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Bearing faults are the biggest single source ofmotor failures. Arti
cial Neural Networks (ANNs) and other decision support systems
arewidely used for early detection of bearing faults.	e typical decision support systems require feature extraction and classi
cation
as two distinct phases. Extracting 
xed features each timemay require a signi
cant computational cost preventing their use in real-
time applications. Furthermore, the selected features for the classi
cation phase may not represent the most optimal choice. In this
paper, the use of 1D Convolutional Neural Networks (CNNs) is proposed for a fast and accurate bearing fault detection system.
	e feature extraction and classi
cation phases of the bearing fault detection are combined into a single learning body with the
implementation of 1D CNN. 	e raw vibration data (signal) is fed into the proposed system as input eliminating the need for
running a separate feature extraction algorithm each time vibration data is analyzed for classi
cation. Implementation of 1D CNNs
results in more e�cient systems in terms of computational complexity.	e classi
cation performance of the proposed system with
real bearing data demonstrates that the reduced computational complexity is achieved without a compromise in fault detection
accuracy.

1. Introduction

Electric machines are used widely in many commercial
and industrial applications. 	e total number of operating
machines in the world increased by about 50% in the last

ve years reaching a number around 16.1 billion in 2011 [1].
Rolling element bearings are one of the most widely used
elements in machines and their failure is the single biggest
cause for machine breakdowns [2]. 	erefore, there is a great
amount of research e�ort directed towards monitoring of
bearing health. Motor vibration analysis and motor current
signature analysis (MCSA) are two commonly used noninva-
sive methods in bearing condition monitoring [3].

Bearing fault detection systems usually employ ANNs
or other classi
ers to provide better detection rates. Such
intelligent systems typically consist of three main parts: data
acquisition, feature extraction and selection, and data classi
-
cation. Time-domain [4], frequency-domain [5–8], enhanced
frequency [9–12], and time-scale analysis [13–16] are four
main areas where signal processing techniques are used in

the feature extraction [17]. 	e extracted features are used to
both train and operate Arti
cial Neural Networks (ANNs)
or other decision support systems (DSS) [18–31]. Extracting

xed features each time data is analyzed by DSS may require
signi
cant amount of computational e�ort. Furthermore, the
selection of suboptimal features may result in performance
degradation for DSS.

	e feature extraction and feature-based classi
cation
are the two unique and distinct phases of decision support
systems. 	e proposed method does not require any form of
transformation, feature extraction, and postprocessing. 	e
feature extraction and feature-based classi
cation phases of
the bearing fault detection could be combined into a single
learning body with 1D CNNs [32, 33]. It can directly work
over the raw data, that is, the motor current signal, to detect
the anomalies. Here, the time-domain vibration data is fed
directly into the 1DCNNwhich is previously trainedwith test
data using back-propagation (BP). 	e only preprocessing
involved in the process is resampling to get raw data in
the desired input format for the CNN. 	e overview of
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Figure 1: Proposed 1D Convolutional Neural Network with o�ine training and fault detection phases.

the proposed 1D Convolutional Neural Network with o�ine
training and fault detection phases is illustrated in Figure 1.

A brief introduction on bearing faults is provided in
the next section. Adaptive 1D CNN structure is introduced
in Section 3. 	e bearing vibration dataset and the prepro-
cessing of the raw data are then covered in Section 4. 	e
results from analysis of bearing vibration data analyzed by the
proposed 1D CNN for bearing fault detection are discussed
using the standard performance metrics in Section 5. Finally,
the conclusion and the future direction of the research are
presented in Section 6.

2. Bearing Faults

Both mechanical and electrical faults may cause induction
motor failures. Bearing faults, mechanical, are the single
biggest cause of allmotor failures.	ey account for 65–70%of
all motor failures. Bearing replacement is the least expensive
fault type to 
x, but it is the most di�cult to detect at early
stages. 	erefore, there is considerable amount of research
directed in this area.

Bearing faults are categorized into two types as
generalized-roughness faults and single-point faults. 	e
generalized-roughness type is a distributed and noncyclic
fault caused by improper lubrication, erosion, or pollution.
	ere is no identi
able characteristic frequency associated
with this fault type. 	e single-point type is a localized fault
generally caused by a small hole, a pit, or a missing material.
	e single-point fault creates periodic impact generating
vibration at speci
c frequencies when the bearing is run at a
constant speed. 	e magnitudes of vibration signals increase
as defects initiate and get more deteriorated. 	erefore, this
study focuses on single-point bearing faults.

Bearing fault characteristic frequencies could be grouped
into four di�erent zones: sha� speed zone, bearing defect

frequency zone, bearing natural resonances zone, and high
frequency zone [34]. 	e 
rst zone contains harmonics of
rotor speed related vibration frequencies. 	e healthy bear-
ingswill have some energy associatedwith sha�phenomenon
such as unbalance or misalignment. 	e initial stage of a
bearing fault is indicated by energy in both zones I and IV
where the ladder zone contains high frequency components
over 20 kHz. In the second stage of the fault, zone III with
bearing natural frequencies will have some energy with
increased energy levels in zone IV.	e third stage is identi
ed
with bearing defect related frequencies becoming apparent in
zone II and increased energy levels in other three zones. In
the 
nal stage, the bearing defect frequencies become more
pronounced and their harmonics. 	e frequency content for
all four stages of the bearing failure is depicted in Figure 2.
BSF, BPFO, and BPFI stand for ball spin frequency, ball pass
frequency outer ring, and ball pass frequency inner ring,
respectively, in the 
gure.

	is paper focuses on the detection of bearing fault
frequencies in zone II for the 
nal two stages of a bearing
fault. Bearing fault frequencies are determined from bearing
geometry and sha� speed. 	e geometry of a typical ball
bearing is depicted in Figure 3.

	e characteristic vibration frequencies are calculated by
the following equations [35]:

Outer race fault frequency, �OD, is given by

�OD = �
2�rm (1 − BD

PD
cos�) , (1)

where the number of balls is �, the rotor speed in revolutions
per second is �rm, and the contact angle (zero for ball
bearings) is �.

Inner race fault frequency, �ID, is expressed as

�ID = �
2�rm (1 + BD

PD
cos�) . (2)
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Figure 3: Ball bearing geometry.

Cage fault frequency, �CD, is given by

�CD = 1
2�rm (1 − BD

PD
cos�) . (3)

Ball fault frequency, �BD, is given by

�BD = PD

2BD�rm (1 − (BD
PD

)2 cos2�) . (4)

3. Adaptive 1D CNNs

	e feature extraction and fault detection (also learning)
phases of the raw bearing vibration signals are fused together
with an adaptive 1D CNN con
guration in this study. Any
input layer dimension can be handled with the adaptive CNN
topology. Furthermore, the hidden neurons of the convo-
lution layers in the proposed compact CNN can perform
both convolution and subsampling operations as illustrated
in Figure 4. 	e 1D CNNs are composed of an input layer,
hidden CNN and MLP layers, and an output layer. 	e

convolution and the subsampling are fused together in the
CNN layer whichmakes the distinction.	e remaining layers
are MLP layers.

	e main di�erence between the proposed 1D CNNs and
the traditional 2D CNNs is the use of 1D arrays instead of
2D arrays for both feature maps and kernels. Consequently,
1D convolution (conv1D) and reverse replace 2D convolution
(conv2D) and lateral rotation (rot180). 	e parameters for
kernel size (
) and subsampling (ss) are now scalars in the
case of 1D CNNs. On the other hand, the MLP layers are
identical in both cases and both use the same traditional BP
formulation algorithm.

	e 1D forward propagation (FP) from convolution layer
� − 1 to the input of a neuron in layer � is expressed as

��� = 
�� +
��−1∑
�=1

conv1D (��−1�� , ��−1� ) , (5)

where the scalar bias of the �th neuron 
��, the output of the�th neuron at layer � − 1 ��−1� , and the kernel from the the �th
neuron at layer � − 1 to the �th neuron at layer � ��−1�� are used

to determine the input ��� at layer �.
	e intermediate output of the neuron, ���, is a function

of the input, ���, and the output of the neuron ��� at layer � is a
subsampled version of ��� as

��� = � (���) ,
��� = ��� ↓ ss.

(6)

	e adaptive CNN con
guration in Figure 4 requires the
automatic assignment of the subsampling factor, ss, to 8 in
the last CNN layer (the output CNN layer) since the array
size is 8 at CNN layer � + 1. 	e adaptive CNN design allows
the processing of di�erent raw data lengths with usage of any
number of CNN layers with di�erent subsampling factors.

Looking at the back-propagation (BP) steps, the BP of the
error starts from the output MLP layer. 	e mean-squared



4 Mathematical Problems in Engineering

+

+

+

+

SS(2)

US(2)

kth neuronsl−11

sl−1i

sl−1N−1

wl−1
1k

wl−1
ik

wl−1
N−1k

blk

f(xl
k)

xl
k

yl
k

Δl
k

f

f
slk

Δl
sk

wl
k1

wl
kj

wl
kN+1

... ...

...

...

...

...

Layer (l − 1) Layer l Layer (l + 1)

bl+11

bl+1j

bl+1N+1

xl+1
1

xl+1
j

xl+1
N+1

1 × 8

1 × 8

1 × 8

1 × 10

1 × 10

1 × 20

1 × 20

1 × 22

· · ·

· · ·

· · ·

· · · · · ·

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

Figure 4: 	e convolution layers of the proposed adaptive 1D CNN con
guration.

error (MSE)�� in the output layer for the input� is expressed
as

�� = MSE [��� , (��1 , . . . , ����)] =
��∑
�=1

(��� − ��� )2 , (7)

where � = 1 is the input layer, � = � is the input and output
layers, �� is the number of classes in the database, � is the

input vector, and ��� and (��1 , . . . , ����) are its corresponding
target and output vectors, respectively.

	eobjective of the BP is tominimize the contributions of
network parameters to this error. 	e derivatives of the MSE

with respect to an individual weight,��−1�� , and bias, 
��, of the
neuron � are computed to minimize their contributions to
MSE.Here, the gradient descentmethod is used in an iterative
manner. Speci
cally, the bias of �th neuron and all weights of
the neurons in the previous layer are updated using Δ��, the
delta of layer �.

��
���−1��

= Δ����−1� ,
��
�
��

= Δ��.
(8)

	e regular (scalar) BP is simply performed from the 
rst
MLP layer to the last CNN layer as

��
����

= Δ��� =
��+1∑
�=1

��
���+1�

���+1�
����

=
��+1∑
�=1

Δ�+1� ����. (9)

Once the 
rst BP is performed from the layer �+1 to the layer
�, then we can further back-propagate it to the input delta,Δ��.

Writing zero-order upsampled map as  ��� =  �(���), then Δ��
is written as

Δ�� = ��
����

����
����

= ��
� ���

� ���
����

�� (���)

=  � (Δ���) !�� (���) ,
(10)

where ! = (ss)−1 since each element of ��� was obtained by
averaging ss number of elements of the intermediate output,

���. 	e inter BP of the delta error (Δ��� ∑←# Δ�+1
 ) is expressed
as

Δ��� =
��+1∑
�=1

conv1D$ (Δ�+1
 , rev (����)) , (11)

where rev(⋅) is used for reversing the array and conv1Dz(⋅,⋅)
is used for performing full convolution in 1D with
− 1 zero
padding.

Here, the weight and bias sensitivities are expressed as

��
�����

= conv1D (���, Δ�+1� ) ,
��
�
��

= ∑
�
Δ�� (�) .

(12)

As a result, BP algorithm given in [33] is used iteratively with
the learning factor, &, for scaling weight and bias.

��−1�� (� + 1) = ��−1�� (�) − & ��
���−1��

,


�� (� + 1) = 
�� (�) − & ���
��
.

(13)
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4. Bearing Fault Data Preparation

In this section, the vibration data from NASA Prog-
nostic Data Repository is used. 	e data was generated
by the Center for Intelligent Maintenance Systems (IMS
http://www.imscenter.net) of NSF with the support of
Rexnord Corp. in Milwaukee, WI [36]. 	e test setup con-
sisting of four double row bearings on one sha� is depicted in
Figure 5 [37].

	e sha� is driven by a belt coupled to a motor at
constant speed of 2000RPM throughout the data collection
process. 	e debris collected by magnetic plug is used to
indicate the degradation in bearing health. Data is collected
until the accumulated debris which adhered to the magnetic
plug exceeds a 
xed-threshold level. 	e vibration data is
collected at 20 kHz for a second from accelerometers installed
on each bearing housing once every twenty minutes for
thirty-
ve days. 	e data has 20,480 points at each recording
with sampling rate of 20 kHz. 	e proposed bearing fault
detection algorithm is applied to the data collected from
accelerometer mounted on bearing 4 which develops an
outer race defect. Rexnord ZA-2115 double row bearings
with 16 rollers in each row are used in the test rig shown
in Figure 5. Rexnord ZA-2115 double row bearings have a
pitch diameter of 2.815 in., roller diameter of 0.331 in., and a
tapered contact angle of 15.17∘.	en, (1) would yield the outer
race fundamental vibration frequency of 236Hz at rotational
speed of 2000RPM.

	e raw input vibration signal is decimated by 8 to
allow the system implementation with less complex CNN
con
guration. 	e original data was collected at 20 kHz; as
a result, the frequencies up to 10 kHz can be detected from
the raw data. 	e fundamental bearing fault frequency is at
236Hz for the dataset used in the analysis and the 
rst 
ve
integer multiples of this fault frequency (0–1180Hz) would
be enough for the fault detection. Decimating the original
data by 8 would result in the bandwidth of 1250Hz. 	e
decimated signal is low-pass 
ltered to avoid aliasing and

then normalized properly before inputting to the 1D CNN
classi
er. 	e use of lower complexity CNN con
gurations
helps with both training and detection speeds. Finally, the
e�ects of dc o�set and the biases are removed by normalizing
input data to have zero mean before feeding to the CNN
classi
er. 	e spectrum of vibration signal for a healthy
bearing before and a�er preprocessing is depicted in Figure 6.

	e spectrum of vibration signal for a faulty bearing
before and a�er preprocessing is depicted in Figure 7.

5. Experimental Results

In this section, the experimental results for the proposed
bearing condition monitoring approach are presented. First,
the details of the CNN structure are provided including the
format required for input vibration data. 	en, commonly
used metrics in the literature such as classi
cation accuracy
(Acc), sensitivity (Sen), speci
city (Spe), and positive pre-
dictivity (Ppr) are used to evaluate the performance of the
proposed system.

5.1. Experimental Setup. 	e 1D CNN for the proposed
bearing fault detection system has a simple con
guration
with only three hidden convolution layers and 2MLP layers.
	ree hidden convolution layers have 60, 40, and 40 neurons,
respectively, whereas the hidden MLP layer has 20 neurons.
	e input to the 1D CNN is 240 (time-domain) samples
of the bearing vibration data and the output is MLP layer
with size of 2 indicating faulty or healthy classes. 	e results
show that deep and complex CNN con
gurations are not
necessary for achieving high detection rates. 	e proposed
structure provides computational e�ciency for both training
and detection stages of the design.

5.2. Detection Performance Evaluation. 	e hit/miss coun-
ters such as true positive (TP), false negative (FN), true
negative (TN), and false positive (FP) are used commonly
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Figure 6: Vibration signal spectrum of a healthy bearing with preprocessing.

Table 1: Confusion matrix of the bearing fault detection problem
for the 5 test runs.

Classi
cation result

H F

Ground truth
H 472 (TN) 1 (FN)

F 28 (FP) 499 (TP)

in expressing standard performance metrics such as accu-
racy, sensitivity, speci�city, and positive predictivity. 	e real
bearing vibration data samples for a total of 260 runs
are used in both healthy (H) and faulty (F) cases. NASA
Prognostic Data Repository dataset is used for testing. A
C++ program developed in MS Visual Studio 2013 is used
to implement the proposed adaptive 1D CNN classi
er. 	e
code utilizes 10-fold cross-validation technique to prevent
over
tting and improve generalization in training the 1D
CNNs. 	e confusion matrix obtained from all (5) test runs
of the proposed system is presented in Table 1.

Accuracy is de
ned as the ratio of the number of correctly
classi
ed patterns to the total number of classi
ed patterns,
Acc = (TP + TN)/(TP + TN + FP + FN). Sensitivity is
the ratio of correctly classi
ed fault events to all fault events
in testing, Sen = TP/(TP + FN). Speci�city is the ratio

Table 2: Bearing fault detection performance of the proposed
method.

Method
Fault detection

Acc Sen Spe Ppr

Proposed 1D CNN 97.1 99.8 94.4 94.7

FFT-MLP 95.0 100 90.0 90.9

FFT-RBFN 96.0 100 92.0 92.6

FFT-SVM 94.5 99.0 90.0 90.8

of correctly classi
ed events to all healthy events in testing,
Spe = TN/(TN + FP). Finally, positive predictivity (precision)
is the ratio of correctly classi
ed fault events to all classi
ed
fault events, Ppr = TP/(TP + FP). 	e performance metrics
are then easily calculated using confusion matrix of Table 1.
	e performance of the proposed system is compared with
three commonly used classi
ers in the literature: Multilayer
Perceptron (MLP), Radial Basis Function Networks (RBFN),
and Support Vector Machines (SVM).

All four metrics for the comparison with existing work
with similar complexity is provided are provided in Table 2.
	e results demonstrate that the proposed system has a quite
satisfactory performance and that deep and complex CNN
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con
gurations are not necessary for improving detection
performance.

6. Conclusions

Typical decision support systems require feature extrac-
tion and classi
cation as two distinct phases. 	e feature
extraction phase of such systems involves implementation
of signal processing techniques for preprocessing of data
in both training and real-time fault classi
cation parts. 	e
need to extract features from raw data for fault classi
-
cation phase places additional computational burden on
such systems when commonly used algorithms such as fast
Fourier and wavelet decomposition are implemented. In
this paper, an adaptive implementation of 1D Convolutional
Neural Networks (CNNs) is proposed for bearing health
monitoring.	e proposed system fuses the feature extraction
and classi
cation blocks of a commonly employed fault
detection approach into a single learning body. Here, the
convolutional layers of proposed 1D CNN learns to extract
optimized features from raw data with BP training as the
classi
cation is performed by MLP layers. Since the raw
bearing vibration data is directly fed into the proposed
system, the computational burden due to feature extraction

is eliminated in fault detection phase. 	e proposed system
is tested with real bearing vibration data. 	e fault detec-
tion accuracy of over 97% was achieved in experimental
results. 	e performance comparison of the proposed sys-
tem with three commonly used classi
ers in the literature
(MLP, RBFN, and SVM) with similar complexity indicates
that the proposed system has no compromise on detection
accuracy.

	e future direction of the research would be twofold:
hardware implementation of the algorithm and classifying
stages of the fault. FPGA or ASIC implementations of the
proposed systemwould also be cost e�ective since only scalar
multiplications and additions are required for 1D CNNs with
1D convolutions [38]. 	erefore, hardware implementation
of the proposed algorithm would be useful. Second, the
test bearings were run to failure providing data at di�er-
ent fault stages. 	e proposed algorithm can be modi
ed
to classify the stages of the fault as initial and advanced
stages.
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