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Bearing Fault Diagnosis for Direct-Drive Wind
Turbines via Current-Demodulated Signals

Xiang Gong, Student Member, IEEE, and Wei Qiao, Senior Member, IEEE

Abstract—Bearing faults account for a large portion of all faults
in wind turbine generators (WTGs). Current-based bearing fault
diagnosis techniques have great economic benefits and are poten-
tial to be adopted by the wind energy industry. This paper models
the modulation effects of bearing faults on the stator currents of
a direct-drive wind turbine equipped with a permanent-magnet
synchronous generator (PMSG) operating with a variable shaft
rotating frequency. Based on the analysis, a method consisting of
appropriate current frequency and amplitude demodulation algo-
rithms and a 1P-invariant power spectrum density algorithm is
proposed for bearing fault diagnosis of variable-speed direct-drive
wind turbines using only one-phase stator current measurements,
where 1P frequency stands for the shaft rotating frequency of a
wind turbine. Experimental results on a direct-drive wind turbine
equipped with a PMSG operating in a wind tunnel are provided to
verify the proposed fault diagnosis method. The proposed method
is demonstrated to have advantages over the method of directly us-
ing stator current measurements for WTG bearing fault diagnosis.

Index Terms—Ball bearings, current measurement, demodu-
lation, fault diagnosis, frequency-domain analysis, phase-locked
loops, wind energy, wind power generation.

NOMENCLATURE

Db Ball diameter of a ball bearing.

Dc Pitch diameter of a ball bearing.

θ Ball contact angle of a ball bearing.

fi Characteristic frequency of an inner-race fault.

fo Characteristic frequency of an outer-race fault.

fb Characteristic frequency of a ball fault.

fc Characteristic frequency of a cage fault.

fr Shaft rotating (1P) frequency of a wind turbine.

NB Number of balls in a ball bearing.

t Time index.

T Torque of wind turbine shaft.

T0 Torque due to variable wind power.

Av Amplitude of shaft torque variation.

ffault Characteristic frequency of a bearing fault (one of fi,
fo, fb, and fc) in vibration measurements.

f1 Fundamental frequency of stator current signal.
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f1,w Component of stator current fundamental frequency

signal generated by variable wind power.

A1,v Amplitude of component of stator current fundamen-

tal frequency signal due to a bearing fault.

ϕf Phase of component in stator current fundamental

frequency signal created by a bearing fault.

Is Amplitude of stator current signal.

Is,w Component of stator current amplitude signal gener-

ated by variable wind power.

As,v Amplitude of component of stator current amplitude

signal due to a bearing fault.

ψf Phase of component in stator current amplitude signal

created by a bearing fault.

Cs Stator current signal.

p Number of pole pairs in a generator.

e Error between real and estimated stator current funda-

mental frequencies.

f1,e Estimated stator current fundamental frequency.

φ Phase of current signal.

Idc Constant component of C2
s .

In High-frequency components of C2
s .

Ωr Normalized frequency of fr.

fr,r 1P frequency of a wind turbine in a resampled current-

demodulated signal.

Ωr,r Normalized frequency of fr,r.

fs Sampling frequency.

fs,r Equivalent constant sampling frequency of a resam-

pled current-demodulated signal.

fbase Expected constant 1P frequency in resampled current-

demodulated signals.

lbase Base value of downsampling step size.

N Length of data.

L Resolution of an algorithm in frequency domain.

fc,fault Characteristic frequency of a bearing fault in current

signals.

I. INTRODUCTION

B EARING faults constitute a significant portion of all faults

in wind turbine generators (WTGs) [1]–[3]. It is highly

desired to detect bearing faults and repair or replace the faulted

bearing(s) timely to prevent catastrophic damages and reduce

the downtime of WTGs.

According to the types of sensor measurements used, most

methods for condition monitoring of bearings in electric ma-

chines can be classified into the following categories: vibra-

tion monitoring, temperature monitoring, chemical analysis,
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acoustic emission monitoring, sound pressure monitoring, laser

monitoring, and current monitoring [4]. The current-based bear-

ing fault diagnosis techniques have received more and more

attention due to their advantages over other methods in terms of

cost, implementation, and system reliability [5]. The current-

based methods only use generator current measurements that

are already used by the control systems of WTGs; no additional

sensors or data acquisition devices are needed. Moreover, cur-

rent signals are reliable and easily accessible from the ground

without intruding the WTGs that are situated on high towers

and installed in remote areas. Therefore, current-based bearing

fault diagnosis techniques have great economic benefits and are

potential to be adopted by the wind energy industry.

There are two main challenges of using current signals for

WTG bearing fault diagnosis. First, the useful information in

current signals for bearing fault diagnosis usually has a low

signal-to-noise ratio. Second, it is difficult to diagnose a bearing

fault in a WTG operating with a variable 1P frequency, where

1P frequency stands for the shaft rotating frequency of the

WTG. Spectrum analysis algorithms have been successfully

applied to current signals for bearing fault detection of elec-

tric machines running at constant speeds [6]–[9]. However,

since a WTG usually operates with a variable 1P frequency,

the current signals and the corresponding fault signatures in

the current signals are nonstationary. Consequently, the useful

information related to bearing faults easily has overlaps with

the dominant components in the frequency spectra of current

signals for a variable-speed WTG and, therefore, cannot be

extracted directly by using traditional spectrum analysis algo-

rithms that work for stationary signals. Time–frequency analy-

sis algorithms are able to extract bearing fault signatures from

nonstationary current measurements [10]–[13]. Nevertheless,

these algorithms usually have low resolution and require high

computational resources [14].

It is well known that a bearing fault will cause two effects

in an induction machine: radial rotor movement and shaft

torque variation [15]. A radial rotor movement leads to current

amplitude modulation (AM) in an induction machine [18], [19],

while a shaft torque variation leads to both current frequency

modulation (FM) [10], [15] and AM in an induction machine

[20]. Appropriate demodulation algorithms can separate the

useful information related to a bearing fault from the dominant

components of the current signals to facilitate the extraction of

bearing fault signatures from the current signals. It has been

proved that demodulation algorithms are able to discover bear-

ing faults via current measurements for wind turbines equipped

with doubly fed induction generators [21], [22]. However,

these papers did not take into account the interferences, which

are generated due to variable 1P frequencies of the WTGs,

in current-demodulated signals. In other papers [23], [24],

fundamental-frequency components of stator currents were

used for electric machine bearing fault detection. Fundamental-

frequency components are actually frequency-demodulated sig-

nals of the stator currents. However, the methods proposed

in these papers were only verified for bearing fault diagnosis

of electric machines operating in constant-speed conditions.

Little work has been reported on bearing fault diagnosis for

direct-drive wind turbines equipped with permanent-magnet

Fig. 1. Configuration of a ball bearing.

synchronous generator (PMSG) operating in variable-speed

conditions by using current-demodulated signals.

In this paper, the effects of bearing faults on the generator

stator currents of a direct-drive PMSG wind turbine operating

with a variable 1P frequency are modeled. The analysis using

the proposed model shows that the shaft torque variation cre-

ated by a bearing fault and variable wind power both modulate

the amplitude and frequency of the PMSG stator current signal.

Appropriate amplitude and frequency demodulation algorithms

are therefore designed to facilitate the extraction of bearing

fault signatures from the current signal. A 1P-invariant power

spectrum density (PSD) algorithm [25] is then proposed for

fault signature extraction. In the proposed algorithm, the non-

stationary current-demodulated signals are resampled such that

the variable 1P frequency becomes a constant value. As a conse-

quence, the nonstationary current-demodulated signals and the

corresponding fault signatures in the signals become stationary.

The PSD of the resampled stationary current-demodulated sig-

nals is then calculated, from which the signatures of bearing

faults can be extracted effectively for WTG bearing fault diag-

nosis. The proposed current-demodulation-based bearing fault

diagnosis method is verified by experimental results for mul-

tiple types of bearing faults in a practical direct-drive PMSG

wind turbine operating in a wind tunnel.

II. STATOR CURRENT MODULATION

DUE TO BEARING FAULTS

A. Types of Bearing Faults

According to the stages in the fault development process,

bearing faults can be categorized into two types [26]: 1) single-

point fault, which is defined as a single and localized fault

on an otherwise relatively undamaged bearing surface, and

2) generalized roughness, which is a type of fault where the

condition of a bearing surface has degraded considerably over

a large area and become rough, irregular, or deformed.

The single-point faults in a ball bearing include the inner-

race fault, outer-race fault, ball fault, and cage fault. These

faults result in shaft torque vibrations of the electric machines,

which modulate the current signals of the machines [15]. The

characteristic frequencies of a single-point fault in vibration

measurements depend on the bearing geometry and rotating fre-

quency. The configuration of a ball bearing is shown in Fig. 1,
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Fig. 2. Ball bearing with an outer-race fault.

where Db is the ball diameter, Dc is the pitch diameter, and

θ is the ball contact angle, which is normally zero [6]. The

theoretical fundamental characteristic frequencies of the four

types of single-point faults in vibration measurements are given

hereinafter [27]

fi =0.5 ·NB · fr ·

(

1 +
Db · cos θ

Dc

)

(1)

fo =0.5 ·NB · fr ·

(

1−
Db · cos θ

Dc

)

(2)

fb =0.5 · fr ·

(

Dc

Db

)

·

[

1−

(

Db · cos θ

Dc

)2
]

(3)

fc =0.5 · fr ·

(

1−
Db · cos θ

Dc

)

(4)

where fi is the characteristic frequency of an inner-race fault;

fo is the characteristic frequency of an outer-race fault; fb is the

characteristic frequency of a ball fault; fc is the characteristic

frequency of a cage fault; fr is the rotating frequency of the

bearing, which is equal to the 1P frequency of the WTG;

and NB is the number of balls in the bearing. Harmonics of

these fundamental characteristic frequencies may also exist in

vibration measurements due to bearing faults. Based on the data

sheet of the bearing 7C55MP4017 used in the experiments of

this paper, Nb is eight, Dc is measured to be 33 mm, and Db is

measured to be 8 mm. Therefore, if fr is constant at 10 Hz, fo
and fc are approximately 30.5 and 3.8 Hz, respectively.

The generalized roughness does not generate characteristic

frequencies in the vibration measurements [26]. This type of

bearing fault is not in the scope of this paper.

B. Radial Rotor Movement

It is reported that the effect of a radial rotor movement is

negligible in an electric machine equipped with the bearings

shown in Fig. 1 [24]. This is also true for direct-drive PMSG

wind turbines. A bearing with an outer-race fault is shown in

Fig. 2. It is assumed that, when Ball2 passes through the fault

on the outer race, a radial rotor movement will be generated

in the electric machine in which the bearing is installed [15].

However, in this case, Ball1 and Ball3 support the inner race

of the bearing, and the radial rotor movement is too small to

be detectable. Moreover, a direct-drive PMSG wind turbine

Fig. 3. Configuration of a direct-drive PMSG wind turbine equipped with
multiple bearings.

usually uses more than one bearing, as shown in Fig. 3. When

one of the bearings has a single-point fault, other bearings will

support the shaft. In this case, the radial rotor movement and the

consequent relative air gap variation are negligible. Therefore,

the radial rotor movement is not considered when modeling the

effects of bearing faults on generator stator current signals for

direct-drive PMSG wind turbines.

C. Modulation of Stator Current Signals Due to Shaft

Torque Variation

For a direct-drive PMSG wind turbine, the shaft torque

generated by wind power and affected by a bearing fault when

the WTG operates with a variable 1P frequency can be modeled

as follows:

T (t) = T0(t) +Av · cos

[
∫

2π · ffault(t) · dt

]

(5)

where t is the time index, T is the torque on the WTG shaft,

T0 is the torque due to variable wind power, and Av is the

amplitude of the shaft torque variation created by the bearing

fault. The shaft torque variation has a frequency of ffault, which

is the characteristic frequency of the bearing fault in vibration

measurements and is one of fi, fo, fb, and fc described by

(1)–(4).

It is well known that a shaft torque variation, as given in

(5), leads to stator current AM and FM in electric machines

[15], [28]–[30]. In a bearing fault condition, the frequency and

amplitude of the modulated generator stator current signal of a

PMSG wind turbine are given hereinafter

f1(t) = f1,w(t) +A1,v(t)

· sin

[
∫

2π · ffault(t) · dt+ ϕf (t)

]

(6)

Is(t) = Is,w(t) +As,v(t)

· sin

[
∫

2π · ffault(t) · dt+ ψf (t)

]

(7)

where, in (6), f1 is the fundamental frequency of the stator cur-

rent signal, f1,w is the component of the fundamental frequency

of the stator current generated by the variable wind power, and
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Fig. 4. Schematic diagram of a PLL for signal frequency demodulation.

A1,v and ϕf are the amplitude and phase of the component

created by the bearing fault in the stator current fundamental

frequency signal f1(t), respectively. In (7), Is is the amplitude

of the stator current signal, Is,w is the component of the stator

current amplitude generated by the variable wind power, and

As,v and ψf are the amplitude and phase of the component

created by the bearing fault in the stator current amplitude

signal Is(t), respectively.

According to (6) and (7), the shaft torque variation gener-

ated by a bearing fault modulates both the frequency and the

amplitude of the generator stator current signal of a direct-

drive PMSG wind turbine. Thus, the fundamental frequency

component of the stator current Cs can be written as

Cs(t) = Is(t) · sin

[
∫

2π · f1(t) · dt

]

. (8)

Thereafter, in this paper, Cs is simply called the stator current.

Therefore, both frequency and amplitude demodulation algo-

rithms can be used to discover the excitations in f1 and Is
created by a bearing fault.

III. BEARING FAULT DIAGNOSIS VIA STATOR CURRENT

DEMODULATION AND 1P-INVARIANT PSD ANALYSIS

A. Frequency Demodulation

In a WTG, the information of the 1P frequency is usually

required for maximum power point tracking control [31]. The

1P frequency is usually measured by using a position/speed

sensor, e.g., an encoder or resolver, or can be estimated from

the stator currents using an observer. The relationship between

the 1P frequency fr and the fundamental frequency f1 of the

PMSG stator current is given hereinafter

f1(t) = p · fr(t) (9)

where p is the number of pole pairs of the PMSG.

A simple algorithm to demodulate the frequency from a stator

current signal of a PMSG is the phase-locked loop (PLL) algo-

rithm [32], as shown in Fig. 4, where the frequency of the in-

put signal is calculated by using a voltage-controlled oscillator.

In this paper, the input signal is the measured stator cur-

rent Cs. By using the PLL algorithm, Cs is frequency demodu-

lated to obtain the stator current fundamental frequency f1,e

f1,e(t) = f1(t) + e(t) (10)

where e is the error between the real and estimated stator

current fundamental frequencies. The value of e is almost zero

and can be neglected. Therefore, f1,e is an approximation of f1.

The PLL algorithm has already been embedded into mi-

crocontrollers and dedicated chips [32]. Therefore, using PLL

method for frequency demodulation does not require additional

hardware resource.

B. Amplitude Demodulation

The square law is a classical algorithm for amplitude de-

modulation or envelope detection. For bearing fault diagnosis

of direct-drive PMSG wind turbines, the square law is used

to extract the variable amplitudes of the stator current signals.

Other candidates for current amplitude demodulation include

Hilbert transform and Concordia transform.

Define φ as the phase of the current signal Cs in (8)

φ(t) =

∫

2π · f1(t) · dt. (11)

Applying the square law to the current signal Cs yields

C2

s (t) = {Is,w(t) +As,v(t)

· sin

[
∫

2π · ffault(t) · dt+ ψf (t)

]}2

· sin2[φ(t)].

(12)

Rewrite (13) by using trigonometric identities

C2

s (t) = Idc + Is,w(t) ·As,v(t)

· sin

[
∫

2π · ffault(t) · dt+ ψf (t)

]

−
1

4
A2

s,v(t)

· cos

[
∫

4π · ffault(t) · dt+ 2ψf (t)

]

+ In (13)

where Idc is the constant component of C2
s and In stands for

the high-frequency components of C2
s . The second component

in (13) is an excitation due to the shaft torque variation created

by the bearing fault. The third component in (13) is the second

harmonic of the excitation in C2
s generated by the shaft torque

variation. Since the fundamental frequency is the dominant

component in the stator current signal, the amplitude of Is.w(t)
is much larger than As.v . Therefore, the second harmonic of the

excitation has a low magnitude and can be neglected.

C. Fault Signature Extraction

Since the shaft torque variation generated by a bearing

fault leads to both FM and AM of the stator current signals,

neither a frequency nor an amplitude demodulation algorithm

can discover the whole effect caused by the bearing fault. To

improve the accuracy of bearing fault diagnosis and increase

the redundancy and reliability of the fault diagnosis system, it

is recommended that both the frequency and amplitude demod-

ulation algorithms should be applied.

Using the demodulated signals for bearing fault diagnosis has

obvious advantages over directly using the stator current mea-

surements. In bearing fault diagnosis, the major noise in the sta-

tor currents and the demodulated signals of the stator currents
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are fundamental-frequency component and dc component, re-

spectively. If a bearing fault occurs, an excitation will appear

at the fault characteristic frequency ffault of the frequency- and

amplitude-demodulated signals, as shown in (6), (10), and (13),

and can be easily separated from the dominant dc component

that is irrelevant to the fault. On the other hand, there are mul-

tiple fault characteristic frequencies in the stator current mea-

surements Cs described by (8) for all four types of single-point

bearing faults due to FM and AM [15]. The excitations at these

characteristic frequencies due to bearing faults could be masked

by the subbands of the dominant components that are irrelevant

to the faults in the frequency spectra of the current signals and,

therefore, are difficult to be discovered. Furthermore, if a stator

current signal is directly used for bearing fault diagnosis, the

total energy of the excitations related to a bearing fault will

be dispersed into multiple characteristic frequencies. Conse-

quently, the magnitudes of the excitations at these characteristic

frequencies will be lower than that at the only characteristic

frequency when the frequency-demodulated signal is used.

In a WTG, in addition to the bearing fault-induced shaft

torque variation, the variable wind speed also induces shaft

torque variation, which will generate oscillations in f1.w and

Is.w of f1 and Is described by (6) and (7), respectively. There-

fore, an appropriate algorithm is needed to separate the bearing

fault-induced shaft torque variation from the variable-wind-

speed-induced shaft torque variation to extract the signatures

of bearing faults contained in f1 and Is. Since the excitations

generated by a bearing fault in the current-demodulated signals

have a characteristic frequency of ffault, whose value is variable

and depends on the variable 1P frequency as shown in (1)–(4),

a 1P-invariant PSD algorithm [25] is proposed to discover the

excitations at the variable bearing fault characteristic frequency.

Define Ωr as the normalized frequency in radians per sample

of the variable 1P frequency fr in the current-frequency- and

current-amplitude-demodulated signals, and define fs as the

sampling frequency of the current measurement. The relation-

ship among fr, fs, and Ωr can be written as

Ωr(t)

2π
=

fr(t)

fs
. (14)

In the 1P-invariant PSD algorithm, resampling is performed

such that the sampling frequency fs changes continuously with

respect to fr(t) to make the right-hand side of (14) constant.

Consequently, Ωr(t) becomes a constant value Ωr,r. Then, the

traditional PSD analysis is applied to the resampled current-

demodulated signals, in which the sampling frequency fs,r
of the resampled current-demodulated signals is treated as a

constant value. Therefore, the 1P frequency in the PSD of

the resampled current-demodulated signals also becomes a

constant value fr,r, as given hereinafter

Ωr,r

2π
=

fr,r
fs,r

. (15)

Since the characteristic frequency of a bearing fault ffault
is proportional to fr, as shown in (1)–(4), ffault is also con-

verted to a constant value in the 1P-invariant PSD of the

current-demodulated signals to facilitate bearing fault diag-

Fig. 5. Flowchart of the proposed current-demodulation-based 1P-invariant
PSD algorithm for WTG bearing fault diagnosis.

nosis. The flowchart of the proposed current-demodulation-

based 1P-invariant PSD algorithm for bearing fault diagnosis

of direct-drive PMSG wind turbines is illustrated in Fig. 5,

where only one-phase stator current signal is required. The

PLL algorithm and the square law are applied for frequency

demodulation and amplitude demodulation of the stator current

measurements, respectively. The 1P frequency fr of the WTG

is then estimated from (9) by using the current-frequency-

demodulated signal f1,e. In the 1P-invariant PSD, the current-

demodulated signals f1.e and C2
s are first interpolated with a

constant ratio to ensure that the sampling frequencies of the

resampled current-demodulated signals are greater than twice

the ffault. If the measured current is sampled with a sufficiently

high sampling rate, then the interpolation is not necessary. The

current-demodulated signals f1.e and C2
s are then downsampled

with a variable downsampling step size of [lbase · fbase/fr(t)]
to convert the variable 1P frequency to a constant value, where

[·] stands for rounding a number to the nearest integer, fbase is

the expected constant 1P frequency in the resampled current-

demodulated signals and is often chosen to be the mean value

of fr, and lbase is the base value of the downsampling step

size, which should be large enough to eliminate the quantization

error due to the requirement of an integral downsampling step

size. Moreover, lbase should be small enough to ensure that

the sampling frequencies of the resampled current-demodulated

signals are greater than twice the ffault. Finally, the excitations

at the frequency ffault in the PSD plots of the resampled

current-demodulated signals are used as the signatures for

WTG bearing fault diagnosis.

D. Computational Complexity of the Proposed Algorithm

The computational complexities of the PSD analysis, wavelet

analysis, and amplitude demodulation using the square law are
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TABLE I
COMPUTATIONAL COMPLEXITIES OF PSD ANALYSIS, WAVELET

ANALYSIS, AND AMPLITUDE DEMODULATION USING SQUARE LAW

Fig. 6. Direct-drive PMSG wind turbine used in experiments.

summarized in Table I [33], [34], where N is the length of

data, log2 is the logarithm to the base 2, and L represents the

resolution of the algorithm in the frequency domain. If the PSD

analysis and the continuous wavelet transform have the same

resolution in the frequency domain, L equals N . In the pro-

posed method, the PSD analysis and square law are ap-

plied. Therefore, the computational complexity of the proposed

method is O(N · log2 N), which is smaller than that of the

continuous wavelet transform. Furthermore, the computational

complexity of the discrete wavelet transform is smaller than that

of the proposed method. However, the resolution of the discrete

wavelet transform in the frequency domain, which is approxi-

mately equivalent to that of the continuous wavelet transform

when L = 1, is much lower than that of the proposed method.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

A 160-W Southwest Windpower Air Breeze direct-drive

PMSG wind turbine was used for experimental studies, as

shown in Fig. 6. The test bearing is located between the rotors

of the turbine and the PMSG. The PMSG has six pole pairs. The

WTG was operated in a wind tunnel, as shown in Fig. 7. The

wind tunnel uses a variable-speed fan to generate controllable

wind flows with the speed from 0 to 10 m/s. In the experiments,

the rotating speed of the fan was adjusted to generate desired

variable wind speeds in the wind tunnel. Fig. 8 shows the

sensing and data acquisition system used for the test WTG

in the experiments. One-phase stator current of the test WTG

was recorded via a Fluke 80i-110s ac/dc current clamp. The

Fig. 7. Wind tunnel with the test WTG.

Fig. 8. Sensing and data acquisition system for the test WTG.

measured current signals were digitalized by a National Instru-

ments data acquisition system at a sampling rate of 10 kHz.

The current samples were acquired by the LabView software
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Fig. 9. Test bearing is (a) healthy before experiment and (b) with broken cage
after experiment.

Fig. 10. Comparison of the 1P-invariant PSDs of the current-frequency-
demodulated signals for the WTG with (a) a healthy bearing and (b) a broken
bearing cage fault.

operating on a laboratory computer. The length of each current

record is 100 s. These samples were then used for bearing fault

diagnosis of the test WTG using the proposed method.

B. WTG With a Broken Bearing Cage Fault

In this test, the test bearing was pretreated by removing the

lubricant oil. This accelerated the degradation of the test bear-

ing. The WTG has been operated with a variable 1P frequency

in the range of 9–12 Hz in the wind tunnel for approximately

25 h. The WTG stopped running at the end of the experiment

due to the break of the bearing cage. Fig. 9 shows the test

bearing before and after the experiment.

By using the proposed method shown in Fig. 5, the 1P-

invariant PSDs of the frequency- and amplitude-demodulated

signals of the stator current are plotted in Figs. 10 and 11,

respectively, for the bearing cage fault scenario and the healthy

bearing scenario. The fast Fourier transform was applied to cal-

culate the PSD of the signals in this paper. The variable 1P fre-

quency of the WTG was converted to a constant value of 10 Hz.

Fig. 11. Comparison of the 1P-invariant PSDs of the current-amplitude-
demodulated signals for the WTG with (a) a healthy bearing and (b) a broken
bearing cage fault.

In the healthy bearing scenario, no excitation appears in the

range from 2 to 9 Hz in Figs. 10(a) and 11(a). However, an

excitation appears at 3.95 Hz in the 1P-invariant PSD of the

frequency-demodulated signal in the bearing cage fault case, as

shown in Fig. 10(b). This excitation frequency is almost the

same as the characteristic frequency of a bearing cage fault

calculated by using (4) with the 1P frequency fr at 10 Hz. An

excitation is also found at 3.95 Hz in the 1P-invariant PSD of

the amplitude-demodulated signal in Fig. 11(b) for the bearing

cage fault case, as predicted by (4) and (13). These results veri-

fied that both the frequency and amplitude of the stator current

are modulated by the shaft torque variation generated by the

bearing fault. In addition, the 3.95-Hz bearing fault character-

istic frequency and the 1P frequency fr (10 Hz) modulate with

each other and generate an excitation at 6.05 Hz (= 10 Hz −
3.95 Hz), as shown in Figs. 10(b) and 11(b). This phenomenon

has not been reported yet in any other work of current-based

bearing fault diagnosis.

C. WTG With a Bearing Outer-Race Fault

A bearing outer-race fault was generated artificially for a test

bearing, as illustrated in Fig. 12. The healthy bearing and the

bearing with the outer-race fault were installed in the WTG

and tested, respectively. The WTG operated with a variable 1P

frequency in the range of 7–12 Hz in this experiment.

Figs. 13 and 14 compare the 1P-invariant PSDs of the

current-frequency- and current-amplitude-demodulated signals

of the WTG, respectively, for the bearing outer-race fault

scenario against the healthy bearing scenario. The variable 1P

frequency of the WTG was also converted to a constant value

of 10 Hz. Compared to the healthy bearing scenario shown

in Figs. 13(a) and 14(a), a new excitation appears at a fixed
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Fig. 12. Test bearing with an outer-race fault.

Fig. 13. Comparison of the 1P-invariant PSDs of the current-frequency-
demodulated signals for the WTG with (a) a healthy bearing and (b) a bearing
outer-race fault.

frequency of 30.8 Hz in the PSD plots of the bearing outer-

race fault scenario, as shown in Figs. 13(b) and 14(b). This

excitation frequency is almost the same as the characteristic

frequency of a bearing outer-race fault calculated by using

(2) with the 1P frequency fr at 10 Hz. The magnitude of the

excitation at 30.8 Hz provides an effective index for detecting

and quantifying the bearing outer-race fault. These results

demonstrate that the proposed method is effective for bearing

fault diagnosis of direct-drive PMSG wind turbines.

D. Advantage of the Proposed Method

To illustrate the advantage of the proposed method for WTG

bearing fault diagnosis, the 1P frequency of the test WTG, the

traditional PSD of the stator-current-frequency-demodulated

signal, and the 1P-invariant PSD of the raw stator current

measurements are plotted in Figs. 15–17, respectively, for the

bearing cage fault case. Fig. 15 shows that the 1P frequency

of the test WTG varies continuously during the test. Because

the 1P frequency is variable, the stator current fundamental fre-

quency f1 and the bearing fault characteristic frequency ffault
are both variable. As shown in Fig. 16, the excitations generated

Fig. 14. Comparison of the 1P-invariant PSDs of the current-amplitude-
demodulated signals for the WTG with (a) a healthy bearing and (b) a bearing
outer-race fault.

Fig. 15. Variable 1P frequency of the test WTG in the bearing cage fault case.

Fig. 16. Traditional PSD of the stator-current-frequency-demodulated signal
in the bearing cage fault case.

by the broken bearing cage fault appear at the variable fault

characteristic frequency fc from 3.6 to 4.8 Hz and are close

to the excitations in the range from dc to 3 Hz. Therefore,

it is difficult to detect the broken bearing cage fault by using

the traditional PSD algorithm. Based on the previous research

[15], the excitations of a bearing cage fault should appear at the

following frequency in current signals:

fc,fault = f1 ± l · ffault (16)
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Fig. 17. 1P-invariant PSD of the raw stator current measurements in the
bearing cage fault case.

where fc,fault is the characteristic frequency of the bearing fault

in the current signals and l = 1, 2, . . .. In Fig. 17, the variable

1P frequency is converted to a constant value of 10 Hz in the

1P-invariant PSD algorithm. The excitations due to the bearing

cage fault should appear at 60± 3.95 · l Hz. However, these

excitations are surrounded by the subbands of the fundamental

frequency component due to its high magnitude. This result

shows that it is difficult to identify the excitations generated

by the bearing fault for the direct-drive PMSG wind turbine by

using the stator current measurements directly.

V. CONCLUSION

This paper has analyzed and modeled the effects of bearing

faults on generator stator currents of direct-drive PMSG wind

turbines operating in variable rotating speed conditions. A bear-

ing fault induces shaft torque variation in a WTG, which mod-

ulates the amplitude and frequency of the stator current signals.

Based on the model and analysis, the use of current-frequency-

and current-amplitude-demodulated signals has been proposed

for bearing fault diagnosis of direct-drive PMSG wind turbines.

However, when a WTG operates with a variable 1P frequency,

the characteristic frequencies of bearing faults in the current-

demodulated signals are not constant. Therefore, the signatures

(e.g., excitations at the characteristic frequencies) of bearing

faults may be interfered by the components created by variable

WTG rotating speed in the current-demodulated signals and

cannot be extracted by using traditional PSD analysis directly.

To solve this problem, a 1P-invariant PSD algorithm has been

proposed to discover the excitations at the characteristic fre-

quencies of bearing faults in the current-demodulated signals.

Experimental results obtained in operational environment using

a wind tunnel have validated the model and the proposed

method for bearing fault diagnosis of a direct-drive PMSG

wind turbine. The advantages of using current-frequency- and

current-amplitude-demodulated signals over directly using cur-

rent signals as well as using the 1P-invariant PSD over the

traditional PSD have also been demonstrated by experimental

results.

The proposed method only uses one-phase stator current

signal, which has been used by existing WTG control systems;

no additional sensors or data acquisition devices are required.

Moreover, the proposed method has high resolution and low

computational cost. Therefore, the proposed method has great

potential to be adopted by the wind energy industry for online

condition monitoring and fault diagnosis of WTGs.

In future work, field tests will be performed for WTGs

operating in real-world conditions, from which some practical

issues, such as the influence of other interferences (e.g., tow

vibrations), will be investigated to further validate and extend

the proposed method for real-world applications.
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