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In the rolling bearing fault diagnosis, the vibration signal of single sensor is usually nonstationary and noisy, which contains very
little useful information, and impacts the accuracy of fault diagnosis. In order to solve the problem, this paper presents a novel
fault diagnosis method using multivibration signals and deep belief network (DBN). By utilizing the DBN’s learning ability, the
proposed method can adaptively fuse multifeature data and identify various bearing faults. Firstly, multiple vibration signals are
acquainted from various fault bearings. Secondly, some time-domain characteristics are extracted from original signals of each
individual sensor. Finally, the features data of all sensors are put into theDBNand generate an appropriate classi�er to complete fault
diagnosis. In order to demonstrate the e	ectiveness of multivibration signals, experiments are carried out on the individual sensor
with the same conditions and procedure. At the same time, the method is compared with SVM, KNN, and BPNN methods. �e
results show that the DBN-based method is able to not only adaptively fuse multisensor data, but also obtain higher identi�cation
accuracy than other methods.

1. Introduction

Bearing is one of the critical components which has a broad
range of application in mechanical equipment. Due to the
overload, fatigue, wear, corrosion, and other reasons, bearing
is easily damaged in the process of machine operation.
As a matter of fact, more than 50% of rotating machine
malfunctions are related to bearing faults [1, 2]. Actually, a
rolling bearing fault may lead to equipment intense shaking,
apparatus shutdown, stopping producing, and even casual-
ties. In general, the early weak fault of bearing is complicated
and hard to detect [3, 4]. �erefore, bearing state monitoring
and analysis is very important, in which it can discover
early weak fault of the bearing and control the fault damage
situation in time.

Recently, fault detection and diagnosis of bearing has
been attracting considerable attention. Among all the kinds

of bearing fault diagnosis methods, vibration signal anal-
ysis is one of the most principal and useful tools [2].
In vibration-based bearing fault diagnosis, there are two
kinds of approaches that have been proven e	ective to
fault diagnosis: signal processing and pattern recognition
[1, 3]. Conventional signal processing techniques such as
fast Fourier transform (FFT), wavelet transforms (WT), and
empirical mode decomposition (EMD) have been applied to
bearing fault diagnosis and achieved some e	ectiveness [5,
6]. For pattern recognition approaches, arti�cial intelligence
and machine learning are extensively used and studied, for
example, fuzzy logic, support vector machine (SVM), and
arti�cial neural network (NN) [7, 8]. However, most research
only focused on single vibration analysis in bearing fault
diagnosis. In fact, when using a single sensor vibration, the
fault characteristics are very weak and useful information is
limited. So, it requires intricate signal processing and feature

Hindawi Publishing Corporation
Shock and Vibration
Volume 2016, Article ID 9306205, 9 pages
http://dx.doi.org/10.1155/2016/9306205



2 Shock and Vibration

Visible layer

Hidden layer 

BPNN

RBM

RBM

RBM

RBM











· · ·

· · ·

· · ·

· · · · · ·

· · ·

· · ·

h1 h2 hj hn

1 i
m




2, 2, 2

1, 1, 1

n , n , n

ij

Figure 1: Basic structure of DBN.

extraction. Sometimes the accuracy of fault diagnosis is not
stable.

To improve the diagnosis accuracy of bearing, some
researches put forward the multisignals. At present, fusion
of multisource signals mainly focused on three aspects: data
level, feature level, and decision level. Among them, the
data level fusion primarily mixed the diagnosis objects such
as temperature, pressure, and vibration signals [9, 10]. �is
needs various kinds of sensors and instruments in the process
of data gathering. �e monitoring cost is expensive and the
manipulation is complicated. However, in the convergence
of feature level with the same kinds of signals, it needed
complex signal analysis and weighted calculation [11, 12].
�ese methods had some shortcomings such as poor real-
time property and weak generalization ability. In the decision
level, the intelligent approaches introduced by the literature
are, for example, expert systems, decision tree, and SVM
[13, 14]. However, these methods all belong to the shallow
learning method; the learning ability is lower.

Recently, deep learning became popular in arti�cial
intelligence and machine learning [15]. As a key framework
of deep learning, deep belief network (DBN) is primly
constituted by stacked restrictedBoltzmannmachines (RBM)
which is a generative stochastic neural network that can
learn probability distribution over abundant data [16]. In
2006, Hinton and colleagues utilized contrastive divergence
to advance the RBM training process that greatly improved
the learning e�ciency of the DBN. �e essence of DBN
is the capability to automatically extract features through a
successive learning process; it can mine the features from
di	erent aspects of the data in lower levels as input for
the next layer [17, 18]. In addition, DBN accomplishes the
learning process with an unsupervised pretraining and super-
vised �ne-tuning. So, DBN has more mapping capability and
extensive adaptability by a hierarchical structure. Due to the
great advantages of DBN, it has obtained good e	ect in areas
such as natural language understanding, image processing,
speech recognition, and document recognition [18–20].

Lately, DBN gets the preliminary application in the
�eld of fault diagnosis. Shao et al. [21] developed particle
swarm to optimize the structure of the DBN and applied it

to analyze the simulation signals and experimental signals
of a rolling bearing, which obtained more accurate and
robust results than other intelligent methods. Tamilselvan et
al. [22] originally presented a novel multisensor diagnosis
methodologywhich used theDBN in systemhealth diagnosis
such as aircra� engine and electric power transformer. Gan
et al. [23] constructed a two-layer DBN of rolling-element
bearing fault diagnosis, and experiments showed that DBN
got highly reliable results compared to those obtained by
SVM and BPNN; Lei et al. [24] proposed a method for
multistage gear fault diagnosis with deep learning, which
can adaptively extract available fault characteristics from the
original data and acquire higher diagnostic accuracy than
subsistent methods. Tran et al. [25] presented an approach to
implement DBN andmulti-information for fault diagnosis of
reciprocating compressors.

�is paper focuses on the early weak fault of rolling
bearing and applies the DBN to integrate the time-domain
features of multivibration. �e remainder of this paper is
organized as follows. In Section 2, the methodologies of deep
belief network are introduced. In Section 3, the process of
multivibration signal fusion is described. In Section 4, a
bearing test rig is explained and experiments are conducted
for the proposed method. In Section 5, implementation
of classi�er based on the DBN model is presented. �e
obtained results and their evaluation are described. Finally,
conclusions and future work are given in Section 6.

2. Deep Belief Network

2.1. Deep Belief Network Architecture. DBN is a model based
on probability of energy generation, which comprises mul-
tiple layers of restricted Boltzmann machines (RBM) and a
backpropagation neural network (BPNN) [16]. Figure 1 is the
fundamental structure of DBN; the multilayered architecture
makes sure that DBN can be trained through bottom-up
learning in a sequence of RBMs and top-down �ne-tuning
by BPNN [17].

Restricted Boltzmann machine, the key prototype of
DBN, is structured by a layer of visible (or input) units and
a layer of hidden (or output) units. As every unit is binary,
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it is trained by the activation probabilities. �e units in the
same layer are not connected to each other but have directed
symmetrical connections to the units in the next layer. In
DBN, the hidden layer of the RBM becomes the visible layer
of the next RBM, so they set up a successive hierarchy by
stacked RBMs.

In RBM, the visible node is denoted by V� and the hidden
node is represented by ℎ�. �e weights between V� and ℎ� are
directed and denoted by w��. �e visible and hidden nodes
have their biases represented by vectors c and b, respectively.
b�, c�, and w�� of all RBMs make up the parameter set � in
DBN. As the values of � de�ne a probability distribution over
the joint states of the visible and hidden nodes by an energy
function,

� (k, h) = − �∑
�=1
V�c� −

�∑
�=1
ℎ�b� −

�∑
�=1

�∑
�=1

V�ℎ�w��. (1)

�e ultimate purpose of DBN training is to �nd the best�, which can minimize the model energy error and make
the model at an equilibrium state. So, the energy function is
utilized to de�ne the joint probability distribution between v

and h as follows:

� (k, h | �) = 1
� (�)�−�(k,h|�),

� (�) = ∑
k,h
�−�(k,h|�). (2)

Since DBN has no intralayer connections, the conditional
probability distributions of visible and hidden nodes can be
calculated by

� (V� = 1 | h) = 1
1 + exp (−b� − ∑� ℎ�w��) , (3)

� (ℎ� = 1 | k) = 1
1 + exp (−c� − ∑� V�w��) . (4)

2.2. �e DBN Training Process. Generally, the DBN training
procedure includes two parts: pretraining and �ne-tuning.
�e pretraining is an unsupervised learning procedure which
used the unlabeled data to train the individual RBM. �e
�ne-tuning is a supervised learning processwhich utilized the
backpropagation algorithm to further adjust the parameters.

In the pretraining, each layer is trained by the RBM rules.
Since the RBM model is with binary units, it can be learned
by stochastic gradient descent on the negative log-likelihood
probability of the training data. �e functions are as follows:

� ln� (k; �)
�w�� = ⟨V�ℎ�⟩� − ⟨V�ℎ�⟩� ,

� ln� (k; �)
�b = ⟨ℎ�⟩� − ⟨ℎ�⟩� ,

� ln� (k; �)
�c = ⟨V�⟩� − ⟨V�⟩� ,

(5)

where ⟨:⟩� denotes an expectation of the data distribution
and ⟨:⟩� is an expectation of the distribution de�ned by the
model.

With the RBMproperty, it is easy to compute an unbiased
sample of ⟨:⟩� to the data distribution. However, obtaining
an unbiased sample of ⟨:⟩� is quite di�cult [23]. Actually,
the RBM learning method closely approximates the gradient
objective function called contrastive divergence (CD) [17], in
which ⟨:⟩� is substituted by � iterations of Gibbs sampling
as expressed in (6), where an iteration of alternating Gibbs
sampling includes updating all parallel visible nodes by using
(3), subsequently updating all parallel hidden nodes by (4).

� ln� (k; �)
�w�� ≈ ⟨V�ℎ�⟩0 − ⟨V�ℎ�⟩	 ,

� ln� (k; �)
�b ≈ ⟨ℎ�⟩0 − ⟨ℎ�⟩	 ,

� ln� (k; �)
�c ≈ ⟨V�⟩0 − ⟨V�⟩	 .

(6)

Actually, one-step Gibbs sampling has been shown to
perform surprisingly well [17]. Based on (6), the updated
methods for all parameters are given by the following equa-
tion, where � represents learning rate whose value is between
0 and 1:

Δw ←� �(⟨V�ℎ�⟩0 − ⟨V�ℎ�⟩1) ,
Δb ←� �(⟨ℎ�⟩0 − ⟨ℎ�⟩1) ,
Δc ←� �(⟨V�⟩0 − ⟨V�⟩1) .

(7)

In the training process, dataset is usually divided into
minibatches with a small number of data vectors and the
values of � are updated a�er handling each minibatch. To
stabilize the RBM learning procedure, a momentum (�) is
o�en utilized in updating the synaptic weights and biases.
With momentum (�), the � update, at the current epoch, can
be associated with the � update in the preceding epoch and
calculated as

w� ←� �w�−1 + � (⟨V�ℎ�⟩0 − ⟨V�ℎ�⟩1) ,
b� ←� �b�−1 + � (⟨ℎ�⟩0 − ⟨ℎ�⟩1) ,
c� ←� �c�−1 + � (⟨V�⟩0 − ⟨V�⟩1) .

(8)

A�er the bottom-up successive learning, the following
step of the DBN training is top-down �ne-tuning. Fine-
tuning is a supervised learning process which used the
backpropagation (BPNN) to further decrease the training
error and advance the classi�cation accuracy of the DBN.
As the BPNN is supervised learning, �ne-tuning uses labeled
data for the DBN training. Unlike the unsupervised training
in DBN that only deals one RBM at a time, the BPNN
simultaneously trains all layers in DBN.�e training error of
BPNN is calculated with model outputs and the target label
data. And the backpropagation learning is continued until the
model output attains the maximum number of epochs.



4 Shock and Vibration

Vibrating sensor 1

Vibrating sensor 2

Vibrating sensor n

Signal acquisition

Primitive character 1

Feature extraction 

Primitive character 2

Primitive character n 

Deep belief 

network

Information fusion 

Training

Test

Classi�er

Diagnosis results

Fault recognition

· · ·· · ·

Figure 2: �e �ow diagram of multisensor information fusion.

3. Multisignal Fusion with DBN

Multisensor information fusion technology can obtain more
accurate, rich fault features from vibration signals [12].
However, in the conventional information integration, sig-
nal processing needs to master a lot of signal processing
technologies and to be combined with rich experience in
engineering practice to extract fault features. Meanwhile,
in the pattern recognition, traditional machine learning
only contains single nonlinear transform structure; it cannot
adaptively integrate the multi-information [20, 26].

In this paper, we apply the deep belief network (DBN)
to adaptively fuse multivibrations. �ere are four main
processes in the proposed bearing: multichannel signal
acquisition, feature extraction, information fusion, and fault
recognition.

As shown in Figure 2, �rstly, the vibration signals are
acquainted by each sensor. Secondly, some time-domain
characteristics are extracted from original signal of every
individual sensor. �irdly, without any arti�cial selection,
features data of all signal sensors are put into the DBN and
generate appropriate DBN classi�er. Finally, the integrated
information is used to train or test the classi�er, and then the
classi�er puts out the diagnosis results and completes fault
diagnosis.

Since the DBN has a hierarchical structure which can
extract the features from various aspects of the data by a
layer-by-layer successive learning procedure [17], the multi-
information fusion, based on deep belief network, can get
rid of complex signal processing and complicated experience
[24]. It takes the unsupervised learning with RBM and
directly extracts feature from the multivibrations and then
uses the best parameters to design DBN and completes the
multi-information integration.

However, the structure of DBN is closely related to the
number of hidden nodes and hidden layers; if the DBN struc-
ture is too simple, learning ability is so poor that it cannot
e	ectively integrate the multi-information. Meanwhile, if the
DBN structure is too complicated, it not only wastes running
time but also produces problems such as over�tting, local
extremism, and training failure [26]. �erefore, a method
based on data reconstruction error is used to determine the
structure of information fusion in DBN.

Figure 3 introduces the optimization process for the DBN
structure. �e reconstruct error is computed with the model
outputs and the objective label data. At the beginning of the
procedure, multichannel signal information is put into the

Multichannel signal information

Initialize the parameters M, L, and �

Train network using 
RBM learning rule

Reconstruction 

No

Yes

Use the best parameter to design the DBN

Yes

Yes
No

No

m + 1

n + 1

m < M

n < L

error < �

Figure 3: �e �ow chart of the optimization DBN in signal fusion.

DBN and the parameters of�,  , and ! are initialized, where
the �,  , and ! are the max values of the hidden nodes,
hidden layers, and reconstruction error, respectively. �en,
DBNcalculates the reconstruction error of training dataset by
RBM learning rules. If the reconstruction error is less than !,
it �nishes the optimization and puts out the parameters (�) of
DBN. Otherwise, it increases the number of hidden nodes or
hidden layers. If the numbers over�ow� or  , the procedure
�nds the best reconstruction error from history and builds
the DBN for multi-information fusion.

Table 1 summarizes the procedure of bearing fault diag-
nosis using multi-information fusion with DBN. As shown
in the table, the �rst step is gating the vibration signals
from multichannels and collecting vibration data from each
sensor. As the raw samples are nonlinear and unstable, it is
necessary to extract some features from each sample. �en,
the preprocessed vibration data are divided into training
and testing datasets. �e DBN structure is optimized by
reconstruction error of training dataset and obtains the
suitable DBN to accomplish the multi-information fusion.
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Figure 4: Rotating machinery fault simulation platform of QPZ-II: (a) experiment platform; (b) sensors locations.

Table 1: Procedure for bearing fault diagnosis using multi-informa-
tion with DBN.

Step Description

Step 1 Gather multichannel vibration signals

Step 2 Extract features of each channel sample

Step 3 Input all features of training samples and initial
parameters of the DBN

Step 4

Optimize the DBN structure using reconstruction
error of multi-information fusion

(1) Each layer of the DBN is trained using RBM
learning rule

(2) Fine-tune the DBN using backpropagation
learning

(3) Calculate the reconstruction error using model
outputs and the target label data

(4) If the reconstruction error is smaller than !
output the DBN structure; otherwise," ← " + 1
and return to step (1)
(5) If the reconstruction error is not smaller than !
and" = �, # ← # + 1 and return to step (1) until # is
more than $

Step 5 Develop the DBN using the structure with the best
reconstruction error

Step 6 Perform diagnosis using the training DBN classi�er
model

4. Experimental Setup

In order to measure the validity of the suggested method, a
bearing experimental platform is set up as shown in Figure 4.
�e bearing fault simulation platform was produced by Qian
Peng Company with QPZ-II in China.

As shown in Figure 4, the experimental table is mainly
constituted with motor, belt coupling, bearing pedestal, and
so on. �e bearing is installed in the pedestal, and three
magnet acceleration sensors are installed in the pedestal,
labeled by %1, %2, and %3, respectively. �e position of %1
is located on the vertical side of the bearing pedestal; %2

and %3 are, respectively, located on the lateral and front
of the bearing pedestal. In the experiments, the variety of
typical fault bearings can be installed and dismounted for
multivibration collection.

�e test bearings are produced by Harbin Bearing Man-
ufacturing Company, China, with the bearing designation
being NU205, which have 13 cylindrical rollers. �e inner
diameter is 25mm, the outer diameter is 52mm, and the
thickness of the bearing is 15mm. As shown in Figure 5,
four experiments are carried out under each of the following
bearing health conditions: the inner race fault, outer race
fault, ball fault, and normal. All the faults are linear cutting
with electrical dischargemachining, and the cutting diameter
is 0.5mm; the cutting depth is 0.3mm.

In the process of testing, a variable velocitymotor directly
drives a sha�. �e belt on the right of the sha� brings along
the coupling which runs with the same speed of motor. In the
experiment, the sampling frequency is 10000 hz, the bearing
speed is 1200 rpm, and the sampling time is 5 seconds.

According to the steps shown in Table 1, each experiment
continuously acquainted 50000 signal points. Meanwhile, the
bearing rotated 100 cycles. We select the signal points of a
rotation cycle to construct a sample. So, 500 signal points
constitute a data sample.�ere are four conditions de�ned for
classi�cation and 400 (100 × 4) training samples in dataset.
�en, we randomly selected 200 samples constituting the test
dataset.�e dataset description is shown inTable 2.When the
rolling bearing has local damage, it will cause the vibration
signal mutation. �e local damage position is di	erent and
the change of the vibration signal usually is not the same.
Figure 6 is the amplitudes waveform of rolling bearing in
di	erent conditions.

It is seen from Figure 6 that the vibration signals wave-
forms are similar, and it is di�cult to distinguish the various
fault types of rolling bearings. So, some time-domain features
are extracted from the original signals; the method is as
follows:

(1) &� (' = 1, 2, . . . , $) is the discrete-time series of the 'th
sensor, and the vibration signals of bearing rotating a
cycle are &� = [*1, *2, . . . , *�], " = (- × 60) ÷ ℎ,
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Table 2: Sample distribution of normal and di	erent faults.

Rolling bearing condition Fault diameter/mm Fault depth/mm Training samples Test samples

Normal — — 100

200
Inner race fault 0.5 0.3 100

Outer race fault 0.5 0.3 100

Ball fault 0.5 0.3 100

(a) (b) (c) (d)

Figure 5: Pictures of the testing bearings: (a) inner race fault; (b) ball fault; (c) outer race fault; (d) normal.
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Figure 6: Instantaneous amplitudes waveform of rolling bearing in
di	erent conditions: (a) normal; (b) inner race fault; (c) outer race
fault; (d) ball fault.

where - is the sampling frequency (Hz) and ℎ is the
rotational velocity (rpm).

(2) According to Table 3, compute the time-domain
statistics of the vibration signals &� and get feature
vector of the 'th sensor as / � = [71, 72, . . . , 714].

(3) �ree sensors constitute the multisensor feature vec-
tor 8 = [/1, /2, /3].

(4) Normalize the feature vector8� = [91, 92, . . . , 9�], " =$ × 14.
5. Results and Discussions

5.1. Multisignals and Individual Signals. As the signals pre-
processing is clearly explained in Section 4, 14 classical time-
domain features are computed from the raw signals.

To illustrate the property of multivibrations fusion, the
method based on each single sensor is alsomeasured with the
same conditions.�ese methods are represented as sensors 1,
2, and 3, corresponding to the three individual sensors. �e
input vectors ofDBN in single sensor experiment have only 14
features extracted from vibration signals.�e input vectors of
DBN in multisensors have 42 features. �e DBNs’ structures
are shown in Table 4.

�e DBN structure of multisensors is 42-12-12-4. �at is
to say, the input layer contained 42 nodes and the output
layer included 4 nodes, which depended on the dimensions
of the input and output data. �ere are two hidden layers
in the architecture; both hidden layers contained 12 hidden
neurons, respectively. However, in sensors 1, 2, and 3 the input
nodes are 14 and the hidden nodes are 8 in every hidden
layer. �e learning rate and momentum are used to adjust
the model error and training e�ciency. �e learning rate in
the experiment is selected as 0.01, and the momentum is 0.02
[20]. In the sequential training of every individual RBM, the
pretraining of each RBM is accomplished with 20 iterations.
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Table 3: Statistics features in time domain.

Parameter De�nition

(1) Average value * 1
$ ∑*�

(2) Maximum value *max max (*�)
(3) Minimum value *min min (*�)
(4) Peak-to-peak *p max (*�) −min (*�)
(5) Mean absolute *abs 1

$ ∑ <<<<*�<<<<
(6) Variance *var ∑��=1 (*� − *)2$
(7) Standard deviation *std ( 1

$ − 1
�∑
�=1

(*� − *)2)
1/2

(8) Kurtosis *kur ∑��=1 (*� − *)4($ − 1) *4std
(9) Root mean square *rms (1$

�∑
�=1

<<<<*�<<<<1/2)
2

(10) Shape factor *sf *rms*
(11) Peak factor *pf xp

*rms

(12) Skewness *ske ∑��=1 (*� − *)3($ − 1) *3std
(13) Impulse factor *if *p

*
(14) Margin factor *mf

*p
*rms

In the �ne-tuning of model parameters, stochastic gradient
descent (SGD) is used to further reduce the training error and
improve the information fusion. However, in this research,
the SGD takes theminibatch to globally adjust the parameters
in DBN. Since there are 400 samples in the training dataset,
the number of minibatch is 10 in the experiments.

We use the training dataset to train the DBN model and
use the testing dataset to test the model identi�cation accu-
racy. �e classi�cation process is repeated for 25 times and
the classi�cation results are averaged as shown in Figure 7.

�e average accuracy of the training samples in multi-
sensors is 97.5%, and the number of correct classi�cation
samples is 390. �is is much higher than those using other
methods, which are 91.5%, 85%, and 87.5% with 366, 340,
and 350, respectively.�e average accuracy of testing samples
in multisensors fusion is 95.5%, and the number of correct
classi�cation samples is 191. �is is much higher than those
using other methods, which are 89%, 78.5%, and 75% with
178, 157, and 150, respectively.

Compared to those individual sensors, the training and
testing accuracies of multisensors information fusion are
obviously higher than other methods. In the three individual
sensors, the classi�ed accuracy of %1 is better than %2 and %3.
It is indicated that the sensor put on the vertical location of
the testing pedestal is most sensitive to the bearing faults.�e
results prove that it is more e	ective to integrate the signals
from multisensors than to use the vibration from individual
ones.
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Figure 7: Classi�cation rate of individual sensor and multisensors.

5.2. Deep Belief Network and Traditional Methods. To intro-
duce the e	ectiveness of the suggested method, the com-
parative methods are also tested with the same data such as
SVM, BPNN, and KNN. Without manual feature selection,
the 42-dimension feature vector is used directly for rolling
bearing fault diagnosis. �e architecture of BPNN is 42-
12-4; the decision function of KNN is Euclidean distance;
the SVM used RBF kernel, which is the most popular and
suitable kernel function applied. �e penalty factor and
the radius of the SVM kernel are 0.216 and 0.3027, each
of which is determined through genetic algorithm. All the
experiments are �nished in the computer with Core i5 Intel
central processing unit and 4G memory. In the DBN, SVM,
BPNN, and KNN, the experiments are, respectively, repeated
15 times. �e average classi�cation accuracies are shown in
Tables 5 and 6.

In the training experiments, DBN achieved 95.72% iden-
ti�cation accuracy which is better than that of SVM (92.28%),
KNN (90.06%), and BPNN (83.63%) for multivibration
signals. For the testing experiments, the average accuracy of
DBN is 93.17%; meanwhile SVM is 90.13%, KNN is 85.23%,
and BPNN is 78.13%. In brief, the experiments results explain
that the suggested methods have higher reliability and better
accuracy than SVM, KNN, and BPNN in rolling bearing fault
diagnosis.

�e algorithms of DBN, SVM, KNN, and BPNN all
trained the model by the same dataset and generated the
classi�er to carry out the bearing fault diagnosis. However,
the stability and generalization ability are di	erent in these
methods. As shown in Tables 5 and 6, the training results of
DBN approximately agree with the testing results in the 15
experiments. �e testing accuracies in SVM and KNN are
lower than training accuracies by 3–5%. �e classi�cation
accuracy of BPNN is decreased obviously in test experiments.

In the experiments, the training datasets are selected
from sequence data samples of all kinds of fault condition,
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Table 4: �e parameters of DBN in sensors 1–3 and multisensors.

Parameters Sensor 1 Sensor 2 Sensor 3 Multisensors

Input 14 14 14 42

Output 4 4 4 4

Number of hidden layers 2 2 2 2

Number of neurons in a layer 8 8 8 12

Iteration 20 20 20 20

Minibatch size 10 10 10 10

Momentum 0.02 0.02 0.02 0.02

Learning rate 0.01 0.01 0.01 0.01

Table 5: Results of training datasets.

Method
Experiment results of each group (%)

Average (%)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DBN 95.25 95 95.5 96 95 97.25 95 95.5 95.25 96 97 96.25 95.5 96 95.25 95.72

SVM 94.5 90 91 94 92.5 91 92.5 94 93.5 91 89.5 91 92 94.5 93.25 92.28

KNN 90 88 87.25 87 93.75 89.75 90 89 92 92 92.5 90.25 90 89 90.5 90.06

BPNN 84.5 82.5 80 80.5 82.5 84 86 80 82.5 85 86.5 84 83 88.5 85 83.63

Table 6: Results of testing datasets.

Method
Experiment results of each group (%)

Average (%)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DBN 93.5 95 93.5 95.5 94.5 96.5 94.5 94.5 94 93.5 96 94.5 95 96 94.5 94.73

SVM 91 89 90 90.5 91 89.5 90 90 91 90 89 90 88.5 92 90.5 90.13

KNN 85 86 82.5 84.5 87.5 85.5 88 84.5 86 84.5 85 84 85.5 84.5 85.5 85.23

BPNN 82.5 80 78.5 77.5 75.5 75 74.5 78 75.5 78 76.5 78 80 80.5 82 78.13

and they orderly composite the training sample datasets. As
the testing samples are randomly selected from the various
states datasets, both sample category and sample order are
random. SVM, to classify data identi�cation, mainly depends
on the kernel functions with the training set, which is closely
related to the quantity and quality dataset. When using the
KNN to classify the data identi�cation, the results mainly are
determined by the distance function, and once the distance
function is selected, it will not be able to transform. So, the
testing accuracies are much less than in training set of SVM
andKNN. BPNN is a typically shallow learningmodel, which
involved no more than one nonlinear feature transformation
and has di�culty in representing complex functions with
poor performance and generalization ability.

Compared with the traditional machine learning and
signal processing technology, DBN has the merit to get
rid of the dependence on signal processing technology.
On the other hand, DBN can adaptively extract the fault
featurewithout restrictive assumptions or complex parameter
adjustment. Consequently, it is nothing strange that the
DBN as a promising method has been e	ectively applied in
multivibrations fusion.

6. Conclusions

Multiple sensors installed on various locations of bearing
pedestal can supply abundant information for fault diagnosis

and detection. Based on this observation, a novel technique
using deep belief network for the multivibrations fusion is
put forward in this paper. Some conventional time-domain
features are extracted from three accelerometer vibration
sensors. Without manual feature selection, the features are
used directly as the input vectors of the DBN. �e obtained
accuracy of multisensors is 97.5% which is about 10% higher
than single sensor. At the same time, the mean accuracy
of DBN, SVM, KNN, and BPNN is, respectively, 93.17%,
90.13%, 85.23%, and 78.13%. It suggests that DBN is more
e	ective and stable for the identi�cation of rolling bearing
fault diagnosis than other methods. From the results, it
can be realized that DBN is able to adaptively integrate
available fault features from multisensors and it obtained
higher identi�cation accuracy than traditional methods.
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