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Abstract: Fault diagnosis is essentially a kind of pattern recognition. The measured signal 

samples usually distribute on nonlinear low-dimensional manifolds embedded in the  

high-dimensional signal space, so how to implement feature extraction, dimensionality 

reduction and improve recognition performance is a crucial task. In this paper a novel 

machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) 

algorithm which is an extension of LLE by exploiting the fault class label information is 

proposed. The fault diagnosis approach first extracts the intrinsic manifold features from 

the high-dimensional feature vectors which are obtained from vibration signals that feature 

extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), 

and then translates the complex mode space into a salient low-dimensional feature space by 

the manifold learning algorithm S-LLE, which outperforms other feature reduction 

methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern 

classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling 

bearing fault signals are used to validate the proposed fault diagnosis approach. The results 

indicate that the proposed approach obviously improves the classification performance of fault 

pattern recognition and outperforms the other traditional approaches.  
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1. Introduction 

Bearing components play a critical role in rotating machinery, and their functionality is directly 

relevant to the operational performance, and consequently the reliability and safety of these machines and 

related systems. Therefore, it is essential to develop reliable condition monitoring and fault diagnosis 

methods to prevent roller bearings from malfunctioning. Vibration analysis is the most commonly used 

method for detecting roller bearing failures [1]. Nowadays, various fault diagnosis methods have been 

proposed for actual roller bearing fault detection based on vibration signals obtained from 

accelerometer sensors.  

Fault diagnosis of rolling bearings is now a very important research area in machinery engineering. 

The essence of fault diagnosis is pattern recognition and classification. Feature extraction is a critical 

part of pattern recognition. An optimal strategy for feature-based fault diagnosis is to find a feature 

extraction technique extracting the most salient features beneficial to classification and simultaneously 

decreasing feature dimensionality [2], so more effective feature extraction methods and more accurate 

classifiers are needed to obtain higher diagnostic accuracy. 

A challenging problem of fault diagnosis is how to deal with the high-dimensional and nonlinear  

data collected from the complete information of operating machinery. A large amount of data provides 

more available information, while also increasing the problem of effectively using these data, as the 

useful knowledge might be submerged in a large number of redundant data which increases the feature 

extraction difficulty. The approach to the problem is to apply dimensionality reduction to the data for 

the object of learning and classification. The purpose of dimensionality reduction is to obtain a more 

compact representation of the original high-dimensional data, a representation that nonetheless 

captures all the information necessary for higher-level decision-making. For fault feature extraction, 

the classical dimensionality reduction methods include principal component analysis (PCA) [3],  

multi-dimensional scaling (MDS) [4] and linear discriminate analysis (LDA) [5]. However, these 

approaches are only effective on datasets with a linear structure and a Gaussian distribution. It is 

difficult for us to use these methods to discover nonlinear structure in the fault data, resulting, from the 

point of view of fault classification, in low accuracy fault identification or misjudgment. Among 

traditional nonlinear mapping methods, Sammon mapping [6] and the neuroscale method [7] are used. 

The former uses an iterative process that results in intensive computation, while the latter uses a radial 

basis function network and has similar shortcomings as neural networks. Meanwhile, manifold learning, 

a new, effective nonlinear dimensionality reduction method, has attracted more and more attention 

recently. The approach provides a new means for intelligent fault diagnosis. 

Compared with linear methods, the purpose of manifold learning methods is to project the original 

high-dimensional data into a lower dimensional feature space by preserving the local neighborhood 

structure, and they are effective for us to discover the intrinsic structure of nonlinear high-dimensional 

data for data analysis. At present, the representative methods include isometric mapping (Isomap) [8], 



Sensors 2015, 15 16227 

 

 

locally linear embedding (LLE) [9], Laplacian Eigenmaps (LapEig) [10], local tangent space 

alignment (LTSA) [11], etc. Today, manifold learning methods are widely used in cluster analysis, 

image processing, bioinformatics, etc. For instance, the LLE algorithm is used to extract characteristic 

MR features of brain alterations [12] and solve face recognition problems [13]. A local embedding method 

based on LLE and a semi-supervised LapEig algorithm is presented to achieve lower dimensionality 

from high-dimensional data and implement data visualization and classification [14,15]. Furthermore, 

manifold learning is relatively seldom studied in the fault diagnosis field. Yang [16] proposed a 

nonlinear time series noise reduction method based on principal manifold learning applied to the 

analysis of gearbox vibration signals with snaggletooth, which was only for signal denoising. The 

LTSA algorithm as a typical manifold learning method used for dimensionality reduction from original 

high-dimensional feature datasets [1]. However, this traditional manifold learning is an unsupervised 

learning method, and cannot be applied efficiently to supervised learning problems. 

In some fault diagnosis tasks, data are from multiple classes and the class label information is known, 

which can help in classification tasks. The information provided by these class labels may be used to 

guide the dimensionality reduction procedure. 

For the supervised expansion of manifold learning, a supervised LLE method (SLLE) for classification 

problems by utilizing the class label information was proposed by Ridder et al. [17]. Although SLLE 

improves the performance of LLE related to classification, the information provided by the Euclidean 

distance between samples is not sufficient to select proper neighbors for classification. A supervised 

manifold learning approach based on correntropy LLE with class labels information for visualization and 

classification on noisy artificial and real-world datasets was proposed by Genaro et al. [18]. Based on 

probability-based distance and the supervised locally linear embedding technique, a novel dimension 

reduction method for classification is introduced in [19]. A novel supervised manifold learning 

technique called Supervised Laplacian Eigenmaps (S-LE) was proposed by Raducanu et al. [20], 

which makes use of class label information to guide the non-linear dimensionality reduction procedure 

for face recognition problems by adopting the large margin concept. Zhang et al. introduced in [21] a 

supervised feature extraction method called locally discriminating projection (LDP) and achieved good 

recognition accuracy. A new supervised manifold learning algorithm based on the S-LapEig algorithm 

for machinery fault diagnosis was introduced in [22] by Jiang et al., and the good performance of the 

approach on a series of benchmark and real fault datasets verified its feasibility and efficiency.  

Su et al. [23] proposed a fault diagnosis method based on supervised extended local tangent space 

alignment (SE-LTSA) for dimension reduction to improve the effectiveness of fault diagnosis in 

machinery. Most of these methods are based on the improvement of manifold learning methods and to 

solve a certain task. 

In this paper, aimed at addressing the difficulty of handling high-dimensional nonlinear fault data, 

we propose a new fault classification approach based on supervised manifold learning for rolling bearing 

fault diagnosis. Because of the prominent properties of considering both the local geometry information 

and the class information of the data, the proposed approach has efficient capability to deal with  

the supervised learning problem. Some experiments with the proposed method show its feasibility  

and effectiveness. 

The remainder of the paper is organized as following: in Section 2, LLE theory and manifold 

learning methods are reviewed, and a new supervised manifold learning (statistical locally linear 
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embedding, S-LLE) algorithm for feature extraction or reduction is proposed. The implementation 

steps of the algorithm are described in detail. In Section 3, we discuss a rolling bearing fault diagnosis 

strategy, and introduce the implementation process and flow chart of the proposed approach. In 

Section 4, we illustrate a feature extraction method by utilizing time-domain, frequency-domain and 

EMD analysis of the original rolling bearing vibration fault signals. In Section 5, we introduce the rolling 

bearing fault experiment setup and signal acquisition first, and then implement feature 

dimension reduction experimentally by utilizing S-LLE, and comparisons with other feature reduction 

methods such as PCA, LDA and LLE are also discussed. Finally, the proposed fault diagnosis approach is 

applied to pattern classification experiments with the original data and reduction of statistical features 

extracted from multi-domain rolling bearing vibration fault signals by three classification algorithms, 

namely, CART, K-NN and RBF-SVM, and the classification performance is analyzed and discussed. 

Finally, the conclusions are presented in Section 6.  

2. Statistical Locally Linear Embedding Algorithm 

2.1. Locally Linear Embedding Algorithm 

The locally linear embedding (LLE) algorithm was originally proposed by Roweis et al. [9] to 

achieve non-linear dimension reduction. LLE is an unsupervised learning algorithm that can compute 

low-dimensional features that preserve the neighborhood relationship as that of the high-dimensional 

data. In other words, the low dimensional space is required to preserve the neighborhood 

configuration. The LLE algorithm to compute a lower-dimensional representation of the original data 

is described as follows. 

Given a set of data,  1 2, , nX x x x  is in a high-dimensional input data space DR . The data points 

are assumed to lie on or near a nonlinear manifold of intrinsic dimensionality d D . The goal of LLE 

is to find a low-dimensional embedding of dataset X  by mapping the D-dimensional data into a single 

global coordinate system in Euclidean distance DR . The LLE algorithm can be generalized to three 

steps: select neighbors, reconstruct with linear weights and map to embedded coordinates. The steps of 

the LLE algorithm are illustrated in Figure 1. 

Step 1: Using the Euclidean distance to define neighborhood of each input vector. Consider the -thi  

sample
ix  with K-nearest neighbors jx  ( i j ). The neighborhood of each sample provides prior 

knowledge for LLE and affects the reconstruction result. The nearest neighbors of each sample can be 

identified by selecting a fixed number K of nearest neighbors in the Euclidean distance. Another approach 

is to choose samples within a fixed radius r  as neighbors. The process of neighborhood selection can 

be flexible and various.  

Step 2: Reconstructing each sample by the linear combination of its neighbors. Compute the best 

reconstruct weights ijw  of each input sample, 0ijw  >  and 1
ijj

w  . The optimal reconstruction 

weight matrix n nW   can be derived from minimizing the reconstruction error by properly selecting the 

reconstruction weights. The reconstruction error is thus formulated as: 

2

1 1

ε( )
n n

i ij j

i j

W x w x
 

  
 

(1) 
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Step 3: Computing the coordinates of the original high dimensional data 
ix  in the low dimensional 

space. The low dimensional embedding is obtained based on the idea that LLE preserves the local 

linearity from neighbors and the corresponding reconstruction weights n nW  . Using n nW  , the low 

dimensional output space Y  can be computed by minimizing the cost function: 

2

1

( )
n

i ij j

j

Y y w y


  
 

(2) 

Subject to two constraints:
1
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i i d di
y y N I 

 , 
1

0
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ii
y


 , where 

ijw  is the same linear 

combination weight in the high-dimensional space and where Y  is an n d  embedding data matrix 

(being d D ), and d

iy R  is the output sample vector, and 0  is a column vector of zeros. Based on 

W , we can define a sparse, symmetric, and positive semi definite matrix M  as follows:  

( ) ( )TM I W I W    (3) 

Then, rewriting Equation (3) to find Y : 

1 10
( ) ( ) . .

n dT

T

d d

I Y
Y tr Y MY s t

Y Y n I

 




  

  
(4) 

It is possible to calculate d  + 1 eigenvectors of M , which are associated to the d  + 1 smallest 

eigenvalues. The first eigenvector is the unit vector with all equal components, which is discarded. The 

remaining d  eigenvectors constitute the embedding coordinates found by LLE.  

ijw
ix

jx

ix

jx

iy

jy

ijw

         (a)                                  (b)                                (c)   

Figure 1. Illustration of LLE algorithm: (a) Select neighbors; (b) Reconstruct with 

embedded linear weights; (c) Map to coordinates. 

2.2. Statistical Locally Linear Embedding Algorithm 

As mentioned above, the class label information is not utilized in the LLE dimensionality reduction 

process. The statistical locally linear embedding algorithm (S-LLE) is proposed based on utilizing 

class label information in the LLE algorithm to improve performance. The main idea of S-LLE is to 

utilize sample statistics to measure the relationship between samples. The membership of a sample laying 

on a nonlinear manifold can still be estimated using either parametric or nonparametric approaches.  

In the parametric approach, each class is decomposed to a set of clusters (subclasses) because the 

high dimensionality data is complicated and cannot be modeled by only one Gaussian model. A 
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cluster-space representation for classification is extended to estimate the pairwise similarity between 

samples [24]. The K-means clustering algorithm [25] was selected due to its efficiency and easy 

implementation. The purpose of the K-means algorithm is to partition data into a fixed number of K

clusters by minimizing the mean squared error distance. After clustering, the training sample would be 

labeled into KL  clusters, where L  is the number of classes and K  is the number of clusters of each 

class. That means we have KL  subclasses. The probability density of a sample X  with D  dimension 

in subclass ωik  can be defined as: 

1
1 2

2

1 1( ) exp ( ) ( ) ( )
2

(2 )

T
ik ik ik ik

D
ik

p x x m S x m
S


  
 
  

    
 

 
(5) 

where ω
ik

 is the k-th cluster in class i , ikm  is the mean of and 
ik ik

S S r I    is the sample covariance 

matrix of ω
ik

 plus a small value r  times identity matrix to prevent singularity.  

Since the subclasses are mutually exclusive and statistically exhaustive, the likelihood of sample x  

in a class can be determined by the sum overall the subclasses, is given by: 

1

( ) ( )
K

ik
i ik

ik

n
p x p x

n


  
 

(6) 

where in  is the number of samples of the k-th class, and n  is the number of samples of k-th cluster  

in class i . 

In the nonparametric approach, the Parzen-window density estimation technique [26] was used to 

estimate the membership of samples and devise the statistic based similarity between samples. The 

Parzen-window defined a D -dimensional hypercube local region V  with its length h  to estimate 

density, i.e., DV h , the number nk  falls into the hypercube V  centered at x  given by: 

1

( )
n

i
n

i

x x
k

h


 

 
(7) 

where φ( )  is a kernel function defined as: 

1, 1 2
( )

0,

x
x

otherwise


  



<
 (8) 

Therefore the density can be estimated as: 

1

1 1
( ) ( )

j

n
i

j
i

x x
p x

n V h


  

 
(9) 

where 
jn  is number of samples in class ω j

. Thus the likelihood of a sample for each class can be 

estimated as follows: 

1

( ) ( )
K

i ik
k

p x p x


    (10) 

Without loss of generality, we assume that samples are independent. Therefore, the likelihood of 

samples x  and x  belonging to the same class ωi  is equal to the product of the individual likelihoods. 

A new distance measure between any pair of samples can be defined as: 



Sensors 2015, 15 16231 

 

 

 ( , ) max log ( ) ( )i i
i

d x x p x p x    
 

(11) 

The measurement d  incorporates the class information provided by the statistical cluster model for 

each class. In S-LLE, d  is used to find the neighbors of each sample instead of the original Euclidean 

distance in the first step of LLE algorithm. Later, the K-nearest neighbors of each sample are 

determined according to d . The subsequent steps follow the same procedure as LLE. 

Both the parametric and nonparametric approaches can be used in statistical LLE to estimate the  

class-conditional probability density function of samples. The statistical LLE algorithm improves the 

performance of LLE in classification applications by incorporating class label information.  

3. Statistical Locally Linear Embedding Algorithm for Bearing Fault Diagnosis 

In this paper, we propose a new nonlinear dimensionality reduction method based on supervised 

manifold learning theory, which is a new fault diagnosis approach called the S-LLE algorithm. Taking 

special consideration of both the information of labeled data and local neighbor geometry information, 

the algorithm can obtain the whole intrinsic geometry of the dataset, and has good data classification 

performance. The approach first learns the intrinsic geometric structure of the fault data in the signal 

space to capture the nonlinear embedded manifold features and map the high-dimensional fault data 

into a low-dimensional embedded space. The process of the presented algorithm consists of two parts: 

training and testing. First we divide the fault dataset into a training dataset and a test dataset. Using the 

proposed S-LLE algorithm, the class label information is used to determine neighbors of the training 

dataset so as to map overlapping high-dimensional data into clusters in the embedded space, we map 

the training dataset into a low-dimensional feature space, and exploit the characteristic patterns of  

the dataset. 

In order to further improve the diagnosis performance and ensure the diagnosis reliability, the 

rolling bearing fault diagnosis model based on the supervised manifold learning S-LLE approach can be 

described in four main steps as follows: signal acquisition, feature extraction, dimensionality reduction 

and pattern recognition. The implementation process and flow chart of the proposed approach is shown 

in Figure 2: 

(1) Signal acquisition: The acquisition of the original vibration signals is the first step in the 

rolling bearing fault diagnosis process.  

(2) Feature extraction: Feature extraction directly characterizes the information relevant to the 

bearing conditions and greatly affects the final diagnosis results. The time-domain, 

frequency-domain and time–frequency domain features extracted from the original  

vibration signal by the empirical mode decomposition method are utilized to construct the  

multi-domain fault feature dataset. 

(3) Dimensionality reduction: The multi-domain feature set can fully represent the bearing 

faults. However, all of these high-dimensional feature vectors are not independent of each 

other and there is much redundant information embedded in the high-dimensional feature 

space. In addition, different features have different importance in the different fault states. In 

order to reduce the computation time for the diagnosis model, the supervised manifold 
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learning method S-LLE is used to select the salient features from the raw statistical  

feature dataset.  

(4) Pattern recognition: Implementing fault classification of the training samples in the  

low-dimensional embedded space according to class label information and learning 

geometric structure feature by optimized classifiers. To test the dataset, we also map it onto 

the same feature space according to the mapping matrix of the training dataset, and evaluate 

the classification capability. Finally, pattern recognition is carried out in the embedded 

spaces. In order to reliably diagnose complex roller bearing faults, the proposed fault 

diagnosis approach is applied for the roller bearings fault diagnosis. 

Time-domain 
analysis

Vibration 
monitoring equipment

Vibration signal collection 
from sensors

Frequency-domain 
analysis

Time-frequency 
domain analysis

12 Statistical 
features

Feature  dimension reduction 
from multi-domain feature 

dataset by S-LLE

Training 
dataset

Training fault 
diagnosis model 
by classifier 

Fault diagnosis 
result output

4 Statistical 
features

6 Statistical 
features

Test
 dataset

Signal 

acquisition

 Feature 

extraction

 Dimensionality 

reduction

Pattern 

recognition

 

Figure 2. The implementation process and flow chart of the proposed approach. 

Compared with other fault diagnosis methods, this method has several advantages as follows: 

(1) The method is based on nonlinear dimensionality reduction and can treat high-dimensional 

nonlinear data, which avoids the “curse of dimensionality”. 

(2) The method can capture more accurately the intrinsic geometric distribution properties of 

samples by the sample label information, and utilize the obtained distribution feature to 

classify the fault category. 
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(3) The feature extraction method based on time-domain, frequency-domain and time-frequency 

domain is simple and the implementation speed is high, which greatly reduces the fault 

diagnosis difficulties. 

4. High-Dimensional Fault Features Extracted from Accelerometer Sensor Vibration Signals 

In recent years, intelligent fault diagnosis based on statistical features has received extensive 

attention because it can exploit important fault-related information contained in machinery operating 

vibration signals, and many fault diagnosis methods are proposed based on the features extracted from 

vibration signals [27]. Vibration signal analysis is an important means in the field of online detection 

and fault diagnosis of mechanical equipment. Generally, these signals are generated by accelerometer 

sensors on rolling bearings [28]. When faults occur in a rolling bearing, the vibration signal in this 

malfunction condition will deviate in the time-domain from that of normal condition both in amplitude 

and phase position. Meanwhile, the amplitude and distribution in the frequency spectrum of the 

transformed vibration signal also will change under different fault conditions [1].  

The essential aim of signal processing is to map a signal from the time domain into another space in 

which some important information of the signals can be revealed, and consequently, some dominant 

features of the signals can be extracted [29]. When faults or abnormal running states occur, the 

measured vibration signals are usually non-stationary and non-linear, and the components of the 

vibration signals are also very complicated. Time-frequency domain methods are considered to be best 

way for analyzing the nonlinear and non-stationary signals of faulty bearings [30,31] due to the 

deficiencies of the Fourier transform. Wavelet transform [32,33] is a commonly used time-frequency 

domain signal analysis method, but the results of wavelet transform are related to the selected wavelet 

basis. Empirical Mode Decomposition (EMD) [30] doesn’t need a base function and is completely 

based on the local characteristic time scale of the signal, so EMD is a self-adaptive signal processing 

method that is applicable to non-stationary and non-linear vibration signals and fault diagnosis of 

rotating machinery [34,35]. 

Many research results show that a multi-domain feature set can fully represent the bearing fault 

feature information which can provide an effective diagnosis for various faults of rolling bearings 

operating under variable speed and load or unknown speed conditions. For this purpose, various 

original features that can be extracted from accelerometer sensor signals of bearings have been 

investigated. This section presents a vibration signal feature calculation method from the time-domain, 

frequency-domain, and time-frequency domain as they will be used in a high-dimensional fault  

feature dataset. 

A large set of statistical feature parameters has been defined in the process of roller bearing fault 

diagnosis, among which, six dimensional time-domain features including mean value ( mT ), root mean 

square ( rmsT ), root value ( rT ) standard deviation ( sdT ), skewness ( skT ), Kurtosis ( kuT ) and six 

dimensionless time-domain features including shape indicator (
sfT ), crest factor (

cfT ),impulse factor  

( ifT ), clearance factor ( clfT ), skewness factor ( skfT ), kurtosis factor ( kufT ) and four frequency-domain 

statistical parameters including mean frequency ( mfF ), frequency center ( fcF ), root mean square 

frequency (
rmsfF ) and root variance frequency (

rvfF ) are used to construct the roller bearing statistical 

feature set as shown in Tables 1 and 2. These statistical features have demonstrated their effectiveness in 
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previous publications, not only independent of speeds and loads, but to some extent they also can 

indicate complex roller bearing faults. 

Table 1. Time-domain features. 

No. 
Dimensional 

Features 

Feature  

Definition 
No. 

Dimensionless 

Features 

Feature 

Definition 

1 Mean  
1

1 n

m i

i

T x
n 

   7 Shape factor 
rms

sf

T
T

x
  

2 Root mean square 

1/2

2

1

1 n

rms i

i

T x
n 

 
  
 
  8 Crest factor 

max
cf

rms

x
T

x
  

3 Root 

2

1/2

1

1 n

r i

i

T x
n 

 
  
 
  9 Impulse factor 

max
if

x
T

x
  

4 Standard deviation 

1/2

2

1

1
( )

1

n

isd
i

T x x
n 

 
 
 

 

  10 Clearance factor 

max
clf

r

x
T

x
  

5 Skewness 

3

1

3

( )

( 1)

n

i

i
sk

sd

x x

T
n T









 11 Skewness factor 3

sk
skf

rms

T
T

T
  

6 Kurtosis 

4

1

4

( )

( 1)

n

i

i
ku

sd

x x

T
n T









 

12 Kurtosis factor 4

ku
kuf

rms

T
x

T
  

Here ix  is a signal time series for 1,2,...,i n , and n  is the number of data points, max max ix x  

and 
1

1 n

i

i

x x
n 

   is the absolute mean value. 

Table 2. Frequency-domain features. 

No. Features Feature Definition No. Features Feature Definition 

1 Mean frequency 
1

=
N

mf i

i

F p N


  3 
Frequency 

center 

1

1

N

i i

i
fc N

i

i

f p

F

p









 

2 
Root mean square 

frequency 

1

2
2

1

1

N

i i

i
rmsf N

i

i

f p

F

p





 
 
 
 
 
 




 4 

Root variance 

frequency  

 
1

22

1

1

N

i mf i

i
rvf N

i

i

f F p

F

p





 
 

 
 
 
 




 

Here ip  is the power spectrum of ( )x i , 1,2,...,i N , N is the number of spectrum liness, and if  is 

the frequency value of the -thi — spectrum line. mfF  can indicate the vibration energy in the frequency 

domain, fcF  and rmsfF  describe the position change of the main frequency, and rvfF  may show the 

centralized or decentralized degree of the spectrum power energy. 
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However, when the roller bearing fault is at an early stage, it is very hard to distinguish the feeble 

fault features only from the time-domain and frequency-domain signals. In this study, we adopt EMD 

energy to further mine for more characteristic information for accurate roller bearing diagnosis. EMD 

energy can reveal the original vibration signal in the time-frequency amplitude and distribution  

view. Some previous researches show that the typical roller bearing faults can be identified by EMD  

energy [30,34]. 

The original vibration signal is decomposed into a finite stationary intrinsic mode function (IMF) by 

the EMD method, the procedure needed to generate the adaptive IMF basis. An IMF is defined as any 

function satisfying the following conditions:  

(1) In the whole dataset, the number of extrema and the number of zero crossings must either equal 

or differ by at most one; 

(2) At any point, the mean value of the envelope defined by the local maxima and the envelope 

defined by the local minima is zero. 

Based on EMD algorithm, the rolling bearing original vibration signal ( )x t  can be decomposed into 

a set of IMFs: 

)()()(
1

trtctx n

n

j

j 
  

(12) 

where ( )jc t  is the -thj — IMF of the signal ( )x t  which represents different frequency bands ranging from 

high frequency to low frequency, and ( )nr t  is the final residue which can be a monotonic trend. More 

detailed information about EMD can be found in [5]. 

For an arbitrary time series ( )x t , we can always have its Hilbert transform ( )y t : 

1 ( )
( )

x
y t p d

t






 
  

 
(13) 

where P represents the Cauchy principal value. With this definition ( )x t  and ( )y t , we can have an analytic 

signal ( )z t : 

)()()()()( tietatiytxtz   (14) 

In which, 
2122 ])()([)( tytxta  , 

( )
θ( ) arctan

( )

y t
t

x t
  It is also well know that the amplitude of the 

analytic signal ( )a t , in Equation (13) represents the envelope signal ( )x t . The time derivative of the 

phase θ( )t  will be the instantaneous frequency of the signal ω( )t , as 
( )

ω( )
d t

t
dt


 .Therefore, the IMF 

component ( )jc t  can be expressed in the following representation as follows: 

( )

( ) ( )
ji t dt

j jc t a t e


 
(15) 

where ( )ja t  is the amplitude of the -thj  IMF component using Hilbert transform. The amplitude 

energy of each IMF is computed as follows:  

1

( )
N

i j m

m

E a t


  (16) 
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where 1,2,...,m N , N denotes the discrete data length of -thj  IMF and mt  is the amplitude of 

discrete point m  in the -thj  IMF component. The time-frequency domain feature vector set I  with the 

amplitude energy is constructed as follows, and I  is regulated by normalizing the feature for the 

convenience of the following diagnosis: 

 1 2, ,..., nI E E E  (17) 

where n  is the IMF number. In this study, the first six intrinsic mode functions (IMFs) containing 

almost all the valid information are selected. When different faults occur in the roller bearing, each 

IMF component will change in terms of its intrinsic information. By an energy calculation for each IMF 

component, the characteristic information of the original signal can be extracted more fully and 

effectively. Thus, the whole multi-domain feature set containing 22 statistical features is constructed, 

which is composed of 12 time domain, four frequency domain and six time-frequency domain terms. 

5. Roller Bearing Fault Diagnosis Experiments and Analysis 

5.1. Experiment Setup and Signal Acquisition 

To evaluate the effectiveness of the feature extraction and dimensionality reduction methods for 

rolling bearings, bearing vibration data of different faults related to the bearing in this paper were 

provided by the Bearing Data Center of the Case Western Reserve University (CWRU), and acquired 

by bearing accelerometer sensors under different operating loads and bearing conditions [36]. The 

bearing data have been validated in many researches [37,38] and has become a standard dataset for 

rolling bearings. In this experiment, the rolling bearings are installed in a motor-driven mechanical 

system. As shown in Figure 3, the rolling bearing fault test rig is made up of a 2 HP motor (left), a 

torque transducer/encoder (center), and a dynamometer (right).  

 

Figure 3. The rolling bearing fault test-bed. 

The bearing type is SKF6205-2RS JEM, a deep groove ball bearing. Four types of vibration signal 

datasets (normal, ball fault, inner race fault and outer race fault) are acquired from the bearings with 

the sampling frequency of 48 kHz during about 10 s by using a 16 channel DAT recorder, and tested 
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under motor loads is 2 HP at the speed of 1750 r/min. A single point fault is introduced to the test 

bearing inner race and outer race, respectively, using an electro-discharge machining with the fault 

diameter of 21 mils inches and the fault depth of 11 mils (1 mil = 25.4 um). More detailed information 

about the test rig can be found in [36]. The length of the signal data in every dataset is about 480,000, we 

can extract 100 samples for each vibration condition, that is, every sample data includes 4096 points, and 

thus the overall dataset consists of 400 samples. Figure 4 presents the vibration signal waveforms and 

power spectra from four signal samples of the different fault types.  

 

Figure 4. The vibration signal waveforms and power spectra from the different fault types: 

(a,b) Normal bearing vibration waveform/power spectrum; (c,d) Inner race fault vibration 

waveform/power spectrum; (e,f) Ball fault vibration waveform/power spectrum; (g,h) Outer 

race fault vibration waveform/power spectrum. 

5.2. Feature Extraction 

For the every obtained data set, we extract statistical 22 features following the time-domain, 

frequency domain and time-frequency domain for the next feature dimension reduction. Twelve  

time-domain and four frequency-domain statistical features could be calculated directly using the 

feature definition equations as shown in Tables 1 and 2, and time-frequency domain features are 

extracted from the EMD energy. The calculated value of the six dimensional and six dimensionless 

time-domain statistical features are shown in Figures 5 and 6, respectively, and the calculated value of 

the four frequency-domain statistical features are shown in Figure 7. The six time-frequency domain 

statistical features obtained from the first six IMFs energy are obtained by applying EMD method. The 

EMD result of a signal sample in the dataset is shown in Figure 8. 
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Figure 5. The six dimensional time-domain features value in the dataset: (a) Mean;  

(b) Root mean square; (c) Root; (d) Standard deviation; (e) Skewness; (f) Kurtosis (Note: 

sample data No.1–100, 101–200, 201–300, 301–400, represent normal, inner race fault, ball 

fault and outer race faults, respectively). 

 

Figure 6. The six dimensionless time-domain features value in the dataset: (a) Shape 

factor. (b) Crest factor; (c) Impulse factor; (d) Clearance factor; (e) Skewness factor;  

(f) Kurtosis factor (Note: sample data No.1–100, 101–200, 201–300, 301–400 represent 

normal, inner race fault, ball fault and outer race faults, respectively). 
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Figure 7. The four frequency-domain features value in the dataset: (a) Mean frequency;  

(b) Frequency center; (c) Root mean square frequency. (d) Root variance frequency (Note: 

sample data No.1–100, 101–200, 201–300, 301–400 represent normal, inner race fault, ball 

fault and outer race faults, respectively). 

 

Figure 8. The first six IMFs obtained by applying EMD method to a signal sample in the 

dataset: (a) Normal; (b) Inner race fault; (c) Ball fault; (d) Inner race fault (Note: sample 

data No. 1–4096, 4097–8192, 8193–12288, 12289–16384 represent normal, inner race 

fault, ball fault and outer race faults, respectively). 
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The normalized IMFs energy was analyzed after EMD, and the results are shown in Figure 9, and 

the energy distributions are mutually different. From Figure 9, we note that there is a relatively large 

difference between the normal bearing and the faulty bearing signals. 

 

Figure 9. The normalized amplitude energy features value of the first six IMFs by EMD 

method (Note: sample data No. 1–100, 101–200, 201–300, 301–400 represent normal, inner 

race fault, ball fault and outer race faults, respectively). 

5.3. Feature Dimension Reduction 

In traditional diagnosis methods, these 22 features value are calculated from vibration signals to 

construct feature vectors which are directly input into the diagnosis model for rolling bearing fault 

diagnosis. However, due to the fact the diagnosis model involves too many parameters, directly 

applying a model on such high-dimensional feature set is very complicated and inefficient. Based on 

the manifold learning theory, the specific samples in the same state have the same distribution property 

and geometric structure in the sample space. The samples in different states also have different 

embedded manifolds. One only needs to select the salient features by a manifold learning algorithm to 

recover the geometric distribution embedded in the high-dimensional fault features [1]. 

In order to demonstrate the superiority of the presented S-LLE dimensionality reduction method, 

when S-LLE is carried out in the process of the training sample labeled into KL  clusters, K  is set to 4 

and L  is set to 4. An experiment was conducted on the dataset to evaluate its dimensionality reduction 

performance on the sample dataset and make a comparison with PCA, LDA, and LLE as the most 

representative dimensionality reduction approaches. The experimental results of dimensionality 

reduction with the four approaches are shown in Figure 10, where it can be seen that PCA, LDA and 

LLE have poor sample classification performance. PCA and LDA obviously have three classes of overlap 

and LLE obviously has two classes of overlap. Compared with them, S-LLE can obtain a more clear 
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separation of the clustering on the mapping, so S-LLE can identify each fault accurately for all feature 

samples. This is due to the fact that S-LLE has a greater ability to discovery local neighbor geometry 

information in the data manifold by utilizing the class label information. Therefore, we can use the  

S-LLE algorithm to obtain the original multi-domain feature dataset and select the salient features. 

This added process can capture intrinsic global geometric structure embedded in the high-dimensional 

fault features and achieve an efficient classification for fault pattern recognition. 

 

 

    

Figure 10. Feature dimension reduction to rolling bearing multi-domain feature in the 

dataset: (a) Mapping with PCA; (b) Mapping with LDA; (c) Mapping with LLE; (d) Mapping 

with S-LLE. 

5.4. Classification Performance Analysis 

In this section, three classifiers are adopted to evaluate the performance of the feature reduction 

method based on S-LLE, which are classification and regression trees (CART), K-nearest-neighbor 

classifier (K-NN, K = 4), and support vector machine with RBF kernel (RBF-SVM). In this study, 

PRTools [39] is used to implement K-NN, and CART classifier, and LIBSVM [40] is used to implement 

the SVM classifier. For the RBF-SVM classifier, there is a parameter C  to control the trade-off 

between the margin and the size of the slack variables, and there is also a parameter   for the RBF 

kernel function. Hence, we will use the ten-fold cross-validation and the gird search to find the best C  
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within the given set { 5 3 15
2 , 2 , , 2
  } and the best γ  within the given set { 15 13 3

2 , 2 , , 2
  } of parameters 

to optimize RBF-SVM classifier. 

These classifiers trained on the reduced feature dataset are compared to that of classifiers trained on 

the 22 original statistical feature dataset. In this experiment, 50 signal samples per class are selected 

randomly as a training dataset, thus 200 samples are collected as the training dataset to calculate the 

fitness function and construct the diagnosis model, and 20, 40, 60, 80, 100 samples per class, 

respectively, are selected as the test dataset to test the classification accuracy rate. Each experiment is 

carried out ten times, to give ten classification results. The average classification accuracy using statistical 

LLE is presented in Table 3. Figure 11 shows the visualized representation of the comparison result of 

the average classification accuracy between the proposed method and the classical methods.  

Table 3. The average classification accuracy (%) the original and reduction of statistical 

features extracted from multi-domain by various classifiers using statistical LLE. 

Test Samples 

Size per Class 

CART K-NN RBF-SVM 

Original 

Feature 

Reduced 

Feature 

Original 

Feature 

Reduced 

Feature 

Original 

Feature 

Reduced 

Feature 

20 89.24 93.56 92.35 95.43 92.79 97.26 

40 84.63 93.05 89.87 94.25 90.35 96.34 

60 83.35 92.17 86.61 93.78 87.63 95.22 

80 81.14 91.10 84.75 92.63 85.81 94.35 

100 77.76 90.54 83.56 91.84 82.32 94.07 

 

Figure 11. The comparison of the average classification accuracy with different features 

dataset on classifiers using statistical LLE.  

Further comparison on the classification effect between statistical LLE and supervised LLE [17] 

methods which all utilize the class label information, the parameter α which controls the amount to 

which class label information fully used should be incorporated is set to 0.5, using the same calculation 

procedure as above, the average classification accuracy using supervised LLE is presented in Table 4, 

and the visualized representation is shown in Figure 12. 
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Table 4. The average classification accuracy (%) the original and reduction of statistical 

features extracted from multi-domain by various classifiers using supervised LLE.  

Test Samples 

Size per Class 

CART K-NN RBF-SVM 

Original 

Feature 

Reduced 

Feature 

Original 

Feature 

Reduced 

Feature 

Original 

Feature 

Reduced 

Feature 

20 85.72 90.34 87.38 92.67 88.45 94.53 

40 80.12 88.75 84.26 91.19 86.73 93.34 

60 78.95 87.63 81.47 90.26 83.24 92.06 

80 76.84 86.58 79.15 88.23 81.76 90.69 

100 73.45 85.93 78.22 87.84 79.57 89.78 

 

Figure 12. The comparison of the average classification accuracy with different features 

dataset on classifiers using supervised LLE. 

As shown in Tables 3 and 4 and Figures 11 and 12, it can be seen that various classifiers  

perform better on the reduced feature dataset than on the original statistical feature dataset, and the average 

classification accuracy by various classifiers using the statistical LLE method is higher than that using 

supervised LLE. From Table 3, among these classifiers, the CART classifier works the worst on the 

original statistical feature set (the average classification accuracy is in the range of 77.76%–89.24%), 

whereas the reduced features followed by the CART classifier perform relatively well (the average 

classification accuracy is in the range of 90.54%–93.56%). Among the three classifiers, the optimized 

RBF-kernel SVM has a higher diagnostic accuracy than that of CART, and K-NN in roller bearing fault 

diagnosis, and the accuracies on the reduced feature dataset are in the range of 94.07%–97.26%, and on 

the original feature dataset they range from 82.32% to 92.79%. Therefore, a reasonable feature dimension 

reduction method is a necessary step prior to final classification on account of the fact the original 

feature dataset contains too much fault unrelated or redundant information. Overall, from the above 

experimental results, it can be seen that the parameter-optimized SVM model has high diagnostic 

accuracy; these experimental results also indicate that the proposed diagnosis model is obviously 

superior to the traditional diagnosis methods with reduced feature datasets. This demonstrates the 

effectiveness of S-LLE for feature dimensionality reduction of the given input space, and also 

confirmed the obviously improveed performance of the classifier.  
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6. Conclusions 

In this paper, aimed at addressing the difficulty of dealing with high-dimensional nonlinear fault 

data, we propose a new fault reduction and classification approach based on statistical locally linear 

embedding (S-LLE) for rolling bearing fault diagnosis. Because of the prominent features of 

considering both the local geometry information and the class information of the data, the proposed 

approach efficiently deals with the supervised learning problem. For dealing with the test fault samples, 

the approach applies S-LLE to find the projection that best approximates the implicit mapping from 

high-dimensional feature samples dataset to their embedding. The experimental result show that  

S-LLE outperforms the other traditional dimensionality reduction methods such as PCA, LDA and 

LLE. Finally fault classification is carried out in the embedded space. Some experiments show the  

RBF-SVM classifier has the best fault classification performance through the use of the feature reduction 

methods based on S-LLE. The experimental results indicate that the proposed approach obviously 

improves the fault classification performance, and can be an effective and efficient tool for rolling 

bearing fault diagnosis. Therefore, we can safely make use of S-LLE in order to extract the most 

effective and salient features for classification in practical applications. 
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