

i
(3)

where 〈· · · 〉i is the time-averaged operator over index i. At

last, the SK can be defined as:

K̂Y (f ) =
Ŝ4Y (f )

Ŝ22Y (f )
− 2 (4)

In the actual situation, the length of STFT analysis window

can be set as the length of frames if the signal is framed

previously, then the process of STFT can be regarded as dis-

crete Fourier transform (DFT). For instance, a mixed signal

x which can be represented as:

x(t) = e−5(t−0.4)sin(300 × 2π t)ε(t − 0.4)] + wgn(t)

+ 0.5[sin(100 × 2π t) + sin(200 × 2π t) (5)

where the 300Hz part is the non-Gaussian part, wgn is white

Gaussian noise and ε is step function. The SK curve of x is

shown in Fig. 2.

FIGURE 2. The SK curve of the signal x and the amplitude-frequency
curve of the filter.

From the SK curve, the non-Gaussian part is distinctly

different with other parts. Meanwhile, for vibration or sound

signal of bearings, most faults show the non-Gaussian char-

acteristics [8], so it is available to use SK to filter irrelevant

information.

B. FILTERING METHOD

To extract the non-Gaussian part of the mixed signal, the SK

curve can be used as the basis of filtering. The filtering

method based on SK includes:

1) Calculate the SK curve of the noised signal.

2) Thresholding the curve to 0 to 1, as it shows in Fig. 2,

consider the SK curve as the magnitude-frequency

curve of the filter.

K̂Y (f ) =











0 KY (f ) ≤ 0

KY (f ) 0 < KY (f ) ≤ 1

1 1 < KY (f )

(6)

3) Filtering the signal by the obtained filter.

For the step 2), the threshold level of the curve from

0 to 1 will prevent over-amplify non-Gaussian parts of the

signal in the process of filtering and the meaningless nega-

tive value in the magnitude-frequency curve. The filter will

keep all the non-Gaussian parts and restrain others accord-

ing to the magnitude-frequency curve shown in Fig. 2. The

temporal waveform and spectrum of the filtered version of

x(t) are shown in Fig. 3. The result proves that the filtering

method based on SK can extract non-Gaussian components

and reduce the effect of Gaussian parts.

FIGURE 3. The temporal waveform and spectrum of the filtered signal.

IV. MEL-FREQUENCY CEPSTRAL COEFFICIENTS FEATURE

A. MEL-FREQUENCY CEPSTRAL COEFFICIENTS

MFCCs is a commonly used technique in the applications of

sound and vibration signal for feature extraction, which could

reveal the time-variant features effectively [22], [23]. MFCCs

feature was first introduced to simulate the human perception

due to the utilized Mel scale and it reveals the short-term

power spectrum of the signal [24]. Moreover, the delta spec-

trum of MFCCs show the dynamic characteristics of signals

while MFCCs represent the static characteristics. In consid-

eration of the experimental data in this paper are sound and

vibration signal, MFCCs and the delta spectrum are extracted

as the feature.

B. FEATURE EXTRACTION

The process of extracting MFCC and delta cepstrum are:
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1) FRAMING, WINDOWING, AND DISCRETE

FOURIER TRANSFORMATION (DFT)

For processing conveniently, signal should be cut in frames

generally. But framing directly will caused frequency leakage

and lack of continuity. So overlapping framing and window-

ing are used. Normally Hanning window is used for framing

sound and vibration signal, and the overlap is 10% to 50%

window width. A Hanning window can be expressed as:

w(t) = 0.5 − 0.5cos[
2π (t + 1)

T + 1
], 0 ≤ t ≤ T − 1 (7)

where T is the length of the Hanning window, w(t) is the

tth point of the window. In addition, the filtering method

is based on the experimental data, so data are filtered after

framing and windowing.

After frames are got, do DFT to every frame to get the

frequency spectrum, the expression of DFT is:

X (n) =

T−1
∑

t=0

x(t)w(t)e−j
2πnt
T (8)

where x is a frame of sampled signal and X is the DFT. The

magnitude spectrumM of each frame is obtained by:

M (n) = |X (n)|, 0 ≤ n ≤ T − 1 (9)

2) MEL-FREQUENCY FILTERING

The main processes of Mel-filtering include mapping the

linear frequency magnitude spectrum to Mel-frequency, then

filtering by triangle filter bank. Triangle filter bank is a bank

of triangle band pass filters. The mapping relation of liner

frequency f and Mel-frequency mel is:

mel(f ) = 2595 log10 (1 +
f

700
) (10)

All the filters have the same bandwidth and the cut-off

frequency can be expressed as:

fc(j) = fu(j− 1) = fl(j+ 1) (11)

where fc, fu, and fl represent the center, upper cut off and

lower cut off frequency of the jth,(j− 1)th, and (j+ 1)th filter

in the filter bank, respectively. The filter bank B is given by:

B(j, n) =































0 fj(n) ≤ fc(j− 1)
fj(n) − fc(j− 1)

fc(j) − fc(j− 1)
0 < fj(n) ≤ fc(j)

fj(n) − fc(j)

fc(j) − fc(j+ 1)
fc(j) < fj(n) ≤ fc(j+ 1)

0 fc(j+ 1) < fj(n)

(12)

where B(j, n) is the nth value of jth filter in the filter bank and

fj(n) is the corresponding Mel-frequency.

The outputs of the filter bank constitute the vector of Mel

magnitude spectrumMS:

MS(j) =

T−1
∑

n=0

B(j, n)M (n) (13)

3) LOGARITHMIC TRANSFORMATION AND DISCRETE

COSINE TRANSFORMATION (DCT)

Logarithm MS to the base e to get the logarithmic

magnitude s:

s(j) = lnMS(j) (14)

At last, do DCT to s to get the MFCC feature vector C :

C(n) =

√

2

N

J
∑

j=1

s(j)cos(
πn(2j− 1)

2J
), n = 1, 2, . . . ,N

(15)

where J is the number of filters in the filter bank, N is the

dimension of MFCC feature vector.

4) DELTA CEPSTRUM OF MFCC

Delta cepstrum reflects the variations of MFCC, it shows the

dynamic characteristics. The delta cepstrum of aN dimension

MFCC feature is:

d(n) =























C(n+ 1) − C(n) n < K
∑K

k=1 k[C(n+ k) − C(n− k)]
√

2
∑K

k=1 k
2

others

C(n) − C(n− 1) n ≥ N − K

(16)

where d(n) is the nth value of the delta cepstrum, K is the

time difference, normally be 1 or 2.

Based on these steps, the MFCC feature C and the delta

cepstrum feature d can be extracted.

V. FEATURE ARRANGEMENT AND CNN ARCHITECTURE

In this paper, in consideration of the possible connection

between signal frames and the combination of multiple frame

feature can reduce the influence of outliers, feature vectors of

frames are arranged into 2D feature matrixes, feature vectors

of several contiguous frames constitute the representation

of the currant signal. CNNs have been applied in fields of

visions and image processing successfully, one major rea-

son is that CNNs can extract distinguishable features auto-

matically and classify accurately. On account of the strong

classification ability and mature application of CNNs in the

fields of 2D feature maps, CNNs can be considered as a

deeper feature extractor of the original cepstrum feature and

bearing fault classifier in this work. The keys to apply CNNs

to bearing fault classification are: The way of input 1D data

into network; Sufficient training samples; Network structure.

A. FEATURE ARRANGEMENT

This paper presents a novel feature arrangement method to

generate feature matrixes using 1D feature. It is worth noting

that the number of feature vectors may not enough for train-

ing a CNN, so data augmentation is required. The proposed

feature arrangement method fulfils the two tasks in the same

time.
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FIGURE 4. Feature vectors of normal, ball, inner race and outer race fault
with different dimensions.

To form a feature matrix, first the size of the matrix should

be chose properly. For an appropriate feature dimension,

the feature vector should accurately represent the bearing

fault types generally, and keep lower size to avoid compu-

tational burden. The feature vectors of normal, ball, inner

race and outer race fault with different dimensions are shown

in Fig. 4. It can be seen that the feature vectors getting clearer

alongwith the increase of feature dimensions. Feature vectors

of different fault types are similar before 20D, and there is

no obvious change when the dimension up to 35. Therefore,

28 is selected as the size of feature vector in this work.

Meanwhile, too many or less feature vectors will cause delay

or inaccuracy in the real case, and square matrix simplify

the calculation for the following steps. Take all into account,

the dimension of the feature matrix is 28 × 28, namely 28

feature vectors(1×28 dimensional) constitute a featurematrix

in this paper. After the size is confirmed, pick feature vectors

from the feature set randomly and arrange them into the

matrix by the order they were picked out. At last, repeat the

steps till the number of matrixes is sufficient.

For the general case, the method of feature arrangement

can be expressed as: to generate a feature matrix P composed

by M MFCC vectors (1 × N dimensional feature), and the

corresponding feature set F which has Z vectors, the basic

steps are:

1) Generate an array R consist of a random permutation

of the integers from 1 to Z

R = randperm(1 : Z ) (17)

2) Take the firstM elements of R as a subset S

S(n) = R(n), n = 1, 2, . . . ,M (18)

3) Take the S(n)th feature vector from the set F and

arrange it into nth row of the feature matrix P

P(n, :) = F[S(n)], n = 1, 2, . . . ,M (19)

4) Repeat 1)-3) until feature matrixes are sufficient for

training the network.

FIGURE 5. The generating process of feature representation matrixes.

Meanwhile, delta cepstrum vectors should be arranged as

the same order as the corresponding MFCC feature vectors.

The process is depicted as in Fig. 5. To improve the visual

effects, the feature vectors and matrixes were expressed by

color block from dark blue to bright red. Feature vectors are

normalized to 0 to 1 according to the Max-min normalization

rule before arrangement operation.

In summary, 28D MFCC feature of filtered data frames

are extracted firstly. Then after feature vector sets are built,

feature maps are generated by the proposed feature arrange-

ment method, every feature map contains of 28 different fea-

ture vectors which are selected by random sampling without

replacement. At last, the feature map set is established by

repeating the process of Feature arrangement.

B. NETWORK ARCHITECTURE

A fundamental architecture of CNNs is composed of an input

layer, hidden layers, which include convolutional and pooling

layers, and a fully connected output layer to fulfill the need

of classification. To evaluate these architectures of CNNs,

normal and 3 types of bearing fault data added with white

Gaussian noise at low SNR level, −10dB, are applied to

verify several architectures of CNNs, the classification result

is shown in Table.1. −10dB SNR level is applied in this
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TABLE 1. Classification result of various networks at −10dB SNR.

FIGURE 6. Architecture of LeNet-5 [10].

part as a representation of low SNR level condition. Under

the condition of higher SNR levels, satisfying fault diagno-

sis results can be got by applying the mentioned different

architectures, it is not a difficult task to classify fault data at

higher SNR levels. Meanwhile, too low SNR level condition

will lose the practical meaning of fault diagnosis. As a result,

−10dB SNR condition is applied for evaluating the different

architectures of CNNs in this part. In this part, 8000 training

sample, 100 batch size and 150 epochs are applied. In the

table, C1 and C2 represent the first and second convolutional

layer, P1 and P2 represent the first and second pooling layer.

The results of applying different numbers of output maps and

convolutional kernel size are included. Meanwhile, a repre-

sentative existing pre-trained CNN model LeNet-5 [10] is

included in the table. The information of convolutional and

pooling layers of LeNet-5 are listed in the table, the architec-

ture of LeNet-5 is shown in Fig. 6. On account of the size of

input maps, the kernel size of the second convolutional layers

of LeNet-5 is set to 4 × 4.

In the initialization phase, all the bias are initialized to

0 and the weights ω are set as:

ω = random(−1, 1)

√

6

Inputpoints+ Outputpoints
(20)

Sigmoid function is applied behind each convolutional

layer and in the error back propagation training phase, and

mean squared error (MSE) is used as the loss function. The

table shows that the network No.7 achieves the best result,

and it is more accurate than LeNet-5 in this case. Mean-

while, the presented architecture has fewer output maps in

C1 and C2 which means fewer parameters need to be trained.

According to the result, the convolutional neural network in

FIGURE 7. The network architecture of the proposed method.

this paper contains a input layer, two convolutional layers,

two pooling layers, and a fully connected output layer. The

network architecture is depicted in Fig. 7. To improve the

performance of feature expression, a two-channel-input layer

is applied, one for MFCC feature input and another for delta

cepstrum. The detailed comparison is shown in the experi-

ment section.

In [15], Piczak evaluates the potential of CNNs in clas-

sifying environmental sound and urban recordings. Unlike

the model [15] and LeNet-5, this paper uses less convolution

kernels due to bearing fault signals have relatively stable

frequency components in a short frame compare to environ-

mental sounds and pictures, which means less parameters

need to be trained in the training phase.

VI. EXPERIMENT

In this section, comparison experiments of bearing fault clas-

sification of the proposed method with several comparison

methods are provided. In experiments, the results of fault

classification with white Gaussian noise and real factory

noise are presented. Firstly, the experimental bearing data and

experimental conditions are introduced. Then, experiments

under real factory noise have been presented to verify the

effect of SK-based filtering and input features. In comparative

experiments, the results of the proposed method and methods

in [25]–[32] classifying bearing data with Gaussian white

noise at −10dB signal to noise ratio(SNR) are shown first,

then comparison with the method in [25] is given. At last,

summarized classification results of the proposed method

on bearing data with real factory noise are listed. All the

bearing data in this section come from Case Western Reserve

University (CWRU) bearing data center [33].

A. EXPERIMENTAL SETUP

The CWRU bearing dataset has been widely used for testing

fault diagnosis algorithm and new features, and became a

standard database [34], [35]. Specification of the experimen-

tal bearings in the database is shown in Table 2.

The dataset contains two kinds of fault bearings, drive end

bearing fault and fan end bearing fault. Data were collected

from the base plate (BA), the vertical direction on the housing

of the drive end (DE) and fan end bearing (FE) respectively,

with the motor load of 0hp (_0), 1hp (_1), 2hp (_2), and

3hp (_3). The bearing fault mode include no damage, damage
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TABLE 2. Specification of the experimental bearings.

on inner race (IR), outer race (OR), and ball (B) with fault

diameters of 0.007in (007), 0.014in (014), and 0.021in (021).

For outer race fault, the number after ’@’ means the fault

position in a clock.

FIGURE 8. The envelop spectrum of drive end fault data.

The envelop spectra of drive end fault data from the

equipment base and drive end with 3hp load (rotate speed:

1730rpm) are shown in Fig. 8. The fault character frequencies

of each fault type are marked by red circles in the figures.

The results show that the fault character frequencies of the

base and ball fault data are blur, and the fault type is difficult

to be identified by envelop spectrum. Without enough prior

knowledge, the envelop spectrum analysis is not reliable for

all the fault type in this case.

FIGURE 9. (a) The temporal waveform and spectrum of the factory noise.
(b) The SK curve of the factory noise. The temporal waveform and
spectrum of (c) BA-B021_3, (d) BA-IR021_3, (e) BA-OR021_3 with the
factory noise.

To verify the proposed approach, the test dataset used for

experiments in this section are the CWRU bearing dataset

added with a audible factory noise signal and white Gaussian

noise respectively. The factory noise was download from

Freesound.org [36], the noise contains continuous and inter-

mittent machine noise which can simulate the real case.

The temporal waveform and spectrum of the factory noise,

the bearing data, BA-B021_3,BA-IR021_3, BA-OR021_3,

with the factory noise, and the SK curve of the factory noise

are shown in Fig. 9. From the temporal waveform of the

factory noise Fig. 9(a), the shock can be identified clearly, and

the SK curve Fig. 9(b) shows that the noise includes several

main Gaussian and non-Gaussian components. Moreover,

the signal contains weak noises on the entire frequency band

as it shown in the spectral waveform. Therefore, the noise

signal is regarded as a representative factory noise to verify

the proposed method.

In filtering process, the window width (Nw) is the integral

power of 2 normally, so let the window be 256 points Hanning

window here. Let the points of STFT be 2×Nw, and the step

length of window is 0.75×Nw. For framing, to ensure every

frame contains the main SK information, let the frame length

be 6000 points, the step length of framingwindow is 0.1 times

of the width of the framing window. Let the dimension of a

MFCC feature vector be 28 and a feature matrix composed

by 28 feature vectors.
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FIGURE 10. Loss function of the proposed method.

In training process, sufficient samples should be provided

to train the network. In this work, 8000 feature maps were

produced for each class according to the length of the original

data. In the testing phase, to simulate the real detecting con-

dition, feature vectors should be arranged in time sequence.

And 10-fold cross validation is applied in the experiments.

The batch size is set to 100. The loss function of the training

phase in 10-fold cross validation, MSE, is shown in Fig. 10.

In the process of 10-fold cross validation, the proportion of

training and validation data samples used for training is 9 to 1

in each time validation. According to the result, 150 times

iteration is applied. Since the motor speeds are obviously

different under the condition of different motor load, data

collected from the same position under one kind ofmotor load

are used in each experiment.

The presented architecture of CNNs is shown in Fig. 7,

the Deep-learn Toolbox [37] was applied as the basis to build

the CNN in this paper. The first convolutional layer has two

convolution kernels, each size is 5 × 5. The second convo-

lutional layer has 3 convolution kernels with the same size.

Mean sampling is adopted in every pooling layer, the size of

the sampling kernel is 2 × 2.

B. RESULTS

1) SK-BASED FILTERING

This experiment tends to verify the effect of filtering based on

SK. The testing data are 0 motor load drive end bearing fault

BA data with the factory noise, a total of 13 classes fault data.

The outer race defect signals with different fault locations

may relate to different fault causes and equipment operating

conditions in the real case. As a result, the bearing outer race

defect signals are used as different types of bearing fault data

in this work. Meanwhile, in order to highlight the effect of

SK-based filtering and in consideration of delta cepstrum is

the derivative of MFCC, only MFCC was used in this part,

in other word, the CNN has a one-channel-input layer. The

SK curves of base plate data, BA-B021_3, BA-IR021_3, and

BA-OR021_3 with the factory noise are shown in Fig. 11.

The confusion matrixes of classifying the noised and fil-

tered data using one-channel-input CNN of each class are

FIGURE 11. SK curves of bearing data with the factory noise.

FIGURE 12. Confusion matrix of classifying noised signals.

shown in Fig. 12 and Fig. 13. The overall accuracy of classify-

ing noised and filtered data are 44.36% and 78.39%, respec-

tively. The result shows that the filtering method increases the

classification accuracy.

In the confusion matrixes, label 1 to 13 stand for

13 fault types: BA-B007_0, BA-B014_0, BA-B021_0, BA-

IR007_0, BA-IR014_0, BA-IR021_0, BA-OR007@12_0,

BA-OR007@3_0, BA-OR007@6_0, BA-OR014@6_0, BA-

OR021@12_0, BA-OR021@3_0, and BA-OR021@6_0.

2) COMPARE TWO WITH ONE-CHANNEL-INPUT

To compare with two-channel-input, the result of applying

delta cepstrum feature as the single input to one-channel-

input CNN is shown in Fig. 14. The overall accuracy is

28.5605%. The delta cepstrum represent the dynamic charac-

teristic of MFCC, without MFCC, delta cepstrum is not very
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FIGURE 13. Confusion matrix of classifying filtered signals.

FIGURE 14. Confusion matrix of delta cepstrum feature with
one-channel-input CNN.

effective for classification according to the result. In contrast,

MFCC feature and delta cepstrum feature are applied as the

inputs of a two-channel-input CNN, and the confusion matrix

of classifying each class are shown in Fig. 15, the overall

accuracy is 86.0906%. Compare to the result of applying

MFCC and delta cepstrum feature with one-channel-input

respectively, two-channel-input CNN increases the classi-

fication accuracy. And basically, most of the data can be

classified correctly. The fault type 0.007in, 0.021in ball

FIGURE 15. Confusion matrix of applying two-channel-input CNN.

fault and 0.014in outer race fault perform poorly by apply-

ing no-filtering one-input-channel CNN, and get accurate

results with the SK-filtering two-input-channel CNN. The

accuracy of 0.007in outer race fault at the 12 o’clock posi-

tion decreased compare to applying filtering one-channel-

input CNN, and it is higher than applying the no-filtering

approach. Since the two-channel-input CNN get better results

generally, the architecture of the proposed approach is applied

in the rest experiments.

3) COMPARISON OF THE PROPOSED METHOD

WITH PREVIOUS METHODS

In this part, white Gaussian noise was added in bearing data

to evaluate the classification ability of the proposed method

and several previous methods [25]–[32]. The experimental

data are the normal, B007, IR007, and OR007 data of 2hp

load drive end bearing fault DE data. In [25] and [32],

the previous methods have been tested all sidedly, and the

conclusion indicates that the worst case is with −10dB SNR.

Table 3 presents the comparison of the proposed method

with the previous methods at −10dB SNR, and the confusion

matrix of the proposed method is shown in Fig. 16. In the

confusion matrix, number 1 to 4 represent the normal, ball

fault, inner race fault, and outer race fault data respectively.

The result shows that the better fault classification ability of

the proposed method, SK-based CNN, at −10dB SNR level,

all the normal samples are classified accurately and few fault

samples are misclassified.

In addition, the strong white Gaussian noise changes the

SK curve of the bearing data greatly. For instance, the SK

curve, average error, and mean of the SK curve of DE-

IR007_2 with white Gaussian noise at several SNR levels are
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TABLE 3. Comparative performance of the proposed method with
previous methods at SNR=−10dB.

FIGURE 16. Confusion matrix of the proposed method at −10dB SNR.

FIGURE 17. The SK curve and the waveforms of the average error and
mean of SK of DE-IR007_2 with white Gaussian noise.

shown in Fig. 17. The SK curve of the raw signal and at 10dB

level are similar, but changing obviously when the SNR level

is lower than 0dB, which indicates that the effectiveness of

the proposed approach will decline along with the reduction

of SNR.

4) COMPARISON OF THE PROPOSED METHOD

WITH VSI-BASED ANN

In [25], Muhammad Amar presents a novel vibration spec-

trum imaging (VSI) feature enhancement procedure for

low SNR conditions, and used an artificial neural net-

work (ANN) as a fault classifier (VSI-based ANN). In the

paper, VSI-based ANN method was used to classify the

CWRU bearing data that added with white Gaussian noise in

various low SNRs. Comparing to other methods mentioned

in [25], VSI-based ANN method got better performance in

classifying Gaussian white noised bearing data. In this part,

comparison of SK-based CNN with VSI-based ANN are

shown.

FIGURE 18. The input maps correspond to SNR levels of the CNN.

FIGURE 19. The feature maps of −10dB noised data extracted by the CNN.

In the experiment, the bearing data of four classes were

added with 0dB to−15dB SNRwhite Gaussian noise respec-

tively. The corresponding input maps of different SNR levels

are shown in Fig. 18. And the feature maps of −10dB noised

data extracted by the CNN before the last layer are shown

in Fig. 19. The comparison of VSI-based ANN [25] and the

proposed approach on low SNR levels are shown in Fig. 20.
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FIGURE 20. The classification accuracy of VSI-based ANN and SK-based
CNN.

In Fig. 18 and Fig. 19, C1 to C4 represent the 2hp load

drive end bearing DE data of normal, ball fault, inner race

fault, and out race fault of 0.007in, F1 to F3 represent the three

outputs in the last convolutional layer of the CNN, which can

be regarded as the feature extracted by the CNN. As it shown

in Fig. 18, there is a huge difference between input maps

of same fault type at different SNR level, but several main

frequency bands (columns) have been retained, especially

for the delta cepstrum feature maps. Meanwhile, input maps

of different classes at one SNR level are distinguishable.

In Fig. 19, the differences between fault types are even greater

among the feature maps extracted by CNN.

According to the results shown in Fig. 20, the VSI-based

ANN gets high classification accuracy from 0dB to −6dB,

and declined gradually from −6dB to −15dB. The classifi-

cation ability of the proposed method is weaker than VSI at

−4dB to −6dB, but gets better results at lower SNR levels,

from −8dB to −15dB, and the downward trend is more

slower. The result verifying the Gaussian noise resisting and

classifying ability of the proposed method.

5) THE DRIVE AND FAN END BEARING

FAULT CLASSIFICATION

In this part, the drive end and fan end bearing fault data

with real factory noise are classified by the proposed method,

respectively. By contrast, the classification results of one-

channel-input CNN without filtering are presented. The clas-

sification results are shown in Table 4-Table 7. Table 4 and

Table 5 show the results of drive end bearing fault classifi-

cation, the results of fan end bearing fault classification are

shown in Table 6 and Table 7.

TABLE 4. Classification accuracy (%) of no filtering/one-channel-input
(drive end fault).

TABLE 5. Classification accuracy (%) of SK-based
filtering/two-channel-input (drive end fault).

TABLE 6. Classification accuracy (%) of no filtering /one-channel-input
(fan end fault).

TABLE 7. Classification accuracy (%) of SK-based
filtering/two-channel-input (fan end fault).

From the experimental results, the proposed method is

more effective than the contrast method. Meanwhile, most

of the results of classifying FE data are better than others,

whichmatches the conclusion in paper [2] that the FE data are

easier to be diagnosed than other data. Similarly, the results

of classifying BA data perform poorly than other locations.

Based on the results above, whether under the influence

of Gaussian white noise or real factory noise, the proposed

method can classify bearing fault data effectively.

VII. CONCLUSION

This paper proposed a novel and effective bearing fault clas-

sification method by combining SK-based filtering method

and convolutional neural network. In the experiments, data

with real factory noise and white Gaussian noise at low SNR

levels have been taking into account. From the experiment

results delivered above, whether under the influence of low

SNR white Gaussian noise or real factory noise, the pro-

posedmethod can get high classification accuracies. Based on

the accurate classification results, the proposed method can

improve the quality of monitoring rolling element bearings

in noise environment. Based on the findings in this work,

the future direction of the research work includes multi-faults

diagnosis and bearing fault anomaly detection in strong noise

environment, etc.
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