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ABSTRACT

This paper focuses on the development of a bearing
fault detection model for induction motors using line
currents. The graphical and numerical analysis of the
model is conducted using Park’s vector approach and
envelope signals based on the Hilbert transform. The
proposed model is evaluated on currents measured
using eight different types of induction motors. The
graphical results from the Concordia pattern between
d and q-components of stator currents show that
healthy bearing behavior is circular compared to
that of the elliptical faulty bearing. The numerical
results demonstrate that the minimum and maximum
envelopes for the d and q-components of the stator
currents are significant at more than one. The sum of
kurtosis for the envelope signal of d and q-components
in the stator currents is more significant at less than
5.0.
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1. INTRODUCTION

Induction motors are mainly used in residential
and industrial applications such as transportation,
mining, chemicals, power plants, and paper for
electrical to mechanical energy conversion [1] due
to their high reliability, robustness, and cost-
effectiveness. However, the main issue with the
operation of induction motors is that such harsh
industrial application has affected their reliability,
causing unexpected breakdowns, resulting in high
maintenance costs and motor deterioration [2, 3].
Scheduled maintenance and replacement are the
primary methods for improving the reliability of
these motors. During scheduled maintenance, the
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Fig. 1: Survey analysis from electric power research
institute [10].

motor is examined regularly, while parts of the
motor are replaced periodically during scheduled
replacement. Planned replacement is simple but
very expensive compared to planned maintenance [4].
Condition-based monitoring determines the condition
of the induction motor based on the data collected
using external sensors. This method involves con-
tinuous monitoring of the induction motor together
with periodical motor maintenance [5]. Generally,
condition-based monitoring is performed through
visual inspection or a fault diagnosis system which
monitors the vibrations, over-currents, and high
temperatures of the motor to detect faults. The
two types of condition-based monitoring techniques
are online and offline tests [6]. The online tests
are performed without isolating the motor from the
power supply, while the offline test is performed by
isolating the motor from the power supply [7].

Induction motors are often exposed to harsh
environments such as overloading, unsafe operation,
insufficient cooling, and lack of lubrication. The
main factors affecting the failure of induction motors
in these extreme environments are unstable power
supply, thermal overload, high-speed oscillation,
short-circuiting in the stator winding, broken rotor
bars, and gear and ball bearing failure [8, 9]. As
shown in Fig. 1, 41% of induction motor failures are
due to a fault in the bearing, 37% stator faults, 10%
rotor, and 12% other faults [10]. Thus, the overall
defects in motors can be classified as follows:
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• Electrical defects
– Stator winding faults
– Rotor faults

• Mechanical defects
– Bearing faults
– Dynamic, static,t and mixed eccentricities
– Gear faults

The continuous replacement and preventive main-
tenance of bearings are essential factors in the smooth
operation of induction motors [11, 12]. The bearings
in the motor are connected to the rotor, which is
used to minimize friction between the shafts and
stationary parts. Bearing faults are mainly due to
lubricant-related failures, which can be avoided by
early prediction and preventive maintenance [13].
The ball bearing structure shown in Fig. 2 consists
of several balls placed in between the inner and outer
races. A cage is used to maintain a uniform distance
between the balls. During regular operation, several
stresses are likely to develop in the induction motor,
causing fatigue in the inner and outer races. This
leads to localized defects, causing holes, dents, and
pitting in the outer race, and the distributed defects
create surface roughness in the inner race of the
bearings.

Over the years, researchers have proposed several
invasive, and non-invasive techniques [4] as follows
[14, 15]:

• Invasive analysis [16]
– Acoustic emission analysis
– Thermal analysis
– Sound analysis
– Chemical analysis
– Vibration analysis

• Non-invasive analysis
– Motor current pattern analysis
– Wavelet analysis
– Park’s vector analysis
– Power analysis

Invasive techniques are difficult to implement and

very expensive compared to non-invasive. This is
because various sensors need to be installed to mea-
sure acoustic, thermal, sound, and vibration signals
[16]. Thus, it is not easy to install sensors and high
installation and maintenance costs are involved. On
the other hand, among the non-invasive techniques,
the power analysis and Park vector approaches
are more suitable for bearing fault detection and
diagnosis [4, 15, 17].

Several researchers have used power analysis for
the detection of rotor bars and eccentricity faults.
However, it has been concluded that such investiga-
tion is not practical during no-load operation of the
induction motor [18]. Park’s vector analysis has been
mainly used to detect localized faults in the bearings,
rotor, and stator. In this analysis, the three-phase
AC currents ia, ib, and ic are transformed to d and
q-components with currents of id and iq to eliminate
the time-varying effects of inductance [17, 19]. Under
ideal conditions, the pattern between id and iq will be
circular. However, in the case of faults or damaged
bearings, the pattern is no longer circular and forms
various patterns. Thus, based on a different pattern,
the type of fault inside the induction motor can
be analyzed. The thickness of the pattern also
provides information on the harmonics induced due
to localized defects in the bearings of the induction
motor.

The reseachers in [20] and [21] used Park’s vector
analysis to detect stator faults in induction motors
under varying loads. The authors of [22] used Park’s
vector analysis to detect the faults in the outer race
of the bearing. Furthermore, they also proposed
an analysis method for measuring the thickness of
the pattern. Similarly, the detection of dynamic,
static, and mixed eccentricity faults has also been
achieved using Park’s vector analysis in [23], [24],
and [25]. Furthermore, stator inter-turn faults
for surface-mounted permanent magnet synchronous
motors have also been detected using Park’s vector
analysis [19]. On the other hand, for the classification
of various faults, a neural network-based approach
has been proposed in [26].

In the overall comparison, both Park’s vector
and power analysis techniques are revealed to be
inexpensive. The Park’s vector approach can detect
bearing faults, while power analysis can detect
faults in rotor bars and eccentricity. However,
further investigation is needed to determine a suitable
analysis method for bearing-distributed faults. In
power analysis, fault detection is affected by external
noise, and the capability to analyze mechanical faults
requires verification.

With this motivation, a graphical analysis for
bearing fault detection in induction motors using
line currents based on Park’s vector approach and
the Concordia pattern is proposed in this paper.
Furthermore, numerical analysis for envelope signals
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Fig. 3: Flowchart of proposed methodology.

using Hilbert’s transform is proposed for bearing fault
detection.

The paper’s remaining sections are organized as
follows: Section 2 presents the proposed methodol-
ogy. The results and a discussion on the methodology
are presented in Section 3, while Section 4 concludes
the paper.

2. PROPOSED METHODOLOGY

A flowchart of the proposed methodology is
presented in Fig. 3, consisting of four stages: data
collection, processing, modeling, and analysis, all of
which are elaborated in the following subsections.

2.1 Data Collection and Processing

The line currents ia, ib, and ic from the three-
phase induction motor are collected using the Fluke
Norma 6000 series portable power analyzer shown
in Fig. 4. The measurements are performed using
Fluke 80i-2010s AC/DC clamp with 2000 A range.
The collected data by the meter is exported to the
PC using Fluke power analyzer software for data
processing.

For consistent analysis of the different motor

Fig. 4: Experimental setup for data collection.
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Fig. 5: Concordia pattern between isd and isq for a
healthy motor.

ranges, the line currents ia, ib, and ic are normalized
to the range of [−1, 1] using min-max scaling, defined
as follows [27]:

Y =
2(X − Xmin)

Xmax − Xmin

− 1 (1)

where Xmin and Xmax are the minimum and maxi-
mum value of X, respectively.

2.2 Data Modeling and Analysis

The d and q-components of the stator currents are
obtained from the normalized ia, ib, and ic using
Park’s vector transform [17],

isd =

√

2

3
ia −

√

1

6
ib −

√

1

6
ic (2)

isq =

√

1

2
ib −

√

1

2
ic (3)

where ia, ib, and ic are three-phase AC currents, isd

and isq are d and q-component currents.
From Eqs. (2) and (3), for a healthy motor bearing,

the Concordia pattern between isd and isq is a
uniform circle, with the center of origin as indicated
in Fig. 5. In the case of a faulty or damaged
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Fig. 6: Envelope calculation process.

bearing, the pattern is no longer circular and becomes
elliptical. Furthermore, it should be noted that in
ideal conditions, only fundamental harmonics exist
in the motor. In non-ideal conditions, the motor
contains odd harmonics, induced due to symmetry
in the motor structure and power supply.

Thus, under ideal conditions, the d and q-
components are simplified as,

isd =

√
6

2
Im sin(ωt) (4)

isq =

√
6

2
Im sin

(

ωt − π

2

)

(5)

where Im is the maximum value of the supply phase
current, ω is the angular frequency, and t is the time.

To further analyze the condition of the bearing, the
upper envelope signals of isd and isq are calculated
using Hilbert’s transform. For a given modulated
signal g(t) and its Fourier transform S(f), the Hilbert
transform is given as follows [28]:

g̃(t) = H[g(t)]

= p
1

π

∫

∞

−∞

g(τ)

t − τ
dτ

(6)

where p is the Cauchy principal value. The analytic
signal N (g(t)) is given as,

N (g(t)) = g(t) + jg̃(t) (7)

From Eq. (7), the envelope of modulated signal
g(t) can be obtained as,

|N (g(t))| =
√

g2(t) + g̃2(t) (8)

From Eq. (8), the upper and lower envelopes of
the original signal can be obtained in two stages,
as shown in Fig. 6. Firstly, the local minima
and maxima is obtained for the lower and upper
envelopes, respectively. The signal between the local

Table 1: Motor Specifications.

Motor ID Power (kW) Speed (rpm)

EM1 #100 75 3000

EM1 #200 30 3000

EM1 #300 30 1000

EM1 #400 30 1000

EM1 #500 30 1000

EM1 #600 25 1000

EM1 #700 25 1000

EM1 #800 15 1000

minima or maxima for the lower or upper envelopes
then reconstructed using a cubic spline.

For the numerical analysis, the statistics are
computed for the upper envelope of isd and isq from
Eq. (8) in terms of mean, standard deviation, and
kurtosis as follows [29]:

Y =
1

n

n
∑

i=1

Yi (9)

σ =

√

√

√

√

√

n
∑

i=1

(Yi − Y )2

n
(10)

K = n ×

n
∑

i=1

(Yi − Y )4

n
∑

i=1

(Yi − Y
2

)2

(11)

where n is the number of samples, Y is the mean, σ

is the standard deviation, and K is the kurtosis.

3. RESULTS AND DISCUSSION

This section presents the measurement of line
currents from eight different induction motors nor-
malized using min-max scaling. The modeling and
numerical results are obtained using Park’s vector
analysis and envelope signals, respectively.

3.1 Data Collection and Processing

In this analysis, the line currents are measured
using eight different three-phase induction motors
as per the experimental setup in Fig. 4. The
specifications for the motors are presented in Table 1.
The line currents of these eight induction motors
are shown in Figs. 7(a)–7(h). Figs. 7(a) and 7(b)
show that the line currents of motors EM1 #100 and
EM1 #200 range from −200 to 200 A and −100 to
100 A, respectively. In Figs. 7(c), 7(d), and 7(e), the
line currents of motors EM1 #300, EM1 #400, and
EM1 #500 range from −50 to 50 A. Figs. 7(f) and
7(g) show that the line currents of motors EM1 #600
and EM1 #700 range from −30 to 30 A. Fig. 7(h)
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Fig. 7: Actual, rescale, and stator currents of the induction motors.
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Fig. 8: Concordia pattern between isd and isq of the induction motor.
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shows that the line currents of motor EM1 #800
range from −20 to 20 A.

For consistent analysis of all eight motors in these
different ranges, the line currents ia, ib, and ic

are normalized to [−1, 1] using min-max scaling as
defined in Eq. (1). The rescaled line currents of all
eight induction motors in the range [−1, 1] are shown
in Figs. 7(a)–7(h).

3.2 Data Modeling and Analysis

The d and q-components of the stator currents can
be obtained from the normalized ia, ib, and ic using
Park’s vector transform as defined in Eqs. (2) and
(3). Thus, the stator currents isd and isq of all eight
induction motors are also shown in Figs. 7(a)–7(h). It
can be observed from Figs. 7(a)–7(c) that the isd and
isq currents of motors EM1 #100, EM1 #200, and
EM1 #300 range from −1.2 to 1.2 A approximately.
In Figs. 7(d)–7(h), the isd and isq currents of motors
EM1 #400, EM1 #500, EM1 #600, EM1 #700, and
EM1 #800 range from about −1.2 to 1.2 A and −0.7
to 0.7 A, respectively.

The Concordia pattern between isd and isq for all
eight induction motors is shown in Figs. 8(a)–8(h).
It can be observed from Figs. 8(a)–8(c) that the
Concordia pattern of motors EM1 #100, EM1 #200,
and EM1 #300 are circular. Thus, it can be
concluded that the bearings of motors EM1 #100,
EM1 #200, and EM1 #300 are healthy. In
Figs. 8(d)–8(h), the Concordia pattern between isd

and isq is elliptical. Thus, it can be concluded
that the bearings of motors EM1 #400, EM1 #500,
EM1 #600, EM1 #700, and EM1 #800 are faulty.
The fault is either in the outer or inner race, cage, or
ball. Furthermore, the pattern also confirms a severe
fault in the short circuit winding of the induction
motor.

The upper envelope signal of isd and isq using
Eq. (8) is calculated to strengthen the analysis
further. Thus, the envelope signals of isd and isq for
all eight induction motors are shown in Figs. 9(a)–
9(h). It can be observed from Figs. 9(a)–9(c)
that the envelope of isd and isq currents of motors
EM1 #100, EM1 #200, and EM1 #300 range from
approximately 1.0 to 1.25 A. In Figs. 9(d)–9(h), the
isd and isq currents of motors EM1 #400, EM1 #500,
EM1 #600, EM1 #700, and EM1 #800 range
from approximately 0.9 to 1.1 A and 0.55 to 0.75 A,
respectively.

The envelope signal statistics isd and isq for
all eight induction motors in terms of minimum,
maximum, mean, standard deviation, and kurtosis
as defined in Eqs. (9), (10), and (11) are shown
in Table 2 and Fig. 10. Minimum values greater
than one for both isd and isq denotes a healthy
result. Thus, the minimum values of isd and isq

for motors EM1 #100, EM1 #200, and EM1 #300
are greater than those denoting healthy bearings.

For the remaining motors EM1 #400, EM1 #500,
EM1 #600, EM1 #700, and EM1 #800, the
minimum value of both isd and isq is less than one,
which denotes faulty bearings. Similarly, from the
maximum values, it can be concluded that values
greater than one for both isd and isq denotes healthy
bearings. Thus, the maximum values of isd and isq

for motors EM1 #100, EM1 #200, and EM1 #300
are significant at more than one and denote a healthy
bearing. For the remaining motors EM1 #400,
EM1 #500, EM1 #600, EM1 #700, and EM1 #800,
the maximum value of isd and isq is significant
at more than one and less than one, respectively,
denoting a faulty bearing.

From the kurtosis values, which are a combination
of the mean and standard deviation defined in
Eq. (11), it can be concluded that the sum of
kurtosis isd and isq is less than 5.0, denoting healthy
bearings. For motor EM1 #300, the sum of kurtosis
is less than 5.0, which indicates a healthy bearing.
For the remaining motors EM1 #100, EM1 #200,
EM1 #400, EM1 #500, EM1 #600, EM1 #700, and
EM1 #800, the sum of kurtosis is significant at more
than 5.0, denoting faulty bearings.

Therefore, from the graphical analysis, it can be
concluded that a circular Concordia pattern between
isd and isq denotes a healthy bearing. In addition,
from the numerical analysis, the minimum and
maximum values isd and isq are significant at more
than one, while the sum of kurtosis isd and isq is
significant at less than 5.0.

4. CONCLUSION

In this paper, a bearing fault detection model is
developed for induction motors using line currents.
The graphical analysis of the model uses Park’s vector
approach. The Concordia pattern obtained between
isd and isq using Park’s vector approach indicates
that a healthy bearing is circular compared to the
elliptical behavior of a faulty motor. The numerical
analysis of the model is based on envelope signal
components of isd and isq. The proposed approach is
evaluated on currents measured from eight different
types of induction motors. From the numerical
analysis, it can be concluded that the minimum and
maximum envelopes of isd and isq are significant at
more than one, while the sum of kurtosis isd and
isq is significant at less than 5.0. Therefore, based
on this graphical and numerical analysis, it can be
observed that the EM1 #300 bearing is healthy, and
the remaining motors have a faulty bearing.

In future work, the harmonics induced in the
induction motor will be analyzed based on pattern
thickness. Furthermore, bearing faults will be
classified using neural networks.
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Fig. 9: Envelope signals of isd and isq currents in induction motors.
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Table 2: Statistics for envelope signals of isd and isq.

Motor ID
Envelope of isd Envelope of isq

Min Max Mean Std Dev Kurtosis Min Max Mean Std Dev Kurtosis

EM1 #100 1.1802 1.3414 1.2122 0.0142 10.4301 1.1843 1.2649 1.2240 0.0134 2.6604

EM1 #200 1.1310 1.2605 1.1898 0.0237 2.5469 1.0676 1.2618 1.2038 0.0244 3.0350

EM1 #300 1.0500 1.2326 1.1520 0.0360 2.2468 1.0055 1.2731 1.1868 0.0358 2.5619

EM1 #400 0.9651 1.2420 1.0511 0.0298 3.6181 0.6262 0.7452 0.6892 0.0208 2.6558

EM1 #500 0.8620 1.1095 1.0050 0.0425 2.8570 0.5784 0.7349 0.6671 0.0275 2.9452

EM1 #600 0.9093 1.1117 1.0198 0.0294 2.9239 0.5850 0.7228 0.6608 0.0227 2.8393

EM1 #700 0.6847 1.1077 1.0115 0.0302 17.566 0.5628 0.7483 0.7033 0.0156 6.0159

EM1 #800 0.8283 1.0800 0.9652 0.0345 3.1237 0.5735 0.7422 0.6579 0.0287 2.9296
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Fig. 10: Analysis of envelope signals isd and isq.
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