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Abstract. Vibration signals extracted from rotating parts of machinery carry a lot of useful information about the condition of

operating machine. Due to the strong non-linear, complex and non-stationary characteristics of vibration signals from working

bearings, an accurate and reliable health assessment method for bearing is necessary. This paper proposes to utilize the se-

lected chaotic characteristics of vibration signal for health assessment of a bearing by using self-organizing map (SOM). Both

Grassberger-Procaccia algorithm and Takens’ theory are employed to calculate the characteristic vector which includes three

chaotic characteristics, such as correlation dimension, largest Lyapunov exponent and Kolmogorov entropy. After that, SOM is

used to map the three corresponding characteristics into a confidence value (CV) which represents the health state of the bearing.

Finally, a case study based on vibration datasets of a group of testing bearings was conducted to demonstrate that the proposed

method can reliably assess the health state of bearing.
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1. Introduction

Bearings are one of the most important components of rotating machineries, and faults arising in these systems

are often due to damages and failures in the elements of bearings. A faulty bearing could result in serious damage

if defects occur under the operation condition. Health assessment can help prevent catastrophic failures in critical

rotating machinery by determining optimal maintenance schedules and thus avoiding unscheduled downtime and

machine failure costs. Therefore, accurate and timely assessment of the bearing health is crucial to prevent the

system from malfunction that could cause damage or entire system halt.

A variety of analysis methods exist for health assessment of bearings including: vibration analysis, oil analysis,

infrared thermography and motor current signature analysis. Among all of these methods, vibration analysis by

using such as frequency domain technique, time domain technique, and time-frequency domain technique have

been widely employed to detect bearing failures [1,2]. However, most parts of rotating machinery often contain

complex, non-stationary, noisy and nonlinear characteristics. Such characteristics may range from quasi-periodic

to completely irregular behaviors. Nevertheless, especially as a machine fails, the vibration characteristics of the

machine are changing.

∗Corresponding author: Chen Lu, Ph.D., School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China. Tel.:

+86 10 8231 6573; E-mail: luchen@buaa.edu.cn.

ISSN 1070-9622/13/$27.50 c© 2013 – IOS Press and the authors. All rights reserved



520 C. Lu et al. / Bearing health assessment based on chaotic characteristics

It is worth noting that the most important step for implementing the bearing heath assessment process is to find

out an appropriate feature set to accurately represent the changes of bearing vibration signals as the health con-

dition changes. However, the works presented in [3] showed that, some frequency domain techniques such as the

FFT-based methods are not quite suitable for non-stationary signal analysis since the inherent information of non-

stationary signals might not be revealed and the analysis of non-stationary signals requires specific techniques [4].

High frequency resonance analysis (also known as envelope analysis) [5], bicoherence analysis [6] and other fre-

quency domain methods have been used for the identification of these major frequency components in the vibration

spectrum for detecting localized defects. In recent years, advanced time-frequency techniques such as, the wavelet

transform [7,8] and EMD [9] have also been employed in machinery vibration analysis. However, few studies have

focused on bearing health assessment based on nonlinear dynamical analysis.

Nevertheless, in recent time, new approaches based on fractal and deterministic chaos analyses have been adopted

to analyze the complex dynamic behavior of nonlinear systems. The dimensional exponent (an approximation of the

correlation dimension) derived from the partial correlation integral algorithm was used to diagnose bearings heath

condition, as depicted in [10]. The experimental results in [11] showed that the largest Lyapunov exponents of

bearing vibration signal were different under different health states of a rolling bearing, and therefore, it can be used

as the characteristic for bearing diagnosis. The study in [12] presented a new approach to rotating machine health

monitoring based on the Approximate Entropy, and it is actually a statistical measure that quantizes the regularity of

a time series, such as vibration signals measured from an electrical motor or a rolling bearing. The studies mentioned

above have showed more effective results than traditional vibration-based analysis approaches, regarding the fault

diagnosis of rotating machinery. Thus, the non-linear behavior analyses on rotating machinery have received more

attentions, due to the presence of instantaneous variations in friction, damping, or loading conditions. Accordingly,

some new emerging techniques for non-linear characteristics estimation provide a good alternative to extract defect-

related features, which are hidden in the vibration signals and will be changing, especially as a machine fails.

Bearings as non-linear systems, their vibration signals usually exhibit non-stationary phenomenon with chaotic

characteristics. Different chaotic characteristics, e.g., largest Lyapunov exponent, Kolmogorov entropy, and corre-

lation dimension, can represent different nonlinear features of the analyzed vibration signal, and reflect the health

state of a bearing from different aspects, respectively. Correlation dimension defines the active degrees of freedom

or the complexity of a system operating in nonlinear regime on the attractor [13]. The spectrum of Lyapunov expo-

nents captures the dynamical properties of the system orbiting within the attractor [14]. Largest Lyapunov exponent

provides an estimate of the mean exponential divergence or convergence of nearby trajectories in phase space, ex-

pressing the sensitivity of dependence on initial states. Kolmogorov entropy evaluates the chaotic degree of a system,

or the average velocity at which new information is generated by the system, or equivalently, at which current infor-

mation about the system is lost [15]. To comprehensively represent the health state of a system, some studies have

proposed a proper metric model integrating various chaotic characteristics, which is more effective and accurate in

quantizing health states. Yu et al. [16] proposed a new method that integrated correlation dimension and Kolmogorov

entropy to identify the fault symptoms of aero-engine system. In [17], a literature review discussed related studies

on non-stationary and nonlinear characteristics, which indicates that nonlinear dynamical analysis techniques, such

as correlation dimension, largest Lyapunov exponents and Kolmogorov entropy, can be used to investigate the non-

linear dynamical behavior and complexity generated by machines over their operating time. In [18], two chaotic

characteristics (correlation dimension and exponents and Kolmogorov entropy) extracted from the torque signals of

a diesel engine were integrated to identify the fault symptoms in different fault modes. These results of fault diagno-

sis indicate that the model integrating at least two chaotic characteristics shows higher performance than those only

using one characteristic. Therefore, single chaotic characteristic, extracted from vibration signal, is not comprehen-

sive in accurately assessing the health states of a machine or component; alternatively, methods on fault diagnosis

and health assessment by effectively integrating all possible chaotic characteristic parameters should be developed

for rotating machinery.

It can be seen from the above literatures that chaos analysis methods about the mentioned characteristics have been

used in great quantities; however, few works have been conducted on how to properly select and utilize these chaotic

characteristics for a satisfactory health assessment, which is just the key premise of bearing health assessment. In

this study, the authors calculate the correlation dimension, Kolmogorov entropy and largest Lyapunov exponent

of bearing vibration signals under normal and fault states, respectively. The experimental results prove that, the
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bearing vibration signals usually exhibit nonlinear chaotic characteristics even though under normal states; and that
once any fault occurs with aggravating shocks, the signal will present enhancement of uncertainty and randomness,
still remaining distinct chaotic characteristics.

Based on these existing works, this study proposes a new model for bearing health assessment by integrating
appropriate nonlinear chaotic characteristics. First, three selected chaotic characteristics, such as the correlation di-
mension, largest Lyapunov exponent and Kolmogorov entropy, are extracted from the vibration signal of a rolling
bearing to construct the corresponding feature vector. Second, every new feature vector is input to a self-organizing
map (SOM) neural network, which is trained only using the dataset acquired under normal states. Then, the Mini-
mum Quantization Error (MQE) can be obtained and normalized into a confidence value, which indicates the health
state of the bearing, ranging from 0 to 1. The experimental results show that there is a change on the chaotic char-
acteristic vector of bearing vibration signals as any fault occurs, and the three chaotic characteristics can be used to
effectively monitor the health state of a bearing.

2. Feature extraction

In this case, correlation dimension, largest Lyapunov exponent and Kolmogorov entropy are used to investigate
the nonlinear dynamic behaviors and chaotic characteristics generated by bearings over their operating life time.

The algorithm discussed in this paper for the computation of the three chaotic parameters is based on the phase
space reconstruction of nonlinear system using time-delay embedding scheme, referred to as the Takens reconstruc-
tion [4].

We begin with a univariate time series {x[i]|i = 1, 2, . . . n− 1, n}, where each sample x[i] is a one-dimensional
measurement of the nonlinear system being analyzed. To provide a more complete description of the higher dimen-
sional nonlinear system dynamics, the time series x needs to be unfolded into a higher dimensional space Rm.

The m-dimensional embedding vector X ∈ Rm of the time series x is given as bellow.

X(i) = [x(i), x(i + τ), x(i + 2τ), . . . , x(i+ (m− 1)τ)](i = 1, 2, . . . , nm) (1)

Where nm = n − (m − 1)τ is the number of new vectors in the reconstructed space, m and τ are the embedding
parameter denoting the embedding dimension and the time-delay, respectively.

2.1. Correlation dimension

The correlation integral and dimension developed by Grassberger and Procaccia [19] are two of the most popular
nonlinear techniques in the field of nonlinear time series analysis. Practically, the correlation dimension of a recon-
structed space is estimated from the correlation integral C(nm, r, t), which measures the probability that points on
the attractor have pairwise distances less than or equal to the corresponding distance r.

The commonly used method for estimating the correlation dimension is the Grassberger-Procaccia algorithm
(GPA) [19], in which the correlation integral C(nm, r, t) of a time series x is defined as

C(nm, r, t) =
2

nm(nm − 1)

nm∑

i=1

nm∑

j=1

H(r −D(i, j)) (2)

Where the Heaviside function H(x) = 1 if x � 0, 0 otherwise. And the distribution of distances H(r − D(i, j))
specifies the total number of the pairs of embedding vectors (xi, xj) such that the distance between the embedding
vectors xi and xj is less than the specified distance r.

The correlation integral C(nm, r, t) behaves as a power of γ for r, as Eq. (3)

C(nm, r, t) ∝ rγ (3)

Where the exponent γ for r defines the correlation dimension d(m, t) and can be calculated by

d(m, t) = lim
r→0

logC(nm, r, t)

log(r)
(4)

In this study, the correlation dimension d(m, t) is determined from an estimate of the local slope of the log of the
correlation integral C(nm, r, t) versus log(r) using the estimation scheme proposed in [10].
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2.2. Largest Lyapunov exponent

According to Grebogi’s proving, a clearly positive value of the largest Lyapunov exponent provides evidence
that the m-dimensional dynamic system under investigation is chaotic. Here, the method for calculating the largest
Lyapunov exponent is introduced in [14].

Symbol ‖ ‖ is supposed to denote the distance in m-dimensional space, and then the largest Lyapunov exponent
λ1 should satisfy the relation as bellow

‖δx0‖ enλ1 = ‖Fn (x0 + δx0)− Fn (x0)‖ ≈ ‖J (xn−1) J (xn−2) . . . J (x0) δx0‖ (5)

Where ‖δx0‖ is the distance between the pair of points at the initial position, and n denotes the iterations. J (x0) is
the Jacobian matrix of the dynamic system which is in the initial position.

In order to get the value of λ1, we firstly calculate the eigen value of each Jacobian matrix. And then

λ1 = lim
n→∞

1

n
ln |dn−1 dn−2 · · · d1 d0| (6)

Where d0 . . . dn−1 are eigen values of J (x0) . . . J(xn−1).
Equation (6) shows that largest Lyapunov exponent represents an estimate of the mean exponential divergence or

convergence of nearby trajectories in phase space.

2.3. Kolmogorov entropy

Suppose that the phase space is divided into several m-dimensional units, whose side length and total numbers
are ε and n. The system is observed in a very small time interval τ , then Pi is defined as the probability that the
vector x(iτ) drops just into the unit i. According to the Shanon theory,

Kn = −
n∑

i=0

Pi lnPi (7)

Kolmogorov entropy is defined as the mean rate at which current information about the system is lost [12].

K = lim
τ→0

lim
ε→0

lim
n→∞

1

nτ

n∑

i=1

(Ki+1 −Ki) (8)

Equation (8) indicates the similarity among the reconstructed vectors within the time series, when the dimension of
the vectors has increased from i to i+ 1. This affects the regularity of the time series being analyzed, consequently,
the greater the regularity is, the lower the Kolmogorov entropy value.

The value of Kolmogorov entropy of a regularly dynamic system is 0, while infinity for random systems. Thus, if
a dynamic system exhibits a constant positive value of Kolmogorov entropy, it denotes that the system has chaotic
characteristics.

3. Health assessment method

The health assessment process based on SOM neural network can be visualized as Fig. 1. It can realize an on-
line health assessment for a bearing, using only the dataset under normal condition. The proposed method has no
requirements on the full life cycle of performance degradation dataset.

3.1. SOM neural network

Self-organizing map (SOM) network is a kind of competitive artificial neural network that is suitable for data
clustering [20]. The SOM network combines an input layer with a competitive layer of processing neurons, which
typically organized as a two-dimensional grid. The structure of the SOM network is shown in Fig. 2. As shown in
Fig. 2, the SOM network is an array of M = m×m processing neurons, which maps high dimensional input vectors
onto a two-dimensional surface, in which each neuron is represented by one-dimensional weight vector. Neurons of
the map are connected to adjacent neurons by a neighborhood relation, which indicates the topology of the map.
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Fig. 1. Process of bearing health assessment. Fig. 2. Structure of SOM network.

The weight vector is enhanced during training procedure by the learning rule:

wi(t+ 1) = wi(t) + α(t) · hBMU,i(t)(x(t) − wi(t)) (9)

Where wi(t) is the weight vector; α(t), the learning rate of SOM network; hBMU,i(t), the neighborhood function

determined by the distance between the Best Matching Unit (BMU) and the neighbor neurons.

All the neurons are grouped in clusters by their distances through the training process, which form a new kind

of topology structure. After that, each group of test data inputted to the well-trained SOM can match with a BMU.

Finally, the Minimum Quantization Error (MQE) can be obtained by calculating the Euclidean distance between the

BMU and the real-time measurement data.

3.2. Performance indicator

According to the principles of SOM, the normal signals with similar features as the training dataset will gather

around the normal cluster, which should have a minimum value of MQE. Along with the performance degradation

of a bearing, its features from the vibration signal turn to be more and more different from those of the normal

condition. Accordingly, the values of MQEs will have an increasing trend over time as the performance of a bearing

deteriorates.

In this study, the confidence value (CV), which can be formulated as below, is used to represent the performance

of a bearing.

CV =
c√
x+ c

(10)

Where, c is a scale parameter determined by the averaged MQE under normal conditions and the corresponding CV,

and x is just the MQE generated by using the online input measurement data, which will be normalized into the

CV ranging from 0 to 1. It can be clearly seen that the CV is inverse proportional to the MQE, meaning that worse

performance generates a higher MQE and a lower CV.
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Fig. 3. Different performance degradation states during the life cycle.

Fig. 4. Experimental setup.

As discussed in [21], instead of failing suddenly, most mechanical system components usually undergo gradual
degradation processes up until the time they fail, or scheduled to be replaced. If a component’s degrading state is

continuously examined, a performance indicator (CV) curve can be obtained as shown in Fig. 3. The CV ranges

between 0 (unacceptable) and 1 (normal). Incremental changes in the CV are indicative of a gradual degradation
process. No matter what type of degradation pattern the component goes through before it fails, the CV is always

initially stable (in the range of 0.9 to 1.0). When an incipient fault occurs, the CV will show a decreasing trend. After

the initial fault propagates to a severe level, and the component is close to failure, the decrease in the CV becomes
more obvious and quickly drops to 0. Once the CV drops below the predetermined threshold, we can judge that

certain fault occurs.
Traditionally, health assessment is performed by using a single characteristic. A single characteristic, although

effective for a specific degradation pattern, cannot achieve accurate health assessment results throughout a compo-

nent’s life cycle. Utilizing multiple characteristics, however, can achieve better assessment accuracy than a single
one, although challenges remain in how to dynamically choose a group of optimal characteristics.

4. Experimental verification

4.1. Experimental setup

The experimental verification of bearing health assessment was conducted by using the acquired data from a
designed bearing test-rig, as shown in Fig. 4. The test bearing, a deep groove ball bearing of 6205-2RS JEM SKF,

was assembled in the motor. The accelerometer was installed on the magnetic base shell to capture vibration signals

of the bearings.
In this experiment, a series of single-point faults injected on three different positions (inner-race, out-race and

rolling element), were introduced to the test bearings using electro-discharge machining with the defect diameters
of 0.014, 0.021 and 0.028 inches. Vibration data used in this study was acquired at a sampling rate of 12 KHz, with

a rotating speed of 1772 rpm.
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Fig. 5. Representative vibration signals under different bearing conditions in time domain.

4.2. Chaotic characteristics extraction for training and testing data

In this experiment, the correlation dimension and Kolmogorov entropy were determined from an estimate of the

local slope and intercept of log C(nm, r, t) − log(r) using the estimation scheme proposed in [22], and the largest

Lyapunov exponent was calculated by using the Wolf-method [23]. In reference to the Wolf-method, if the exponent

estimate converges, it is generally not necessary to evolve entirely for all dataset. In this study, the exponential

evolution of the phase space trajectories was established by iteratively calculating for 1024 steps, and then the

largest Lyapunov exponent was obtained by an averaging process.

Consequently, each feature vector for the subsequent model training and health assessment consists of the above

three chaotic characteristics extracted from the vibration signals of the testing bearings. A certain number of feature

vectors generated under normal condition were selected for the training of SOM-based health assessment model,

and the remaining groups from normal and three types of fault conditions for the model verification.

For further describing the effectiveness of the selected chaotic characteristics, a testing example was conducted

to validate the relationship between the actual health state and each chaotic characteristic. The vibration dataset

acquired under normal and three types of fault modes (inner-race/out-race/rolling element fault with the defect

diameter of 0.014 inches) was taken for this validation.

The representative time-domain vibration signals under different bearing conditions, e.g., normal, fault 1 (inner-

race fault), fault 2 (outer-race fault), and fault 3 (rolling element fault), are shown in Fig. 5. The relationship between

lnC(r)–ln(r) and bearing health state is shown in Fig. 6. Similarly, it can also be observed that different bearing

health states correspond to different Lyapunov exponent spectrum, as shown in Fig. 7, whose mean value is equiv-

alent to the largest Lyapunov exponent. As depicted in Fig. 8, the results of correlation dimension, Kolmogorov

entropy and largest Lyapunov exponent taken from 11 groups of normal data and 33 groups of faulty data, were

calculated to show the variation of each chaotic characteristic parameter along with the health state, respectively.

It can be observed from results of the above three chaotic characteristics that, compared with the normal condition,

the correlation dimension and Kolmogorov entropy from the faulty bearings are distinctly increased, accordingly,

which indicates that the nonlinear chaotic characteristic is becoming more obvious. In respect to the result from the

largest Lyapunov exponents, it can be used to distinguish the normal bearings from the outer-race/rolling-element
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Fig. 6. lnC(r)–ln(r) under different health condition.

Fig. 7. Lyapunov exponents of vibration signals under different health conditions.
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Fig. 8. Results of the three chaotic characteristic parameters (a) Correlation dimension (b) Kolmogorov entropy (c) Largest Lyapunov exponent.

fault states, even though there is no clear effect on identification of the inner-race fault states. As discussed above,

to achieve an accurate health assessment for bearings, these three chaotic characteristics should be extracted and

integrated into a new performance indicator.

4.3. Bearing health assessment

Then, the chaotic characteristic vectors of 50 groups of normal data were used to train a SOM for establishing the

health assessment model. For model verification, 11 groups of normal data and 33 groups of faulty data consisting of

three types of fault modes (inner-race/out-race/rolling element fault, each with the defect diameter of 0.014 inches),

were taken and sequentially imported into the trained SOM-based health assessment model. The performance as-

sessment results are shown in Fig. 9.

The performance degradation is clearly shown in the two figures. An appropriate threshold should be pre-

determined to indicate the degradation of bearing health state, and it is set as 0.65 according to previous experience

in this study. The CVs of the first 11 samples, collected from the normal data, are highly above the predetermined

failure threshold, which shows a stable health state. However, the other CVs from the faulty data are below the

threshold. Thus, the health assessment can be achieved, and it is also distinctly proved that the assessment result

based on MQE is well consistent with that using CV.

Besides, for further verification, 11 groups of normal data and 33 groups of inner-race fault data, consisting of

three types of fault degrees e.g., defect diameter of 0.014 inches, defect diameter of 0.021 inches and defect diameter
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Fig. 9. Bearing health assessment of different fault modes with a defect diameter of 0.014 inches (a) Using MQE (b) Using CV.

Fig. 10. Bearing health assessment of different fault degrees (inner-race fault), (a) Using MQE (b) Using CV.

of 0.028 inches, were selected and sequentially imported into the trained SOM-based health assessment model. The

performance assessment results are shown in Fig. 10.

This experimental results show that there is a descending trend of the CVs as the fault degrees of the testing

bearings are increased from 0.014 to 0.028 inches, which is consistent with the actual health state of the testing

bearing sequence (the first 11 bearings are normal, and the left 33 bearings in fault state). It also implies that
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the chaotic characteristics of the fault signals from the faulty bearings distinctly deviate from those under normal

conditions. The predetermined failure threshold (set as 0.65) can effectively distinguish between a healthy and defect

bearing; the CV can be used to monitor the health of a bearing.

In summary, it have been seen that the corresponding chaotic characteristics extracted from the bearing vibration

data are becoming more obvious as the bearings deteriorate. Moreover, the proposed method has no dependencies on

failure samples/performance degradation data for its model establishment, and could be more pragmatic for practical

applications.

5. Conclusions

Considering the strong non-linear and complexity characteristics of vibration signals from running bearings, this

paper has outlined the definitions of three typical chaotic characteristics such as the correlation dimension, largest

Lyapunov exponent and Kolmogorov entropy, which have the highest potential to describe the various health states.

These chaotic characteristics were extracted by using both Grassberger-Procaccia algorithm and Takens’ theory,

then was fed as input to SOM neural network which map the three corresponding characteristics into a confidence

value (CV) representing the health state of the bearing.

From the experimental results given in this paper, the feasibility and efficiency of this method has been verified,

that if a proper threshold of the CV is chosen, a suitable early warning of an impending bearing failure can be

realized.

Generally, the attractive advantage of the proposed health assessment model is that: it requires only the normal

data for model training and establishment, without the need of full life cycle of degradation data.

Further research must be carried out on this health assessment model: first, only the case in which the normal

and three fault types of vibration dataset have been analyzed in depth in this paper. Therefore, it seems of interest

to further analyze the case where we plan to sequentially acquire on-line degradation measurements that are rep-

resentative of the entire bearing life cycle and thus further validate the proposed models. Second, the question of

how to reasonably scale the health level for accurate expression of health state (health, warning, sub-health, danger,

and failure) still remains. Most importantly, there may be further possible improvements or optimizations for the

health assessment model through the integration of information regarding the chaotic characteristics and statistical

indicators in time-frequency domain. Third, future work will also be considered to further validate the availability

of this method in health assessment of other parts of rotating machinery such as gear box, pump, etc.
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