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Bearing failure is the most common failure mode in rotating machinery and can result in large financial losses or even casualties.
However, complex structures around bearing and actual variable working conditions can lead to large distribution difference
of vibration signal between a training set and a test set, which causes the accuracy-dropping problem of fault diagnosis. Thus,
how to improve efficiently the performance of bearing fault diagnosis under different working conditions is always a primary
challenge. In this paper, a novel bearing fault diagnosis under different working conditions method is proposed based on domain
adaptation using transferable features(DATF). The datasets of normal bearing and faulty bearings are obtained through the fast
Fourier transformation (FFT) of raw vibration signals under different motor speeds and load conditions.Then we reduce marginal
and conditional distributions simultaneously across domains based on maximum mean discrepancy (MMD) in feature space by
refining pseudo test labels, which can be obtained by the nearest-neighbor (NN) classifier built on training data, and then a robust
transferable feature representation for training and test domains is achieved after several iterations.With the help of theNNclassifier
trained on transferable features, bearing fault categories are identified accurately in final. Extensive experiment results show that
the proposed method under different working conditions can identify the bearing faults accurately and outperforms obviously
competitive approaches.

1. Introduction

Bearings are the most critical components and widely used
in rotating machinery, whose health conditions, for example,
the fault degree in different places under different motor
speeds and loads, may have a huge effect on the performance,
reliability, and residual life of the equipment [1] or even
can lead to heavy casualties [2–4]. Hence, it is important to
diagnose bearings under different working conditions.

Cracks or spalls on the surfaces of the roller, outer race,
or inner race are commonly failure modes in bearings [5].
Vibration signal is the most intuitive description for the
operating state of a bearing. With the vibration signals under
different conditions being collected by sensors [6], many
intelligent fault diagnosis methods have already achieved sig-
nificant success in the field of fault diagnosis. In [7], a genetic
algorithm-based SVM (GA-SVM) model was presented, and

it had high accuracy and generalization ability by optimizing
parameters of SVM. N. Saravanan et al. [8] proposed fault
diagnosis method based on DWT and ANN, and it has been
proved such approach had the potential to diagnose various
faults of the gearbox. There are two key points for com-
mon intelligent fault diagnosis technologies, namely, feature
extraction and classification. Raw vibration signal collected
by sensors is abound in redundant information. Thus, it is
important for fault diagnosis to achieve effective features [9].
Many signal processing approaches are applied to feature
extraction from vibration signals. Such as, time-domain
statistical analysis, frequency domain analysis [10], and time-
frequency domain analysis [2].Then reducing the dimensions
is conducted for the sake of computational efficiency, such
as principal component analysis (PCA) [11], locally linear
embedding (LLE) [12], and linear discriminant analysis
(LDA) [13]. Finally, with the help of a suitable classifier, such
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as nearest-neighbor (NN), support vector machine (SVM),
or artificial neural networks (ANN), features acquired from
above technological process are used for defect classifica-
tion.

To be true, most of intelligent fault diagnosis methods
work well only under a general assumption: the training and
test data are drawn from the same distribution. However,
in operation of rotating machinery, because of complicated
working conditions and complex sensor signals, the distribu-
tion of fault data is not consistent. Vibration signals sampled
under different working conditions violate above assumption
and show large distribution differences between domains
[9, 14], which leads to drop dramatically of performance.
More specifically, taking the roller bearing fault diagnosis
problem as an example, classifier was trained under a very
concrete type of data sampled under a certain motor speed
and load; however, the actual application in fault diagnosis is
to recognize test data collected under another motor speed
and load. Although the fault diameter and categories are not
changed, the distribution differences between training data
(training domain) and test data (test domain) changes with
working condition vary. As a direct result, the classifier can
achieve high accuracy on training domain while performing
poorly on test domain [14]. This is caused by distribution
differences between two domains, since features extracted
from one domain can not represent for another domain. Of
course we can spend lots of time and efforts to recollect
data to build a new classifier for effective fault diagnosis on
test domain. However, we can not always replace classifier
by repetitively recollecting data. Worse, it is so expensive or
even impossible to rebuild the fault diagnosis model from
scratch using newly recollected training data for the actual
task. Therefore, there is still plenty of room for improve-
ment.

In order to avoid such recalibration effort, we might want
to refine a fault diagnosis model trained in one condition
(training domain) for a newworking condition (test domain)
or to refine themodel trained on one rolling bearing (training
domain) for a new rolling bearing (test domain). This leads
to the research of domain adaptation (DA) [15, 16]. DA
can be considered as particular setting of transfer learning
[17, 18] which aims to leverage the knowledge learnt from a
training domain to use in a different but related test domain
by reducing distribution differences [18, 19]. Maximummean
discrepancy (MMD) [20–22] in the field of DA can be applied
to evaluate distribution divergences.

In this paper, considering actual fault diagnosis appli-
cation, we propose a novel bearing fault diagnosis under
different working conditions based on domain adaptation
using transferable features (DATF). Dataset of normal bear-
ing and faulty bearings are achieved through the fast Fourier
transformation (FFT) of raw vibration signals under different
motor speeds and load conditions. Fault diagnosis model is
built by using nearest-neighbor (NN) classifier in training
domain, and then we resort the pseudo outputs of NN
classifier in test domain to refine this model by reducing
distribution differences between domains constantly, so that
transferable feature representation could be learnt from
training and test domains. Finally, NN classifier is built

with extracted transferable features and bearing faults are
identified accurately.

The rest of this paper is organized as follows. Section 2
sketches out previous works and preliminaries, including
domain adaptation and maximum mean discrepancy. Sec-
tion 3 introduces fault diagnosis using transferable features,
including feature space generation and transferable feature
extraction and diagnosis. Section 4 presents the experimental
evaluations. The conclusion is given in Section 5.

2. Previous Works and Preliminaries

2.1. Domain Adaptation. DA as one research of transfer
learning is aimed at making full use of information coming
from both training domain and test domain during the
learning process to adapt automatically [18, 19, 23]. Generally
domain is considered as consisting of a feature space of inputs
X and a probability distribution of inputs 𝑃(𝑋), where 𝑋 ={𝑥1, . . . , 𝑥𝑛} ∈ X is a series of learning samples. Note that
distributions of two domains are diverse when source domain
and target domain are different; that is,𝑋𝑆 ̸= 𝑋𝑇 and𝑃(𝑋𝑆) ̸=𝑃(𝑋𝑇) [20, 24].

In our work, the objective of domain adaptation is
to extract transferable features between two domains for
realizing successfully bearing fault diagnosis under different
working conditions. We denote the labeled training domain𝑋𝑡𝑟 = {(𝑥𝑡𝑟1 , 𝑦𝑡𝑟1), . . . , (𝑥𝑡𝑟𝑛1 , 𝑦𝑡𝑟𝑛1 )}, where 𝑥𝑡𝑟𝑖 ∈ X is the

input and 𝑦𝑡𝑟𝑖 ∈ Y is the related class label. Similarly, let the
unlabeled test domain be 𝑋𝑡𝑒 = {(𝑥𝑡𝑒1), . . . , (𝑥𝑡𝑒𝑛2 )}, where
the input 𝑥𝑡𝑒𝑖 ∈ X. In the aspect of distribution, let 𝑃(𝑋𝑡𝑟)
and 𝑄(𝑋𝑡𝑒) be the marginal distributions of 𝑋𝑡𝑟 = {𝑥𝑡𝑟𝑖} and𝑋𝑡𝑒 = {𝑥𝑡𝑒𝑖} from the training and test domains, respectively.
Similarly let 𝑃(𝑌𝑡𝑟|𝑋𝑡𝑟) and 𝑄(𝑌𝑡𝑒|𝑋𝑡𝑒) be the conditional
distributions of𝑋𝑡𝑟 = {𝑥𝑡𝑟𝑖} and𝑋𝑡𝑒 = {𝑥𝑡𝑒𝑖} from the training
domain and test domain, respectively [20, 25, 26].

In this literature, we focus on the following settings.(1) One training domain and one test domain share the
same fault types and feature space. (2) Domain adaptation
in our work is unsupervised and training domain 𝑋𝑡𝑟 is
of labels while test domain 𝑋𝑡𝑒 is fully unlabeled. (3) The
marginal distribution 𝑃(𝑋𝑡𝑟) ̸= 𝑄(𝑋𝑡𝑒) and the conditional
distribution 𝑃(𝑌𝑡𝑟|𝑋𝑡𝑟) ̸= 𝑄(𝑌𝑡𝑒|𝑋𝑡𝑒). The above settings are
well suited to real-world variable working conditions fault
diagnosis. Our task is to predict the fault types of bearing
accurately in the unlabeled test domainwith entirely different
distribution by using the model built in training domain.

2.2. Maximum Mean Discrepancy. Typical procedure of
domain adaptation is to reduce marginal distribution differ-
ence across domains. In our work, domain adaptation is to
reduce both marginal and conditional distribution difference
simultaneously by explicitly minimizing the empirical dis-
tance measure, which is more suitable for the situation of
bearing fault diagnosis under different working conditions.
In order to avoid expensive distribution calculation caused
by the parametric criteria, a nonparametric distance metric,
known as MMD, is employed for domain adaptation in our
work. Taking data from source domain𝑋𝑆 and target domain
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Figure 1: The framework of DATF for variable working condition fault diagnosis.

𝑋𝑇, the MMD calculates the empirical estimate of distances
across domains in the 𝑘-dimensional embedding [20, 24]:

𝐷𝑚 (𝑋𝑆, 𝑋𝑇) =

1𝑛𝑠
𝑛𝑠∑
𝑖=1
𝐴𝑇𝑥𝑖 − 1𝑛𝑡

𝑛𝑠+𝑛𝑡∑
𝑗=𝑛𝑠+1

𝐴𝑇𝑥𝑗

2

(1)

where 𝐷𝑚 is the distance of marginal distributions across
domains,𝐴 is the adaptationmatrix, and 𝑛𝑠 and 𝑛𝑡 denote the
number of source instances and target instances, respectively.

3. Fault Diagnosis Using Transferable Features

Asmentioned in Section 1, huge distribution difference across
training domain and test domain under different working
conditions directly leads to poor performance of bearing
fault diagnosis. In order to solve this problem, we need
to learn the shift between two domains and extract more
robust transferable features for two domains. In this section,
we present our novel bearing fault diagnosis method under
variable working conditions. The framework of our method

is illustrated in Figure 1. As shown in Figure 1, fault diagnosis
model built via labeled training data is iterated revision
according to pseudo-label, and the final diagnostic results are
obtained through the above revised model. Details of each
part are elaborated in the following subsections.

3.1. Feature Space Generation. Raw time series vibration sig-
nals are readily available and abound in bearing information.
Owning to the rotating nature of raw vibration signals from
a defective bearing, the periodic impulse would appear in
obtained signals once a fault occurs.Thus, these fault impacts
can be detected generally in frequency domain.

In our work, we directly catch FFT amplitudes from
the raw time series vibration signals as samples, where all
samples have the same dimension, and these samples are
generated under different motor speeds and load conditions,
as described in Figure 2.

They are divided into two parts: labeled training data
(𝐷𝑡𝑟) and unlabeled test data(𝐷𝑡𝑒). Then we use principal
component analysis (PCA) to generate feature space. The
main steps of feature space generation are as follows.
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Start

N = 12000;
NFFT = 2^nextpow2(N);
f = fs/2∗linspace(0,1,NFFT/2+1) 
fft_amplitude = abs(fft(x,NFFT))/N.

% Length of x(n);
% Next power of 2 from N;
% Frequency resolution;
% Fast Fourier transform of x(n).

�e single-sided FFT spectrum amplitude is acquired through 

2∗fft_amplitude(1:NFFT/2+1) in Matlab

End

Vibration signal x(n) sampled with fs Hz

Figure 2: Flowchart of FFT spectrum amplitudes creation in MATLAB.

Step 1. Catch FFT amplitudes from raw time series vibration
signals collected under different working conditions as sam-
ples𝐷𝑑𝑎𝑡𝑎.
Step 2. Take one of the conditions with different fault types

from 𝐷𝑑𝑎𝑡𝑎 as training samples 𝑋𝑡𝑟 ∈ 𝑅𝑛𝑡𝑟×𝑑 with label 𝑌𝑡𝑟 ∈𝑅𝑛𝑡𝑟×1, and take another of the conditions with different fault
types from𝐷𝑑𝑎𝑡𝑎 as unlabeled test samples𝑋𝑡𝑒 ∈ 𝑅𝑛𝑡𝑒×𝑑.
Step 3. Denote 𝑋𝐷 = {𝑋𝑡𝑟, 𝑋𝑡𝑒} ∈ 𝑅𝑑×(𝑛𝑡𝑟+𝑛𝑡𝑒) and 𝐻 =𝐼 − (1/(𝑛𝑡𝑟 + 𝑛𝑡𝑒))𝑙𝑙𝑇, where 𝐼 denotes the identity matrix and𝑙 is considered as the ones vectors. Then, the 𝑘 dimensional
representation is found by solving the following optimization

problemmax𝐴𝑇𝐴=𝐼𝑡𝑟(𝐴𝑇𝑋𝐷𝐻𝑋𝑇𝐷𝐴), and, then, feature space
is created by 𝑉 = 𝐴𝑇𝑋𝐷.
3.2. Transferable Feature Extraction and Diagnosis. In order
to reduce the marginal distribution difference and extract
robust feature for two domains, we resort MMD as the
distance measures between 𝑥𝑖𝑡𝑟 and 𝑥𝑗𝑡𝑒 to compare different
distributions: 

1𝑛𝑡𝑟
𝑛𝑡𝑟∑
𝑖=1
𝐴𝑇𝑥𝑖 − 1𝑛𝑡𝑒

𝑛𝑡𝑟+𝑛𝑡𝑒∑
𝑗=𝑛𝑡𝑟+1

𝐴𝑇𝑥𝑗

2

= 𝑡𝑟 (𝐴𝑇𝑋𝐷𝑀𝑚𝑋𝑇𝐷𝐴)
(2)

where 𝑀𝑚 = [ (𝑀𝑚)𝑡𝑟,𝑡𝑟 (𝑀𝑚)𝑡𝑟,𝑡𝑒(𝑀𝑚)𝑡𝑒,𝑡𝑟 (𝑀𝑚)𝑡𝑒,𝑡𝑒 ] is the MMD matrix and is

computed as follows [24, 26]:

𝑀𝑚 =
{{{{{{{{{{{{{{{

1𝑛𝑡𝑟𝑛𝑡𝑟 , 𝑥𝑖, 𝑥𝑗 ∈ 𝑋𝑡𝑟1𝑛𝑡𝑒𝑛𝑡𝑒 , 𝑥𝑖, 𝑥𝑗 ∈ 𝑋𝑡𝑒
−1𝑛𝑡𝑟𝑛𝑡𝑒 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(3)

Themarginal distributions between training domain and test
domain are brought closer under the new representation𝑉 =𝐴𝑇𝑋𝐷 by minimizing (2).

In theory, training and test data under different working
conditions collected from sensors should be of the same
marginal and conditional distributions while the reality is
very different. For improving the performance of bearing
fault diagnosis under different work conditions, in our work,
the differences of conditional distribution between domains
are also reduced bymining the class-conditional distribution.
Formally, the class-conditional distributions can bemeasured
according to modified MMD.


1𝑛𝑡𝑟
𝑛𝑡𝑟∑
𝑖=1
𝐴T𝑥𝑖 − 1𝑛𝑡𝑒

𝑛𝑡𝑟+𝑛𝑡𝑒∑
𝑗=𝑛𝑡𝑟+1

𝐴𝑇𝑥𝑗

2

= 𝑡𝑟 (𝐴𝑇𝑋𝐷𝑀𝑐𝑋𝑇𝐷𝐴) (4)

where𝑀𝑐 = [ (𝑀𝑐)𝑡𝑟,𝑡𝑟 (𝑀𝑐)𝑡𝑟,𝑡𝑒(𝑀𝑐)𝑡𝑒,𝑡𝑟 (𝑀𝑐)𝑡𝑒,𝑡𝑒 ] is MMD coefficient matrix that

includes the class label 𝑐, and it can be calculated according
to [24, 26]
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𝑀𝑐 =

{{{{{{{{{{{{{{{{{{{{{{{

1𝑛𝑐𝑡𝑟𝑛𝑐𝑡𝑟 , 𝑥𝑖, 𝑥𝑗 ∈ 𝑋𝑡𝑟1𝑛𝑐𝑡𝑒𝑛𝑐𝑡𝑒 , 𝑥𝑖, 𝑥𝑗 ∈ 𝑋𝑡𝑒
−1𝑛𝑡𝑟𝑛𝑡𝑒 ,

{{{
𝑥𝑖 ∈ 𝑋𝑐𝑡𝑟, 𝑥𝑗 ∈ 𝑋𝑐𝑡𝑒
𝑥𝑗 ∈ 𝑋𝑐𝑡𝑟, 𝑥𝑖 ∈ 𝑋𝑐𝑡𝑒0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(5)

The conditional distributions between training and test
domains are brought closer under the new representation𝑉 = 𝐴𝑇𝑋𝐷 by minimizing (4).

In order to obtain effective and robust transferable feature
representation and improve the quality of fault diagnosis, our
work aims to reduce the impact of discrepancies from both
the marginal and conditional distributions between training
and test domains by resorting the pseudo labels of test data
[26] on diagnosis, and these pseudo labels can be obtained
from a base classifier (NN classifier) built on the labeled
training data to predict the fully unlabeled test data. Thus,
the final optimization problem (6) in this paper comprised
(2) and (4).

min
𝐴𝑇𝑋𝐷𝐻𝑋𝑇𝐷𝐴=𝐼

(1 − 𝜆) 𝐶∑
𝑐=0
𝑡𝑟 (𝐴𝑇𝑋𝐷𝑀𝑐𝑋𝑇𝐷𝐴) + 𝜆 ‖𝐴‖2𝐹 (6)

where ‖ ⋅ ‖𝐹 is the Frobenius norm that guarantees the opti-
mization problem to be well defined, and 𝜆 is the regulariza-
tion parameter [24] that trades off the impact of regulariza-
tion term on the transformation matrix A. The goal is to find
the latent feature space created by a transformation matrix𝐴 ∈ 𝑅𝑑×𝑘 where the discrepancies of both the marginal and
conditional distributions between domains are significantly
reduced. The Lagrange function for (7) is constructed, whereΛ = diag(Λ 1, . . . , Λ 𝑘) ∈ 𝑅𝑘×𝑘 is the Lagrange multiplier.

𝐿 = (1 − 𝜆) 𝑡𝑟(𝐴𝑇(𝑋𝐷 𝐶∑
𝑐=0
𝑀𝑐𝑋𝑇𝐷)𝐴) + 𝜆𝑡𝑟 (𝐴𝑇𝐴)

+ 𝑡𝑟 ((𝐼 − 𝐴𝑇𝑋𝐷𝐻𝑋𝑇𝐷𝐴)Λ)
(7)

According to 𝑑𝐿/𝑑𝐴 = 0, the optimal solution of (6) can be
acquired through the generalized eigen decomposition.

((1 − 𝜆)𝑋𝐷 𝐶∑
𝑐=0
𝑀𝑐𝑋𝑇𝐷 + 𝜆𝐼)𝐴 = 𝑋𝐷𝐻𝑋𝑇𝐷𝐴Λ (8)

Finally, the adaptation matrix A is obtained from solving (8)
for 𝑘 smallest eigenvectors. The procedure of fault diagnosis
using DAFT can be depicted as follows in detail.

Step 1. For given training data 𝑋𝑡𝑟 ∈ 𝑅𝑛𝑡𝑟×𝑑 with label 𝑌𝑡𝑟 ∈𝑅𝑛𝑡𝑟×1 andunlabeled test data𝑋𝑡𝑒 ∈ 𝑅𝑛𝑡𝑒×𝑑 in the feature space.
Step 2. Construct MMD matrix 𝑀𝑚 by (2). Adaptation
matrix 𝐴 generated by the 𝑘 smallest eigenvectors can be
acquired by solving (8) through Lagrange multiplier. Then
the robust representation for two domains is obtained 𝑉 =𝐴𝑇𝑋𝐷.

Step 3. Train the NN classifier on projected training data{𝐴𝑇𝑋𝑡𝑟, 𝑌𝑡𝑟}, and then obtain pseudo test data labels 𝑌𝑡𝑒 that
denote the conditional probability 𝑄(𝑌𝑡𝑒|𝑋𝑡𝑒) by using the
trained NN classifier.

Step 4. Update MMD matrix {𝑀𝑐}𝐶𝑐=1 by (5) according to𝑃(𝑌𝑡𝑟|𝑋𝑡𝑟) = 𝑄(𝑌𝑡𝑒|𝑋𝑡𝑒), and then obtain the updated adapta-
tionmatrix𝐴 by solving (8) through Lagrangemultiplier.The
updated robust representation for two domains is obtained𝑉 = 𝐴𝑇𝑋𝐷, and then jump to Step 3 until the end of the
iteration.

Step 5. Finally the test data labels 𝑌𝑡𝑒 are predicted accurately
by the adaptive NN classifier.

4. Experimental Evaluations

In order to demonstrate the effectiveness of the proposed
fault diagnosis method, the vast bearing vibration signals
collected from a bearing test rig are used. Dataset is acquired
from the bearing data center of Case Western Reserve Uni-
versity (CWRU) [27]. DATF is compared with the baseline
approaches and several successful methods.

(a) Baseline: NN classifier with no projection and no
adaptation is created. That is, original input is directly used
for diagnosis.

(b) NN NA: NN classifier with no adaptation is created.
Specifically, we use a new representation extracted from
original input by PCA without domain adaptation.

(c) NN SA: NN classifier with projection and domain
adaptation using subspace alignment that only reduces the
marginal distribution [28].

(a) is a baseline method without projection and domain
adaptation techniques, which is widely used in the field of
fault diagnosis. (b) is a classical method without domain
adaptation, which has achieved success inmany fault diagno-
sis applications. (c) is one of the novel and efficient approach
in domain adaptation.

4.1. Experimental Setup and Dataset Preparation. The test-
bed illustrated in Figure 3 consists of a driving motor, a
2 hp motor for loading, a torque sensor/encoder, a power
meter, accelerometers, and electronic control unit [27, 29].
The test bearings locate in the motor shaft. Subjected to
electrosparking, inner-race faults (IF), outer-race faults (OF),
and ball fault (BF) of different sizes (0.007in, 0.014in, and
0.021in) are introduced into the drive-end bearing of motor
[30]. The vibration signals are sampled with the help of
accelerometers installed to the rack with magnetic bases.

The working condition of the rotating machinery is
usually complex in real-world. For purpose of simulating
the actual application and making the experimental results
more persuasive, in our experiment, dataset, collected from
Drive-End Bearing Fault Data and sampled at a frequency
of 12kHz, is obtained from different working conditions.
Dataset includes three kinds of fault degrees (0.007in, 0.014in,
and 0.021in). Each fault degree contains four fault types of
bearings: NO, IF, OF, and BF. Each fault type of vibration data
is collected from four kinds of working conditions, i.e., L0
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Figure 3: Bearing test rig of Case Western Reserve University Data
Center.

= 0 hp/1797 rpm, L1 = 1 hp/1772 rpm, L2 = 2 hp/1750 rpm,
and L3 = 3 hp/1730 rpm. Each sample contains 2049 Fourier
coefficients transformed from the raw vibration signals using
FFT. Each domain on dataset contains four fault types and
each fault type contains 200 samples. Under our experimental
setup, it is impossible to find the optimal 𝑘 and 𝜆 via cross
validation, since labeled training data and unlabeled test
data are sampled from different working conditions. Thus,
empirically searching the parameter space is used to find
the optimal parameter settings, and details are described in
Section 4. Finally, 𝜆 = 0.1 and 𝑘 = 100 are used in our work.

In order to verify the benefits of DATF, contrast methods
of (a)-(c) are also carried out simultaneously. The scenario
settings of all experiments are trained on labeled training
data under one single load (training domain) to diagnose
the unlabeled test data under another load (test domain).
In all, 48 different transferring tests are conducted and the
description of experimental setup in detail is shown inTable 1.

4.2. Diagnosis Results of the ProposedMethod. Thediagnostic
results for fault size being 0.007in, 0.014in, and 0.021in are
shown in Figures 4, 5, and 6. The average classification
accuracies of four methods are described in Figure 7.

Each figure is composed of four subfigures and test
domains in every figure are ordered clockwise from (a):
L0, L1, L2, and L3. The left of the symbol ”− >” in every
subfigures represents the training domain and the right
represents the test domain. For each set of bars in Figures 4,
5, and 6, the performances indicate transferring from training
domain to test domain, which simulates fault diagnosis under
different working conditions. The load and speed between
different domains have large discrepancies. For example, in
Figure 4(a), the test domain is L0 (the motor load is 0hp and
speed is 1797rpm), the training domain is L1 (the motor load
is 1hp and speed is 1772rpm), L2 (the motor load is 2hp and
speed is 1750rpm), and L3 (the motor load is 3hp and speed
is 1730rpm).

From the performances of bearing fault diagnosis in
Figures 4, 5, and 6, the highest accuracy rates can always
be achieved when the training set of one domain is the
same with the testing set of one domain and this phe-
nomenon is reasonable theoretically. We can obviously find
that performances of the baseline method and NN NA are
all very poor. For example, in Figures 6(a), 6(b), and 6(c),
the accuracies are only about 75% when we transfer L3

Table 1: Description of the experimental setup.

Task
# of
tests

Diagnose unlabeled test samples in test domain

Labeled training Unlabeled test Fault Fault

(training domain) (test domain) type size

1 L0,L1,L2,L3 L0 NO,IF, 0.007in

BF,OF

2 L0,L1,L2,L3 L1 NO,IF, 0.007in

BF,OF

3 L0,L1,L2,L3 L2 NO,IF, 0.007in

BF,OF

4 L0,L1,L2,L3 L3 NO,IF, 0.007in

BF,OF

5 L0,L1,L2,L3 L0 NO,IF, 0.014in

BF,OF

6 L0,L1,L2,L3 L1 NO,IF, 0.014in

BF,OF

7 L0,L1,L2,L3 L2 NO,IF, 0.014in

BF,OF

8 L0,L1,L2,L3 L3 NO,IF, 0.014in

BF,OF

9 L0,L1,L2,L3 L0 NO,IF, 0.021in

BF,OF

10 L0,L1,L2,L3 L1 NO,IF, 0.021in

BF,OF

11 L0,L1,L2,L3 L2 NO,IF, 0.021in

BF,OF

12 L0,L1,L2,L3 L3 NO,IF, 0.021in

BF,OF

to L0, L1, and L2, respectively. Especially in Figure 4, a
lot of accuracies of baseline method and NN NA can not
reach 70% when we transfer L1 to L2. These results illustrate
traditional methods without domain adaptation can not be
applied to fault diagnosis in variable working conditions.The
performances of NN SA are better than the first two types of
methods. In Figures 5 and 6, the accuracies of NN NA for
variable working condition bearing fault diagnosis are very
high. However, in Figure 4(c), the performance transferring
between L1 and L2 is only about 90% and the accuracy is
about 94% when we transfer L3 to L2. Similar phenomena
also appear in Figure 4(a). These results mentioned above
indicate that NN NA also can not be applied to complex and
variable working condition bearing fault diagnosis. What is
exciting is that the proposed method is evidently superior to
the other three compared methods in all cases, whatever the
training domain and test domain are. Note that the accuracies
of DATF all can achieve 100% in Figures 4, 5, and 6. Even
in Figure 4(a), DATF can still achieve a favorable accuracy
(100%) while baseline method and NN NA just reach about60% and NN SA only achieve 90% when transferring from
L1 to L2. Compared to the other three methods, the average
classification accuracy (100%) of DATF has been markedly
improved.These results are all obtained from the benchmark
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Figure 4: The results with fault size being 0.007in.

datasets of fault diagnosis research under a relatively fair
experiment condition. Through the above analysis result, we
can conclude that the proposed method is very potential
for solving bearing fault diagnosis problems under different
working conditions.

To further illustrate the influence of extracted transferable
features on the results, receiver operating characteristics
(ROC) are applied for evaluation [32]. An ROC curve is
generated by plotting the false positive rate and true positive
rate as the threshold level is varied. In this paper, ROC
curves are obtained from different models based on NN
classifier, which are built on different extracted features,
and we only report ROC results on transferring test that
transfers L1 to L2 with fault size being 0.007in in Figure 8
and similar trends on all other tests. Before the iteration
begins in Figure 8(a), performances of the model built on
extracted features are unsatisfactory. After iteration 1 time in
Figure 8(b), performances of the model built on extracted
transferable features are improved dramatically, and what is
exciting is that performances based on extracted transferable
features achieve the perfect detection results ultimately.

4.3. Parameter Sensitivity. In this section, we investigate the
influence of the parameter 𝜆, which represents regularization
parameter, during transferable feature extraction. Theoreti-
cally, larger values of 𝜆 can make shrinkage regularization

more important in our work. When 𝜆 → 0 and 𝜆 →1, the optimization problem is ill-defined. Different 𝜆 has
different effects on classification accuracy. Figure 9 reports
the results. From Figure 9, it is obvious that different 𝜆 have
a great influence on diagnostic results with fault size being
0.007in and performances with fault size being 0.021in and
it has little overall effect on results with fault size being
0.014in. What is noticeable is that results are little affected by
parameter 𝜆 when the training domain and test domain are
the same, and 𝜆 ∈ [0.05,0.5] can be optimal parameter values,
which can indicate the proposed method can achieve stable
and excellent performance under a wide range of parameter
values.

4.4. Domain Discrepancy Effect of Empirical Analysis. In
many actual fault diagnosis and classification scenarios, the
distribution of training data domain is different from the
testing data domain, which leads to fault diagnostic accuracy-
dropping. In fact, the data distribution differences between
domains (training data domain and test data domain) reflect
the differences of the data structures that contain plenty of
fault messages. It is a key point for fault diagnosis to extract
fault features from data structures. In order to profoundly
understand the effect of distribution differences between two
domains and explain why the proposed method works, we
resort the t-SNE technique [31] to visualize high dimensional
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Figure 5: The results with fault size being 0.014in.

representation of mentioned methods in our experiment in a
two-dimensional map.

In all of the above-mentioned cases, take the transferring
test that transfers L1 to L2 with fault size being 0.007in as an
example in Figure 10.

From Figure 10, it is clear that the distribution discrep-
ancies of transferable features extracted via DATF between
training domain and test domain are much smaller than
the compared methods, and transferable features are much
more divisible than others.These results verify that DATF can
figure out a robust feature representation for training domain
and test domain, and test samples can be discriminated
significantly with NN classifier built in training domain by
using extracted transferable features.

4.5. Discussion. The proposed method provides a way of
domain adaptation to extract robust fault features and clas-
sify fault types under different working conditions. Several
remarks still need to be described.(1) This work presents a new point of view that
uses domain adaptation to realize bearing fault diagnosis
under different working conditions. Li [30] utilized spec-
trum images as features to conduct bearing fault diagnosis,
which applied two-dimensional principal component anal-
ysis (2DPCA) into the dimension reduction of the spec-
trum images of vibration signals and feature extraction, and
most accuracies were very high. Unfortunately, there are

still several instances having lower accuracies. To solve this
problem, we apply the domain adaptation into this field and
transferable features for training domain and test domain
are extracted to classify fault types. Finally the accuracies
all can reach 100%. In this paper, our work considers more
bearing conditions (fault size being 0.007in). Compared with
the method [30] in this situation, advantages of our method
are highlighted.(2) The vast results indicate that the proposed method
is suitable for effectively classifying mechanical health con-
ditions under different working conditions. In [9], Deep
Convolutional Neural Networks with Wide First-Layer Ker-
nel (WDCNN) and AdaBN are applied to diagnose three
datasets which contain 10 kinds of health conditions (BF IF
OF with fault size being 0.007 in, 0.014 in, and 0.021 in)
under three load conditions (Load 1, Load 2, and Load 3),
respectively, which is similar to L1, L2, and L3 in this paper.
The average accuracy of this method in [9] is 95.9%, whereas
average accuracy of DATF is 100%. The main reason is that
transferable features extracted based on domain adaptation
take full advantage of structure information of training
domain and test domain, and the distributions of transferable
features extracted from training domain and testing domain
are very close after our methods as shown in Figure 10.(3) It is noted that our method is unsupervised and
focuses on fault transfer diagnosis based on the same fault di-
ameter under different working conditions. In [14], a method
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Figure 6: The results with fault size being 0.021in.
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Figure 7: The average classification accuracies.

based on neural network by using transferring parameters is
proposed and success for diagnosing two datasets including
6 kinds of health conditions sampled from different fault
diameters (BF IF OF with fault size being 0.007 in and 0.021
in) with the same motor load and speed (L0), and it focuses
on fault diagnosis between two kinds of fault diameters under
the sameworking conditions. In addition, unlike ourmethod,
it should be noted that a small amount of labeled data in test

domain is needed when training modified neural networks,
while our method does not need labeled test data during the
training.

5. Conclusion

This paper presents a new way for solving bearing fault
diagnosis under different working conditions. Although
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Figure 8: ROC curves of faults detection based on DATF.
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Figure 9: Accuracy (%) on different 𝜆.

baseline approaches and several successful methods are all
capable of detecting the bearing defects, distributional differ-
ence of datasets sampled from different working conditions
has a huge impact on these methods, and their shallow
representations are insensitive to distinguish different pat-
terns under different working conditions. To tackle this
problem, DATF extracts transferable feature representation
for training and test domain by reducing the discrepancy
between domains and strengthen the recognizable informa-
tion in raw vibration signal. To evaluate the proposed DATF
method, bearing fault diagnosis experiments were carried
out. Extensive experiment results show that DATF is capable
of improving the performance of bearing fault diagnosis
under different working conditions, comparing with the peer
methods.
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