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Bearing-Only Formation Tracking Control of

Multi-Agent Systems
Shiyu Zhao, Zhenhong Li, and Zhengtao Ding

Abstract—This paper studies the problem of bearing-only
formation control of multi-agent systems, where the control of
each agent merely relies on the relative bearings to its neighbors.
Although this problem has received increasing research attention
recently, it is still unsolved to a large extent due to its highly
nonlinear dynamics. In particular, the existing control approaches
are only able to solve the simplest scenario where the target
formation is stationary and each agent is modeled as a single
integrator. The main contribution of this paper is to propose new
bearing-only formation control laws to (i) track moving target
formations and (ii) handle a variety of agent models including
single-integrator, double-integrator, and unicycle models. These
control laws are an important step towards the application of
bearing-only formation control in practical tasks. Both numerical
simulation and real experimental results are presented to verify
the effectiveness of the theoretical results.

I. INTRODUCTION

This paper studies multi-agent distributed formation control

that aims to steer a group of agents to form a desired geometric

pattern in a distributed manner. We particularly focus on the

problem where each agent is only able to measure the relative

bearings to their nearest neighboring agents while relative

distance or position information is unavailable. Compared

to the formation control approaches that rely on relative

position measurements [1], the bearing-only formation control

approach poses minimal requirements on the sensing ability of

each agent, and hence provides a practical solution to achieve

onboard-sensor-based formation control. In practice, bearing

measurements can be obtained by, for example, vision sensors

[2] or wireless sensor arrays [3], [4].

Despite the recent advances on bearing-only formation

control, many important problems in this area are still unsolved

due to the highly nonlinear formation dynamics. In particular,

the existing bearing-only control laws are merely applicable

to solve the simplest scenario where the target formation is

stationary and each agent is modeled as a single integrator [5]–

[16]. From the practical point of view, it is necessary to study

more realistic models such as double integrators or unicycles.

For example, multicopter drones and ground vehicles may

be approximated by double-integrator and unicycle models.

Formation control laws designed for these models can generate

more feasible trajectories to be tracked by real vehicles.

Shiyu Zhao is with the School of Engineering at Westlake University and
the Institute of Advanced Technology at Westlake Institute for Advanced
Study, China. zhaoshiyu@westlake.edu.cn

Zhenhong Li and Zhengtao Ding are with the School of
Electrical & Electronic Engineering at the University of Manchester,
UK. zhenhong.li@postgrad.manchester.ac.uk,
zhengtao.ding@manchester.ac.uk

Another important practical problem is how to track moving

target formations using bearing measurements. The ability of

a formation to move is important to achieve desired navigation

tasks and respond to dynamic environments to, for example,

avoid obstacles. However, it is still an open problem whether

bearing measurements could be used to achieve moving for-

mations. The existing bearing-only formation control laws are

designed for stationary target formations. When applied to

tracking moving target formations, these control laws would

result in tracking errors. More importantly, the tracking errors

may diverge to infinity, because these control laws merely

relies on bearing errors that are always bounded even when the

position errors are unbounded. As a result, there is a natural

saturation constraint in these bearing-only formation control

laws. Unless the control gains are sufficiently large or the

leader agents move sufficiently slow, the position tracking

error will diverge to infinity. Due to this problem, it is

necessary to design new bearing-only control laws to track

moving target formations.

In order to handle more realistic agent models and moving

target formations, we started our research by revisiting a

bearing-only formation control law, which is a particular form

of a more general family of controllers proposed in [15].

This control law is only applicable to the single-integrator

agent model and stationary target formations. However, unlike

many other existing bearing-only formation control laws, it

is a gradient-descent control law, which is favorable from

the stability analysis point of view. This control law has

not attracted sufficient attention up to now probably because

its stability analysis is based on optimization techniques and

challenging to generalize to cases that are more complicated.

The first contribution of our work is to present a new stability

analysis of this formation control law using standard Lyapunov

approaches. Such a new stability analysis is nontrivial since

it requires new techniques developed based on recent work

of bearing localizability [17]. Our analysis reveals some new

properties of the control law such as exponential convergence

rate and, more importantly, it lays a foundation for the design

of new bearing-only control laws.

The main contribution of this paper is to propose novel

bearing-only formation control laws that can handle moving

target formations and a variety of agent models including sin-

gle integrators, double integrators, and unicycles. In particular,

for single-integrator agent models, we propose a proportional-

integral control law to track moving target formations using

bearing measurements. For double-integrator agent models, a

new bearing-only formation control law that requires bearing

measurements and the varying rates of bearings is proposed.
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Similar to bearing measurements, the varying rates of relative

bearings can be conveniently measured by visual sensing

or sensor arrays in practice. Finally, bearing-only formation

control laws are proposed for unicycle agents subject to

velocity saturation and other motion constraints such as ob-

stacle avoidance. These control laws are a key step towards

the application of bearing-only formation control in practical

tasks. Both numerical simulation and real experimental results

are presented to verify the effectiveness of the theoretical

results.

The rest of the paper is organized as follows. Section II

presents the problem setup and some necessary preliminary

results. Sections III, IV, and V address bearing-only formation

tracking control of single-integrator, double-integrator, and

unicycle agent models, respectively. Simulation and experi-

mental results are given in Section VI. Conclusions are drawn

in Section VII.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notations for Formation

Consider n mobile agents in R
d (n ≥ 2 and d ≥ 2). Let

pi(t) ∈ R
d be the position of agent i ∈ {1, . . . , n} at time

t, and p = [pT1 , . . . , p
T
n ]

T ∈ R
dn be the configuration of the

agents. The interaction among the agents is described by a

fixed graph G = (V, E) which consists of a vertex set V =
{1, . . . , n} and an edge set E ⊆ V × V . The edge (i, j) ∈ E
indicates that agent i can measure the relative bearing of agent

j, and hence agent j is a neighbor of i. The set of neighbors

of agent i is denoted as Ni = {j ∈ V : (i, j) ∈ E}. This

paper only considers undirected graphs where (i, j) ∈ E ⇔
(j, i) ∈ E . A formation, denoted as (G, p), is G with its vertex

i mapped to pi for all i ∈ V .

Define the edge vector and bearing vector for edge (i, j),
respectively, as

eij := pj − pi, gij :=
eij
‖eij‖

,

where ‖ · ‖ denotes the Euclidean norm of a vector or the

spectral norm of a matrix. The unit vector gij represents the

relative bearing of pj with respect to pi. Note that eij = −eji
and gij = −gji. For the bearing vector gij , define

Pgij := Id − gijg
T
ij ∈ R

d×d,

where Id ∈ R
d×d is the identity matrix. Note that Pgij is an

orthogonal projection matrix that can geometrically project a

vector onto the orthogonal compliment of gij . It can be verified

that Pgij is positive semi-definite and Null(Pgij ) = span{gij}.

As a result, a vector x ∈ R
d is parallel to gij if and only

if Pgijx = 0. This orthogonal projection matrix is widely

used in bearing-based control and estimation problems [10],

[17]. Moreover, it follows from gij = eij/‖eij‖ that the time

derivative of gij is

ġij =
Pgij

‖eij‖
ėij . (1)

Since Pgijgij = 0, ġij is orthogonal to gij and eij . As a result,

gTij ġij = 0 and eTij ġij = 0.

Oriented graphs are widely used in this paper. Specifically,

an orientation of an undirected graph is the assignment of a

direction to each edge. An oriented graph is an undirected

graph together with an orientation [18]. Consider an arbitrary

oriented graph of G. Let m be the number of undirected edges

in G. Hence, the oriented graph has m directed edges. Suppose

edge (i, j) in G corresponds to the kth directed edge in the

oriented graph where k ∈ {1, . . . ,m}. The edge and bearing

vectors for the kth directed edge can be expressed as

ek := eij = pj − pi, gk :=
ek
‖ek‖

.

Similarly, ġk = Pgk ėk/‖ek‖, gTk ġk = 0, and eTk ġk = 0.

Denote e = [eT1 , . . . , e
T
m]T and g = [gT1 , . . . , g

T
m]T. Let

H ∈ R
m×n be the incidence matrix of the oriented graph.

Specifically, in the kth row of H , [H]ki = −1 since vertex i
is the tail of edge k, [H]kj = 1 since vertex j is the head of

edge k, and all the other entries in the kth row are zero. By

definition,

e = (H ⊗ Id)p := H̄p,

where ⊗ denotes the Kronecker product. For a connected

graph, it holds that H1n = 0 and rank(H) = n − 1 [18],

where 1n = [1, . . . , 1]T ∈ R
n.

Without loss of generality, suppose the first nℓ agents are

leaders and the rest nf = n − nℓ agents are followers.

Let Vℓ = {1, . . . , nℓ} and Vf = V \ Vℓ be the sets of

leaders and followers, respectively. The positions of the lead-

ers and followers are denoted as pℓ = [pT1 , . . . , p
T
nℓ
]T and

pf = [pTnℓ+1, . . . , p
T
n ]

T, respectively. Then p = [pTℓ , p
T
f ]

T. The

velocities of the leaders and followers are denoted as vℓ = ṗℓ
and vf = ṗf , respectively.

B. Target Formation

The desired target formation that the agents should achieve

is described as below.

Definition 1 (Target Formation). The target forma-

tion (G, p∗(t)) satisfies the constant inter-neighbor bear-

ings {g∗ij}(i,j)∈E and the time-varying leader positions

{p∗i (t)}i∈Vℓ
. The leaders move at a common constant velocity

vc ∈ R
d.

The target formation in Definition 1 is jointly determined

by the constant bearings and moving leaders. It has two key

properties. The first property is existence. In this paper, we

only consider feasible bearings and leader positions so that

the target formation defined above exists. Feasible bearings

and leader positions can be easily obtained from a formation

that has the desired geometric pattern.

The second key property of the target formation is unique-

ness. In order to ensure the uniqueness of the target formation,

the bearings and leader positions must satisfy certain condi-

tions. To characterize these conditions, we need to introduce

an important matrix termed bearing Laplacian [17]. For the

target formation, define a matrix B ∈ R
dn×dn with the ijth
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Leader

Follower

(a) (b) (c)

Fig. 1: The target formation in (a) cannot be uniquely determined by the
bearings and leader positions. The target formations in (b) and (c) are unique.
The target formation in (c) is a three-dimensional cube.

block of submatrix as

[B]ij =







0d×d, i 6= j, (i, j) /∈ E ,
−Pg∗

ij
, i 6= j, (i, j) ∈ E ,

∑

k∈Ni
Pg∗

ik
, i = j, i ∈ V.

The bearing Laplacian matrix B is a matrix-weighted Lapla-

cian that characterizes both the underlying graph and the

bearings of the target formation. For undirected graphs, it holds

that B is symmetric positive semi-definite and span{p∗,1n ⊗
Id} ⊆ Null(B) [17]. According to the partition of leader and

follower agents, we can partition B to

B =

[
Bℓℓ Bℓf

Bfℓ Bff

]

,

where Bff ∈ R
dnf×dnf . The uniqueness of the target forma-

tion could be characterized by the bearing Laplacian as shown

in the following lemma.

Lemma 1 (Condition for Unique Target Formation [17]).

The target configuration p∗(t) can be uniquely determined by

the bearings {g∗ij}(i,j)∈E and leader positions {p∗i }i∈Vℓ
if and

only if Bff is nonsingular.

When Bff is nonsingular, the position and velocity of the

followers in the target formation are uniquely determined as

p∗f (t) = −B−1
ff Bfℓp

∗
ℓ (t) and v∗f (t) = −B−1

ff Bfℓv
∗
ℓ (t) [17]. In

this paper, the leaders have the same common velocity vc, i.e.,

v∗ℓ (t) = 1nℓ
⊗vc. It can be calculated that v∗f (t) = 1nf

⊗vc so

that all the followers in the target formation move at the same

common velocity [19, Theorem 2]. Let p̄∗(t) :=
∑n

i=1 p
∗
i (t)/n

and p̃∗ := p∗(t) − 1n ⊗ p̄∗(t). When the target formation is

unique, the vector p̃∗ is constant and represents the unique

geometric pattern of the formation. The vector p̄∗(t) is time-

varying and represents the centroid of the target formation that

moves at the constant velocity vc.

Illustrative examples of non-unique and unique formations

are shown in Fig. 1. In order to ensure a unique target

formation, there must exist sufficient and appropriate leaders.

It is worth noting that at least two leaders are required to

ensure a unique target formation. Details on leader selection

can be found in [17]. More examples and other conditions

for uniqueness can be found in [17, Section 4]. Note that

uniqueness is called bearing localizability in the context of

network localization [17].

This paper only considers unique target formations. Oth-

erwise, the target formation is not guaranteed to achieve

by any control approaches. Hence, we make the following

assumption.

Assumption 1 (Unique Target Formation). Assume that the

target formation (G, p∗) in Definition 1 is unique, i.e., Bff is

positive definite.

C. Problem Statement

The control problem to be solved in this paper is to steer the

agents to achieve the target formation based merely on bearing

measurements. This problem is formally stated as below.

Problem 1 (Bearing-Only Formation Tracking Control).

Design control input for agent i ∈ Vf based merely on the

bearing measurements {gij(t)}j∈Ni
and the varying rate of

the bearings {ġij(t)}j∈Ni
such that gij → g∗ij for all (i, j) ∈

E as t → ∞.

Several remarks on Problem 1 are given below. First, since

the target formation is uniquely determined by the bearings

(and leader positions), once the bearings reach the desired

values, the target formation is achieved. Second, it is only

required to control the followers whereas the leaders are

assumed to be controlled properly so that they have desired

positions. The reason why we do not consider the coordination

of the leaders is that there are merely a very small number

of leaders such as two, which is different from containment

control problems where there may exist many leaders which

require sophisticated distributed coordination [20]. Third, al-

though the underlying graph of the entire formation is assumed

to be undirected, leaders are controlled independently and do

not use the information of their neighbors whereas the control

of a follower does rely on the information of its neighbors.

Interagent collision avoidance is an important problem in

multi-agent formation control. This problem, however, has

not been considered in many existing formation control ap-

proaches [1], [21], because the system convergence would

become extremely difficult to analyze if it is considered. In

fact, given a specific formation control law, interagent collision

is determined by the initial formation condition. However, it is

nontrivial to identify those initial conditions that would lead to

interagent collision even for simple linear formation dynamics.

As a result, many existing formation control approaches rely

on an implicit assumption of interagent collision avoidance. In

this paper, we also adopt the collision avoidance assumption.

Assumption 2 (Interagent Collision Avoidance). Assume

no neighboring agents collide with each other during the

formation evolvement.

Assumption 2 ensures that the bearing vector between any

pair of neighbors is always well defined during formation

evolvement. Without this assumption, the convergence analysis

of the control laws proposed in the rest of the paper is still

valid, but only before collision occurs. In this paper, we also

present sufficient conditions to simultaneously guarantee colli-

sion avoidance and system convergence. With these conditions,

this collision-free assumption could be dropped.

In the rest of the paper, three types of agent dynamical

models will be studied: single-integrator, double-integrator,

and unicycle.
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III. BEARING-ONLY FORMATION TRACKING CONTROL:

SINGLE-INTEGRATOR AGENTS

This section studies single-integrator agent models: ṗi(t) =
ui(t), where ui(t) is the velocity input to be designed. The first

subsection addresses the case of stationary target formations

and reanalyzes a control law proposed in [15]. The second

subsection generalizes this control law to track moving target

formations.

A. Stationary Target Formation

Suppose the leaders are stationary (i.e., vc = 0). For the

leaders, it holds that ṗi(t) = 0 for i ∈ Vℓ. For the followers,

consider the bearing-only control law

ṗi(t) =
∑

j∈Ni

(
gij(t)− g∗ij

)
, i ∈ Vf . (2)

Control law (2) is a particular form of a general family

of controllers designed for bearing-only and distance-based

formation control tasks proposed in [15, Equation (13)]. Its

asymptotic stability has been analyzed using optimization

techniques in [15]. The novelty of this subsection is to present

a new stability analysis based on Lyapunov approaches. This

stability analysis reveals some new properties of the control

law such as exponential convergence rate and lays a foundation

for designing new bearing-only control laws.

Consider an arbitrary oriented graph and suppose H , g(t),
and g∗ are the corresponding incidence matrix, bearing vectors

at t, and desired bearing vectors, respectively. Then, control

law (2) can be rewritten in a matrix-vector form as

ṗ = −
[

0 0
0 Idnf

]

H̄T(g − g∗), (3)

whose initial state is p(0) = [(p∗ℓ )
T, pTf (0)]

T where pf (0)
could be arbitrary. To analyze the formation stability, we

first introduce two useful lemmas about the key quantity

pTH̄T(g − g∗).

Lemma 2. Suppose no agents coincide in p∗ or p. It holds

that

pTH̄T(g − g∗) ≥ 0, (4)

(p∗)TH̄T(g − g∗) ≤ 0, (5)

(p− p∗)TH̄T(g − g∗) ≥ 0, (6)

where the equalities hold if and only if g = g∗.

Proof. First,

pTH̄T(g − g∗) = eT(g − g∗)

=

m∑

k=1

(eTk gk − eTk g
∗
k)

=

m∑

k=1

‖ek‖(1− gTk g
∗
k)

=
1

2

m∑

k=1

‖ek‖‖gk − g∗k‖2 ≥ 0.

Since ‖ek‖ 6= 0, we know pTH̄T(g − g∗) = 0 if and only

if gk = g∗k for all k. Similarly, inequality (5) holds because

(p∗)TH̄T(g − g∗) = (e∗)T(g − g∗) =
∑m

k=1 ‖e∗k‖((g∗k)Tgk −
1) ≤ 0. Since ‖e∗k‖ 6= 0, the equality holds if and only if

gk = g∗k for all k. Inequality (6) can be obtained by combining

(5) and (4).

The following result establishes the equivalence between

pTH̄T(g − g∗) and pTBp.

Lemma 3. Suppose no agents coincide in p∗ or p. It holds

that

pTH̄T(g − g∗) ≥ 1

2maxk ‖ek‖
pTBp, (7)

where B is the bearing Laplacian of the target formation

(G, p∗). When g − g∗ is sufficiently small so that gTk g
∗
k ≥ 0

for all k, it holds that

pTH̄T(g − g∗) ≤ 1

mink ‖ek‖
pTBp. (8)

Proof. Note that B can be expressed as B = H̄TD(Pg∗

k
)H̄

where D(Pg∗

k
) = blkdiag(Pg∗

1
, . . . , Pg∗

m
) [17, Lemma 2]. It

follows that

pTBp = pTH̄TD(Pg∗

k
)H̄p = eTD(Pg∗

k
)e

=

m∑

k=1

eTk (Id − g∗k(g
∗
k)

T)ek =

m∑

k=1

‖ek‖2(1− (gTk g
∗
k)

2)

=
m∑

k=1

‖ek‖2(1− gTk g
∗
k)(1 + gTk g

∗
k). (9)

Since 1 + gTk g
∗
k ≤ 2, it follows from (9) that

pTBp ≤ 2max
k

‖ek‖
m∑

k=1

‖ek‖(1− gTk g
∗
k)

= 2max
k

‖ek‖pTH̄T(g − g∗).

Inequality (7) follows immediately.

Suppose that g − g∗ is sufficiently small so that gTk g
∗
k ≥ 0

for all k (i.e., the angle between gk and g∗k is no greater than

π/2). Since 1 + gTk g
∗
k ≥ 1, it is implied by (9) that

pTBp ≥ min
k

‖ek‖
m∑

k=1

‖ek‖(1− gTk g
∗
k)

= min
k

‖ek‖pTH̄T(g − g∗).

Inequality (8) follows immediately.

With the above two lemmas, we prove the exponential

stability of (3) as follows. Define the position error as

δp(t) = p(t)− p∗.

The objective is to prove that δp(t) → 0 as t → ∞.

Theorem 1 (Single-Integrator Formation Stabilization).

Under Assumptions 1 and 2, p(t) converges to p∗ exponentially

fast by the action of control law (3).

Proof. Note that δp = [0, δTpf
]T since pℓ = p∗ℓ . As a result,

δTp

[
0 0
0 Idnf

]

= δTp .
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Consider the Lyapunov function

V =
1

2
‖δp‖2.

The derivative of V along the system trajectory is

V̇ = δTp δ̇p = δTp ṗ

= −δTp

[
0 0
0 Idnf

]

H̄T(g − g∗)

= −δTp H̄
T(g − g∗)

= −(p− p∗)TH̄T(g − g∗)

= −pTH̄T(g − g∗) + (p∗)TH̄T(g − g∗)

≤ −pTH̄T(g − g∗), (10)

where the last inequality is due to (5). Substituting (7) into

(10) gives

V̇ ≤ − 1

2maxk ‖ek‖
pTBp ≤ 0. (11)

Since Bp∗ = 0, we have pTBp = (p − p∗)TB(p − p∗) =
δTp Bδp. Furthermore, since δp = [0, δTpf

]T, we have δTp Bδp =

δTpf
Bffδpf

≥ λmin(Bff )‖δpf
‖2 = λmin(Bff )‖δp‖2. Substi-

tuting into (11) gives

V̇ ≤ − λmin(Bff )

2maxk ‖ek‖
‖δp‖2. (12)

Note that

max
k

‖ek‖ ≤ ‖e‖ = ‖H̄p‖ = ‖H̄(p− p∗ + p∗)‖
≤ ‖H̄δp‖+ ‖H̄p∗‖
= ‖H̄δp‖+ ‖H̄p̃∗‖
≤ ‖H̄‖(‖δp‖+ ‖p̃∗‖), (13)

where the last equality is due to H̄p̃∗ = H̄(p∗ − 1n ⊗ p̄) =
H̄p∗. Since V̇ ≤ 0, we have ‖δp(t)‖ ≤ ‖δp(0)‖. Substituting

(13) into (12) yields

V̇ ≤ − λmin(Bff )

‖H̄‖(‖δp(0)‖+ ‖p̃∗‖)
︸ ︷︷ ︸

a

‖δp‖2
2

:= −aV, (14)

which indicates exponential convergence rate.

The convergence rate a in (14) is jointly determined by

four parameters: (i) the graph topology described by H̄ ,

(ii) geometric pattern of the target formation described by

p̃∗, (iii) initial error δp(0), and (iv) the smallest eigenvalue

λmin(Bff ). Note that λmin(Bff ) could be interpreted as a

measure of the “degree of uniqueness” of the target formation,

which intuitively describes how far the target formation is

from being non-unique. One immediate conclusion is that the

convergence rate would be large if the formation is close to the

target one (i.e., ‖δp(0)‖ is small) or the degree of uniqueness

is strong (i.e., λmin(Bff ) is large). Designing optimal graph

topologies and formation geometric patterns to minimize ‖H̄‖
and ‖p̃∗‖ could also speed up convergence and it deserves

further study in the future.

Note that Theorem 3 relies on the assumption of inter-

agent collision avoidance. To remove this assumption, we

next give a sufficient condition on the initial formation to

simultaneously guarantee collision avoidance and formation

convergence. Suppose γ is the desired minimum separation

between any two agents during formation evolvement and

satisfies 0 < γ < mini,j∈V ‖p∗i − p∗j‖.

Corollary 1 (Sufficient Condition for Collision Avoidance).

Under Assumption 1, if the initial formation is sufficiently close

to the target formation so that

‖δp(0)‖ ≤ ǫ :=
1√
n

(

min
i,j∈V

‖p∗i − p∗j‖ − γ

)

, (15)

then ‖pi(t) − pj(t)‖ ≥ γ for all i, j ∈ V and all t ≥ 0 and

p(t) converges to p∗ exponentially fast.

Proof. For any i, j ∈ V and any t ≥ 0, it holds that

pi(t)− pj(t) = [pi(t)− p∗i ]− [pj(t)− p∗j ] + [p∗i − p∗j ].

It follows that

‖pi(t)− pj(t)‖ ≥ ‖p∗i − p∗j‖ − ‖pi(t)− p∗i ‖ − ‖pj(t)− p∗j‖

≥ ‖p∗i − p∗j‖−
n∑

k=1

‖pk(t)− p∗k‖

≥ ‖p∗i − p∗j‖ −
√
n‖p(t)− p∗‖

= ‖p∗i − p∗j‖ −
√
n‖δp(t)‖. (16)

At t = 0, substituting (15) into the above inequality gives

‖pi(0)−pj(0)‖ ≥ γ and hence there is no interagent collision

in the initial formation. Since V̇ ≤ 0 as shown in (11)

in the absence of interagent collision, ‖δp(0)‖ ≤ ǫ implies

‖δp(t)‖ ≤ ǫ for all t. Otherwise, there must exist an escape

time t1 such that ‖δp(t1)‖ = ǫ and V̇ (t1) > 0, which is

impossible. As a result, ‖pi(t)− pj(t)‖ ≥ γ is guaranteed for

all t by (16). It then follows from (14) that ‖δp(t)‖ converges

to zero exponentially fast.

B. Moving Target Formation

When the leaders move at a nonzero constant velocity vc,

we generalize (2) to propose a new control law

ṗi(t) = kp
∑

j∈Ni

(
gij(t)− g∗ij

)

+ kI

∫ t

0

∑

j∈Ni

(
gij(τ)− g∗ij

)
dτ, i ∈ Vf , (17)

where kp and kI are constant and positive control gains. The

idea of (17) is to simply introduce an integral term, yet the

stability analysis is nontrivial as shown below.

Denote

ηi(t) = kI

∫ t

0

∑

j∈Ni

(
gij(τ)− g∗ij

)
dτ

and η = [ηT1 , . . . , η
T
n ]

T = [ηTℓ , η
T
f ]

T ∈ R
dn. Then, the matrix-

vector form of control law (17) is

ṗ = −kp

[
0 0
0 Idnf

]

H̄(g − g∗) + η,

η̇ = −kI

[
0 0
0 Idnf

]

H̄(g − g∗).
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The initial values satisfy

p(0) =

[
p∗ℓ (0)
pf (0)

]

, η(0) =

[
1nℓ

⊗ vc
ηf (0)

]

,

where pf (0) and ηf (0) could be arbitrary. In order to prove

formation stability, define the error states as

δp = p− p∗, η̃ = η − 1n ⊗ vc.

The objective is to prove that δp → 0 and η̃ → 0 as t → ∞.

To do that, it is necessary to first establish the equivalence

between eT(g − g∗) and ‖δp‖.

Corollary 2. Suppose no agents coincide in p∗ or p. It holds

that

eT(g − g∗) ≥ λmin(Bff )‖δp‖2
2‖H̄‖(‖δp‖+ ‖p̃∗‖) , (18)

eT(g − g∗) ≤ 2
√
m‖H̄‖(‖δp‖+ ‖p̃∗‖).

When g − g∗ is sufficiently small such that gTk g
∗
k ≥ 0 for

all k, a tight upper bound can be obtained as eT(g − g∗) ≤
λmax(Bff )‖δp‖2/mink ‖ek‖.

Proof. First of all, since δp = [0, δTpf
]T, we have δTp Bδp =

δTpf
Bffδpf

. It follows from Bp∗ = 0 that

pTBp = δTp Bδp ≥ λmin(Bff )‖δpf
‖2 = λmin(Bff )‖δp‖2,

(19)

pTBp = δTp Bδp ≤ λmax(Bff )‖δpf
‖2 = λmax(Bff )‖δp‖2.

(20)

The lower bound in (18) can be obtained by substituting (19)

and (13) into (7). In order to obtain an upper bound, note

that eT(g − g∗) =
∑m

k=1 ‖ek‖(1 − gTk g
∗
k) ≤ 2

∑m
k=1 ‖ek‖ ≤

2
√
m
√∑m

k=1 ‖ek‖2 = 2
√
m‖e‖, where the last inequality

follows from the inequality between arithmetic and quadratic

means. It follows from the upper bound of ‖e‖ in (13) that

eT(g−g∗) ≤ 2
√
m‖H̄‖(‖δp‖+‖p̃∗‖). This bound is not tight

because it is not zero when ‖δp‖ = eT(g − g∗) = 0.

When g − g∗ is sufficiently small so that gTk g
∗
k ≥ 0

for all k (i.e., the angle between gk and g∗k is no larger

than π/2), substituting (20) into (8) gives eT(g − g∗) ≤
λmax(Bff )‖δp‖2/mink ‖ek‖. This upper bound is tight in the

sense that it is zero when ‖δp‖ = 0.

Remark 1. Inequality (18) is particularly useful in the for-

mation stability analysis as shown later. It must be noted that

this inequality is meaningful only if the target formation is

unique (i.e., Assumption 1 is fulfilled). Otherwise, if the target

formation is not unique and hence λmin(Bff ) = 0, then (18)

degrades to eT(g− g∗) ≥ 0, which is the same as (4). In this

case, δp could be unbounded even if eT(g − g∗) is bounded

or zero. For example, for the target formation in Fig. 1(a), the

target bearings could be satisfied so that eT(g−g∗) = 0 while

the left two agents can move to the left to generate arbitrarily

large δp.

The formation stability is analyzed below.

Theorem 2 (Single-Integrator Formation Tracking). Under

Assumptions 1 and 2, p(t) converges to p∗(t) asymptotically by

the action of control law (17), where p∗(t) represents the target

configuration moving at velocity vc with a fixed geometric

pattern as defined in Definition 1.

Proof. Since δp = [0, δTpf
]T and η̃ = [0, η̃Tf ]

T, we have

δTp

[
0 0
0 Idnf

]

= δTp , η̃T
[

0 0
0 Idnf

]

= η̃T.

Consider the Lyapunov function

V = eT(g − g∗) +
1

2kI
η̃Tη̃ ≥ 0. (21)

Note that V = 0 if and only if η̃ = 0 and eT(g − g∗) = 0 ⇔
g = g∗ according to (4). Since the target formation is assumed

to be unique, g = g∗ and pℓ = p∗ℓ imply p = p∗. As a result,

V = 0 if and only if δp = 0 and η̃ = 0.

Since eTġ =
∑m

k=1 e
T
k ġk = 0 by (1), the derivative of V is

V̇ = eTġ + (g − g∗)TH̄ṗ+
1

kI
η̃T ˙̃η

= −kp(g − g∗)TH̄

[
0 0
0 Idnf

]

H̄T(g − g∗)

+ (g − g∗)TH̄η − η̃T
[

0 0
0 Idnf

]

H̄T(g − g∗)

= −kp(g − g∗)TH̄

[
0 0
0 Idnf

]

H̄T(g − g∗)

+ (g − g∗)TH̄η − η̃TH̄T(g − g∗)

= −kp(g − g∗)TH̄

[
0 0
0 Idnf

]

H̄T(g − g∗) ≤ 0, (22)

where the last equality is due to H̄η̃ = H̄(η−1n⊗vc) = H̄η.

Since V̇ ≤ 0, V (t) ≤ V (0) for all t. As a result, eT(g−g∗) and

‖η̃‖ are always bounded. By the lower bound of eT(g−g∗) in

(18), we know
‖δp‖

2

‖δp‖+‖p̃∗‖ is also bounded from above. Suppose

the upper bound is α. Then,

‖δp‖2
‖δp‖+ ‖p̃∗‖ ≤ α. (23)

Inequality (23) can be converted to a quadratic inequality

of ‖δp‖, which further implies ‖δp‖ ∈ [0, ξ+], where ξ+
is the positive root of the corresponding quadratic equality

and ξ+ = (α +
√

α2 + 4α‖p̃∗‖)/2. Hence, ‖δp‖ is always

bounded. As a result, there exists a compact set of δp and η̃
that is invariant under the error dynamics. By the invariance

principle [22, Theorem 4.4], the error states converge to the

set where V̇ = 0. When V̇ = 0, it follows from (22) that[
0 0
0 Idnf

]

H̄T(g − g∗) = 0, which implies

δTp

[
0 0
0 Idnf

]

H̄T(g − g∗)

= δTp H̄
T(g − g∗)

= (p− p∗)H̄T(g − g∗) = 0. (24)

Equation (24) implies that g = g∗ by Lemma 2 and conse-

quently δp = 0.

As shown in the proof of Theorem 2, the proportional

control term in (17) converges to zero so that the geometric
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pattern is achieved, and the integral term converges to vc so

that each follower could reach the common constant velocity.

Theorem 2 relies on the assumption of interagent collision

avoidance. We next give a sufficient condition on the position

and velocity of the initial formation to simultaneously guaran-

tee collision avoidance and system convergence. In this case,

the collision-free assumption could be dropped.

Corollary 3 (Collision Avoidance for Single-Integrator For-

mation Tracking). Under Assumption 1, there always exists a

sufficiently small positive constant α such that if the Lyapunov

function in (21) satisfies V (0) ≤ α, then ‖pi(t)− pj(t)‖ ≥ γ
for all i, j ∈ V and all t ≥ 0 and p(t) converges to p∗(t)
asymptotically.

Proof. With V defined in (21), inequality V ≤ α implies

eT(g − g∗) ≤ α. It then follows from (18) that

1

β

‖δp‖2
‖δp‖+ ‖p̃∗‖ ≤ α,

where β := 2λmin(Bff )/‖H̄‖. Similar to (23), the above

inequality implies ‖δp‖ ∈ [0, ξ+], where ξ+ = (αβ +
√

α2β2 + 4αβ‖p̃∗‖)/2. It is obvious that there always exists

a sufficiently small α such that ξ+ ≤ ǫ, where ǫ is given in

(15), and consequently ‖δp‖ ≤ ξ+ ≤ ǫ.
At time t = 0, since V (0) ≤ α, we have ‖δp(0)‖ ∈ [0, ǫ].

Consequently, ‖pi(0) − pj(0)‖ ≥ γ for all i, j by (16) and

hence there is no interagent collision in the initial formation.

Since V̇ ≤ 0 in the absence of interagent collision according to

(22), ‖δp(t)‖ will not escape from [0, ǫ]. Otherwise, there must

exist an escape time t1 such that V (t1) = α and V̇ (t1) > 0,

which is impossible. As a result, ‖δp(t)‖ ∈ [0, ǫ] for all t ≥ 0
and hence collision avoidance is guaranteed. It then follows

from Theorem 2 that ‖δp(t)‖ converges to zero asymptotically.

The integral control in (17) could also handle input distur-

bances as shown below.

Corollary 4 (Constant Input Disturbance). Under Assump-

tions 1 and 2, if ṗi = ui + ωi for i ∈ Vf where ωi ∈ R
d

is an unknown constant disturbance and ui is the right-hand

side of the control law in (17), then p(t) convergence to p∗(t)
asymptotically.

Proof. Denote ωf ∈ R
dnf as the vector collecting all ωi for

i ∈ Vf and ω = [0, ωT
f ]

T ∈ R
dn. The formation dynamics

become

ṗ = −kp

[
0 0
0 Idnf

]

H̄(g − g∗) + η + ω,

η̇ = −kI

[
0 0
0 Idnf

]

H̄(g − g∗).

Define the error states as δp = p−p∗ and η̃ = η+ω−1n⊗vc.

Choose the Lyapunov function V = eT(g− g∗) + η̃Tη̃/(2kI).
Similar to (22), it can be shown that

V̇ = −kp(g − g∗)TH̄

[
0 0
0 Idnf

]

H̄T(g − g∗) ≤ 0.

The rest proof is the same as that of Theorem 2.

gij

ėij

Pgij ėij

ġij =
Pgij

ėij

‖eij‖

i

j
eij

Fig. 2: Geometric relationship between ġij and ėij .

As shown in Corollary 4, the integral term ηi in the control

law eventually converges to vc−ωi. As a result, the unknown

disturbance is compensated by the integral term.

IV. BEARING-ONLY FORMATION TRACKING CONTROL:

DOUBLE-INTEGRATOR AGENTS

This section studies the case where each agent can be

modeled as a double integrator: ṗi(t) = vi(t), v̇i(t) = ui(t),
where ui(t) is the acceleration input to be designed. The

leaders move at a common constant velocity vc. For follower

i ∈ Vf , our proposed bearing-only control law is

ṗi(t) = vi(t),

v̇i(t) = kp
∑

j∈Ni

(
gij(t)− g∗ij

)
+ kv

∑

j∈Ni

ġij(t), (25)

where kp and kv are positive constant control gains. Control

law (25) requires two types of measurements: the first is

relative bearings {gij(t)}j∈Ni
and the second is the varying

rate of the bearings {ġij(t)}j∈Ni
.

The geometric interpretation of ġij is illustrated in Fig. 2.

The varying rate ġij carries certain information of the relative

velocity ėij , which is why ġij is useful for controlling double

integrators. However, ėij could not be fully recovered from

ġij . That is because the velocity magnitude and the velocity

component along the direction of gij are both missing in ġij .

As a result, an infinite number of ėij could correspond to the

same value of ġij .

In practice, if gij can be measured, the value of ġij can also

be measured easily. For example, if an agent uses onboard

vision to measure relative bearings, the velocity of a target

moving in the image can be obtained by techniques such as

optical flow. The value of ġij can be then calculated from

optical flow based on the pin-hole camera model [23].

In order to prove the formation stability, rewrite control law

(25) in a matrix form as

ṗ = v,

v̇ = −kp

[
0 0
0 Idnf

]

H̄T(g − g∗)− kv

[
0 0
0 Idnf

]

H̄Tġ.

(26)

The initial values satisfy

p(0) =

[
p∗ℓ (0)
pf (0)

]

, v(0) =

[
1dnℓ

⊗ vc
vf (0)

]

,
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where pf (0) and vf (0) could be arbitrary. Define the error

states as

δp = p− p∗, δv = v − 1n ⊗ vc.

The objective is to prove that δp → 0 and δv → 0 as t → ∞.

Theorem 3 (Double-Integrator Formation Tracking). Un-

der Assumptions 1 and 2, p(t) converges to p∗(t) asymptoti-

cally by the action of control law (25), where p∗(t) represents

the target configuration moving at velocity vc with a fixed

geometric pattern as defined in Definition 1.

Proof. Since δp = [0, δTpf
]T and δv = [0, δTvf

]T, we have

δTp

[
0 0
0 Idnf

]

= δTp , δTv

[
0 0
0 Idnf

]

= δTv .

Consider the Lyapunov function

V = kpe
T(g − g∗) +

1

2
δTv δv ≥ 0.

Similar to the Lyapunov function in (21), it can be shown that

V = 0 if and only if p = p∗ and δv = 0. Note that H̄δv = H̄v
since H̄(1n ⊗ vc) = 0. Then, the derivative of V is

V̇ = kp(g − g∗)TH̄ṗ+ δTv δ̇v

= kp(g − g∗)TH̄v − kpδ
T
v

[
0 0
0 Idnf

]

H̄T(g − g∗)

− kvδ
T
v

[
0 0
0 Idnf

]

H̄Tġ

= kp(g − g∗)TH̄v − kpδ
T
v H̄

T(g − g∗)− kvδ
T
v H̄

Tġ

= kp(g − g∗)TH̄v − kpv
TH̄T(g − g∗)− kvv

TH̄Tġ

= −kvv
TH̄Tġ. (27)

Since H̄p = e, we have H̄v = H̄ṗ = ė. As a result,

equation (27) implies

V̇ = −kv ė
Tġ = −kv

m∑

k=1

ėTk ġk = −kv

m∑

k=1

ėTk
Pgk

‖ek‖
ėk ≤ 0,

where the last equality is due to (1).

Since V̇ ≤ 0, V (t) ≤ V (0) for all t. As a result, eT(g−g∗)
and ‖δv‖ are always bounded. By the lower bound of eT(g−
g∗) in Lemma 2, ‖δp‖ is also bounded. As a result, there exists

a compact set of δp and δv that is invariant under the error

dynamics. By the invariance principle [22, Theorem 4.4], the

error states converge to the set where V̇ = 0. When V̇ = 0,

Pgk ėk = 0 ⇒ ġk = 0 and hence g is invariant. Case 1: if g is

invariant and g = g∗, then the theorem is proved. Case 2: if g
is invariant but g 6= g∗, the right-hand side of (26) is constant

and nonzero (otherwise, ġ = 0 implies g = g∗ as shown in

(24)). Consequently, ‖v‖ will eventually increase to infinity

and so does ‖δv‖ = ‖v − vc‖, which contradicts the fact that

‖δv‖ is bounded.

The following is a sufficient condition to simultaneous-

ly guarantee collision avoidance and formation convergence.

With this condition, Assumption 2 could be dropped.

Corollary 5 (Double-Integrator Collision Avoidance). Un-

der Assumption 1, there always exists a sufficiently small posi-

tive constant α such that if V (0) ≤ α, then ‖pi(t)−pj(t)‖ ≥ γ

for all i, j ∈ V and all t ≥ 0 and p(t) converges to p∗(t)
asymptotically.

Proof. The proof of Corollary 5 is similar to Corollary 3 and

hence omitted here.

V. BEARING-ONLY FORMATION TRACKING CONTROL:

UNICYCLE AGENTS

This section studies bearing-only formation control of u-

nicycle agents. Let pi = [xi, yi]
T ∈ R

2 and θi ∈ R be the

center coordinate and heading angle of agent i, respectively.

The motion of agent i is governed by the unicycle model

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = wi, (28)

where vi ∈ R and wi ∈ R are the linear and angular velocities

to be designed. Denote hi = [cos θi, sin θi]
T ∈ R

2 and h⊥
i =

[− sin θi, cos θi]
T ∈ R

2. Then, the unicycle model (28) can be

rewritten as

ṗi = vihi, ḣi = wih
⊥
i . (29)

We only consider unicycle agents moving in the plane in this

paper, though model (29) could also characterize nonholonom-

ic agents moving in three dimensions [24].

The first part of this section considers moving target forma-

tions of unicycles. The second part studies stationary target

formations while the unicycle model is subject to certain

motion constraints. In either part, the heading angles of the

unicycles are not required to form any desired patterns and

hence relative heading angles are not required to be measured.

A. Tracking Moving Target Formations

There are two conventional yet simple approaches to handle

the unicycle model. The first is to convert the unicycle model

to a single-integrator model by feedback linearization [25, Sec-

tion V.A]. Then, the control law designed for single integrators

in (17) could be applied. This approach is an approximation

because it aims to control the motion of some offset points

on the unicycles instead of their center points, whereas the

bearing measurements are with respect to the center points.

When the offset points are selected to be closer to the center

points, the approximation would be more accurate, but the

magnitude of the resultant control input may also be larger.

The second approach is to convert the unicycle model to a

double-integrator model by feedback linearization [26, Sec-

tion 3]. Then, the control law designed for double integrators

in (25) could be applied. The limitation of this approach is

that the feedback linearization relies on an assumption that

the velocity of each unicycle is never zero, which may not be

guaranteed.

We propose an alternative control law based on the rigorous

unicycle model. For leader i ∈ Vℓ, it holds that vi = vc,

wi = 0, and θi is aligned with vc. For follower i ∈ Vf , the
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proposed control law is

vi = hT
i



kp
∑

j∈Ni

(gij − g∗ij) + vc



 ,

wi = (h⊥
i )

T



kh
∑

j∈Ni

(gij − g∗ij) + vc



 , (30)

where kp and kh are two constant positive control gains. The

design of this control law is inspired by [27]. One limitation of

this control law is that it requires the information of vc, which

is only known by the leaders. Each follower could estimate vc
by distributed consensus protocols [28], [29]. However, dis-

tributed consensus requires wireless communication among the

agents. As a comparison, the previous control laws proposed

in this paper do not require wireless communication.

The formation stability under control law (30) is analyzed as

follows. The following analysis does not involve the estimation

of vc. If vc could be estimated by each follower within finite

time by, for example, finite-time consensus protocols [30],

[31], the following stability analysis still applies immediately.

For leader i ∈ Vi, we have ṗi = vc and ḣi = 0. For follower

i, substituting control law (30) into (29) gives

ṗi = hih
T
i



kp
∑

j∈Ni

(gij − g∗ij) + vc



 ,

ḣi = h⊥
i (h

⊥
i )

T



kh
∑

j∈Ni

(gij − g∗ij) + vc



 . (31)

The formation stability is analyzed in the following result.

Theorem 4 (Unicycle Formation Tracking). Under Assump-

tions 1 and 2, p(t) converges to p∗(t) asymptotically by the

action of control law (31), where p∗(t) represents the target

configuration moving at velocity vc with a fixed geometric

pattern as defined in Definition 1.

Proof. The matrix-vector form of the formation dynamics

implied by (31) is

ṗ = −
[

0dnℓ
0

0 Dhih
T

i

]

kpH̄
T(g − g∗)

+

[
Idnℓ

0
0 Dhih

T

i

]

(1n ⊗ vc),

ḣ = −
[

0dnℓ
0

0 Dh⊥

i
(h⊥

i
)T

]

khH̄
T(g − g∗)

+

[
0dnℓ

0
0 Dh⊥

i
(h⊥

i
)T

]

(1n ⊗ vc), (32)

where Dhih
T

i
= blkdiag(. . . , hih

T
i , . . . ) ∈ R

dnf×dnf and

Dh⊥

i
(h⊥

i
)T = blkdiag(. . . , h⊥

i (h
⊥
i )

T, . . . ) ∈ R
dnf×dnf

where i ∈ Vf . The initial value of p satisfies p(0) =
[p∗ℓ (0)

T, pf (0)
T]T where pf (0) could be arbitrary. The initial

heading hi(0) of leader i ∈ Vℓ should be consistent with vc:

if vc 6= 0 then hi(0) should be parallel with vc; otherwise, if

vc = 0 then hi(0) could be arbitrary. The initial heading of a

follower could be arbitrary.

Consider the Lyapunov function

V = eT(g − g∗) +
1

2kh
‖h− 1n ⊗ vc‖2 ≥ 0. (33)

The global minimum value of V is n(1 − ‖vc‖)2/(2kh). If

‖vc‖ = 0, this value is reached when δp = 0 and hi is

arbitrary. If ‖vc‖ 6= 0, this value is reached when δp = 0
and hi = vc/‖vc‖ for all i. The derivative of V along the

system trajectory is

V̇ = (g − g∗)TH̄ṗ+
1

kh
(h− 1n ⊗ vc)

Tḣ

= −(g − g∗)TH̄

[
0dnℓ

0
0 Dhih

T

i

]

kpH̄
T(g − g∗)

+ (g − g∗)TH̄

[
Idnℓ

0
0 Dhih

T

i

]

(1n ⊗ vc)

− (h− 1n ⊗ vc)
T

[
0dnℓ

0
0 Dh⊥

i
(h⊥

i
)T

]

H̄T(g − g∗)

+
1

kh
(h− 1n ⊗ vc)

T

[
0dnℓ

0
0 Dh⊥

i
(h⊥

i
)T

]

1n ⊗ vc

= −kp(g − g∗)TH̄

[
0dnℓ

0
0 Dhih

T

i

]

H̄T(g − g∗)

+ (g − g∗)TH̄

[
Idnℓ

0
0 Dhih

T

i

]

(1n ⊗ vc)

+ (1n ⊗ vc)
T

[
0dnℓ

0
0 Dh⊥

i
(h⊥

i
)T

]

H̄T(g − g∗)

− 1

kh
(1n ⊗ vc)

T

[
0dnℓ

0
0 Dh⊥

i
(h⊥

i
)T

]

(1n ⊗ vc),

(34)

where the last equality is due to hT
i (h

⊥
i (h

⊥
i )

T) = 0. Since

hih
T
i +h⊥

i (h
⊥
i )

T = Id, the sum of the second and third items

in (34) is (g− g∗)TH̄(1⊗ vc) which equals zero. As a result,

V̇ = −kp(g − g∗)TH̄

[
0dnℓ

0
0 Dhih

T

i

]

H̄T(g − g∗)

− 1

kh
(1n ⊗ vc)

T

[
0dnℓ

0
0 Dh⊥

i
(h⊥

i
)T

]

(1n ⊗ vc) ≤ 0.

Since V̇ ≤ 0, V (t) ≤ V (0) for all t. As a result, eT(g −
g∗) is always bounded. By the lower bound of eT(g − g∗)
in Lemma 2, ‖δp‖ is also always bounded. As a result, there

exists a compact set of δp and hi − vc that is invariant under

the dynamics. By the invariance principle [22, Theorem 4.4],

the states converge to the set where V̇ = 0. It follows from

V̇ = 0 that
[

0dnℓ
0

0 Dhih
T

i

]

H̄T(g − g∗) = 0, (35)

[
0dnℓ

0
0 Dh⊥

i
(h⊥

i
)T

]

(1n ⊗ vc) = 0. (36)

Since hih
T
i + h⊥

i (h
⊥
i )

T = Id, substituting (35) and (36) into

(32) gives

ṗ = 1n ⊗ vc, (37)

ḣ = −kh

[
0dnℓ

0
0 Idnf

]

H̄T(g − g∗). (38)
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Equation (37) indicates that all the agents move at the same

common velocity vc. As a result, the relative positions of

the agents are time-invariant and consequently H̄(g − g∗) is

constant. Assume that ḣ in (38) is nonzero. Then, for certain

i ∈ Vf , hi is time-varying, which is impossible to have (35).

As a result, ḣ = 0 and it follows from (24) that g = g∗.

According to the proof of Theorem 4, if the leader velocity

vc is nonzero, then the heading of every agent would become

aligned with vc eventually; otherwise, the heading is unspec-

ified in the final formation.

B. Formation Stabilization subject to Constraints

We next present a bearing-only formation control law to

handle unicycles subject to velocity saturation and certain path

constraints. This control law is applicable to stationary target

formations and it will be our future work to study tracking

moving formations subject constraints.

Suppose vi and wi are constrained by

−vbi ≤ vi ≤ vfi , −wr
i ≤ wi ≤ wl

i,

where vfi , v
b
i > 0 are the maximum forward and backward

linear speeds, respectively. The constants wr
i ,w

l
i > 0 are the

maximum left-turn and right-turn angular speeds, respectively.

Here vi > 0 means the agent moves forward, and vi < 0
backward; and wi > 0 means the agent turns its heading vector

to the left (i.e., counterclockwise), and wi < 0 to the right (i.e.,

clockwise). Define the saturation functions for the linear and

angular speeds for agent i as

satvi
(x) =







−vbi , x ∈ (−∞,−vbi ),
x, x ∈ [−vbi , v

f
i ],

vfi , x ∈ (vfi ,+∞),

satwi
(x) =







−wr
i , x ∈ (−∞,−wr

i),
x, x ∈ [−wr

i ,w
l
i],

wl
i, x ∈ (wl

i,+∞).

The saturation bounds vfi , v
b
i ,w

r
i ,w

l
i may vary for different

agents.

The proposed bearing-only formation control law for uni-

cycle i ∈ Vf is

vi = satvi

{
αi(t)h

T
i fi

}
,

wi = satwi

{
(h⊥

i )
Thd

i (t)
}
, (39)

where

fi =
∑

j∈Ni

(gij − g∗ij). (40)

The time-varying quantities αi(t) and hd
i (t) provide additional

freedom to control agent i. More specifically, αi(t) is a time-

varying positive scalar. It can be designed to adjust the linear

velocity magnitude so as to slow down or speed up each

agent if needed. The vector hd
i (t) ∈ R

2 represents the desired

heading vector for unicycle i. The angular speed control in

(39) aims to turn hi to align with hd
i . As a result, hd

i can

be designed to adjust the heading of agent i so as to satisfy

certain motion constraints such as avoiding obstacles. When

there are no obstacles or path constraints, it can be simply

chosen as hd
i = fi.

The stability analysis of the control law is given below.

Theorem 5 (Unicycle Formation subject to Constraints).

Under Assumptions 1 and 2, control law (39) drives p(t) to

p∗ asymptotically, where p∗ is the stationary target configu-

ration, if the variables αi(t) and hd
i (t) satisfy the following

conditions:

1) αi(t) is uniformly continuous in t and bounded as 0 <
αmin ≤ αi(t) ≤ αmax;

2) 0 ≤ φi(t) ≤ φmax < π/2 where φi(t) is the angle between

hd
i (t) and fi;

3) ‖hd
i (t)‖ = 0 if and only if ‖fi‖ = 0.

Proof. The stability analysis is similar to [32, Theorems 3-4].

We merely outline the important steps in the stability analysis

as below. Substituting control law (39) into the unicycle model

in (29) gives

ṗi = hisatvi
(αih

T
i fi),

ḣi = h⊥
i satwi

((h⊥
i )

Thd
i ), i ∈ Vf . (41)

First of all, rewrite the saturation function as satvi
(αih

T
i fi) =

κiαih
T
i fi, where

κi =







vbi
−αihT

i fi
, αih

T
i fi ∈ (−∞,−vbi ),

1, αih
T
i fi ∈ [−vbi , v

f
i ],

vfi
αihT

i fi
, αih

T
i fi ∈ (vfi ,+∞).

(42)

With the notation of κi, the control law in (41) can be rewritten

as ṗi = κiαihih
T
i fi. Then, the matrix-vector form of the

control law is

ṗ =

[
ṗℓ
ṗf

]

= −
[

0 0
0 D

]

H̄T(g − g∗),

where D = blkdiag(κnℓ+1αnℓ+1hnℓ+1h
T
nℓ+1, . . . , κnαnhnh

T
n )

is a (dnf ) × (dnf ) positive semi-definite block diagonal

matrix.

Consider the Lyapunov function V = eT(g − g∗). Since

eT ġ = 0, the time derivative of V is

V̇ = (g − g∗)Tė = (g − g∗)TH̄ṗ

= −(g − g∗)TH̄

[
0 0
0 D

]

H̄T(g − g∗)

= −
∑

i∈Vf

κiαif
T
i hih

T
i fi ≤ 0.

Since V is nonincreasing and bounded from below, V con-

verges as t → ∞. The next step is to prove that V̇ is

uniformly continuous in t by showing that hi, fi, and κi are

uniformly continuous in t. The rest of the proof is similar to

[32, Theorems 3-4] and omitted here.

The conditions on αi(t) and hd
i (t) in Theorem 5 are mild.

In particular, αi may vary within a wide interval. The heading

of hd
i can vary freely as long as the angle between hd

i and

fi is less than π/2. Note that hd
i is not required to be

continuous. These mild conditions provide more freedom for
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(a) Stationary leaders, no integral control
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(b) Moving leaders, no integral control
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(c) Moving leaders, with integral control

Fig. 3: Simulation results of control law (17) designed for single-integrator agents. (a) The leaders are stationary and the integral control is not used. (b) The
leaders move at a constant common velocity and the integral control is not used. (c) The leaders are moving and the integral control is used. The hollow
markers represent the initial positions of the agents. The bearing error is

∑
(i,j)∈E ‖gij − g∗ij‖.

the agents to fulfil motion constraints without jeopardizing

formation stability. Experimental results will be given later

to demonstrate how to properly design hd
i to satisfy motion

constraints such as obstacle avoidance.

VI. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation for Single-Integrator Agents

Figure 3 shows simulation examples to demonstrate control

law (17) designed for single-integrator agents. The target

formation is a square with two leaders as shown in Fig. 1(b).

Three relevant simulation scenarios are studied. In the first

scenario, the leaders are stationary. As shown in Fig. 3(a),

control law (17) is able to steer the agents to the target

formation without the integral control term (i.e., kI = 0). In

the second scenario, the leaders move at a common nonzero

constant velocity. In this case, without the integral control

term, control law (17) is not able to track the moving target

formation as shown in Fig. 3(b), and the position tracking

errors diverge to infinity. In the third scenario, with the

integral control term, the control law can successfully track

the moving target formation as shown in Fig. 3(c). The control

gains are selected as kp = 5 and kI = 0.3. It is observed

in the simulation that large kp could accelerate formation

convergence, but also leads to large velocity input. Large kI
could accelerate formation convergence, but may also lead to

trajectory oscillation.

B. Simulation for Double-Integrator Agents

Figure 4 shows a simulation example to demonstrate control

law (25) designed for double-integrator agents. The target

formation is the three-dimensional cube with two leaders as

shown in Fig. 1(c). The two leaders move at a common

nonzero constant velocity. As can be seen, the formation

configuration converges to the desired one and the velocity

of each follower also converges to the leaders’ velocity. In

the simulation, the control gains are selected as kp = 5 and

kv = 15. According to the simulation, it is observed that too

small kv or too large kp could lead to trajectory oscillation.

C. Simulation for Unicycles

Figure 5 shows a simulation example to demonstrate control

law (30) designed for unicycle agents. The target formation is a

square with two leaders as shown in Fig. 1(b). The two leaders

move at a constant velocity vc = [
√
2/2,

√
2/2]T. As can be

seen, the formation configuration converges to the desired one,

the velocity of each follower converges to vc, and the heading

of each follower becomes aligned with vc eventually. In the

simulation, the control gains are selected as kp = kh = 1.5.

According to the simulation, it is observed that large kp and kh
would accelerate convergence, but may lead to large velocity

input value.

D. Experiment for Unicycles

Control law (39) has been implemented and verified on real

unicycle robots. The unicycle robots used in the experiment are

shown in Fig. 6(a). Each robot has two wheels. The pattern on

the top of each robot is used to localize the robot by a vision

system. The location of each robot is estimated in a central

computer and then transmitted to each agent via Bluetooth.

The control law is executed on each robot in a distributed

manner.

In this experiment, the target formation of the six robots

is given in Fig. 6(b). As shown in Figures 6(c)-(e), the

target formation is successfully achieved in the presence of an

forbidden area. The coordinate of the center of the forbidden

area is (0.6, 0.85) m and its radius is 0.1 m.
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Fig. 4: Simulation results for control law (25) designed for double-integrator
agents. The hollow markers represent the initial positions of the agents. The
bearing error is

∑
(i,j)∈E ‖gij − g∗ij‖.

The obstacle avoidance strategy used in the experiment is

descried as below. When fi in (40) does not point into the

forbidden area, hd
i is chosen as fi. When fi points into the

forbidden area, the obstacle avoidance mechanism is triggered

and hd
i is chosen as a unit vector pointing to the leftmost

point of the forbidden area. As a result, the unicycle could

pass by the left-hand side of the forbidden area as shown in

Fig. 6(c). Of course, hd
i could also be chosen to point into any

other direction that does not pass through the forbidden area.

In the experiment, there is merely one single round forbidden

area. In this simple scenario, it is always possible to properly

select hd
i so that condition 2) in Theorem 5 is satisfied and

hence formation stability is guaranteed. However, in some

complicated scenarios with multiple and irregular obstacles, it
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Fig. 5: Simulation results to demonstrate control law (30) designed for
unicycle agents.

may be impossible to find hd
i to satisfy condition 2) to avoid

all the obstacles.

It is worth mentioning that the formation task was suc-

cessfully achieved in the presence of many practical problems

in the experiment. First, since each unicycle has merely two

wheels, the front bottom end or the rear bottom end of

the robot always contacts the ground floor, which causes

strong frictional disturbances. Second, the low-level velocity

control for each robot is an open loop control, which is not

able to track velocity references accurately. Third, there is a

significant time delay caused by vision processing and data

transmission via Bluetooth.



13

(a) Unicycle robots used in the experiments.
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Fig. 6: Experimental results of control law (39) designed for unicycle robots
subject to motion constraints.

VII. CONCLUSIONS

This paper proposed novel bearing-only control laws to

handle moving target formations and a variety of agent models

including single integrators, double integrators, and unicycles.

The proposed control laws are an important step towards

the application of bearing-only formation control in practical

tasks. In the future, this work may be generalized in several

directions. First, more complicated agent dynamics such as

general linear systems [33] and directed sensing graphs [16]

could be studied. Second, the bearing vectors considered in

this work are expressed in a common reference frame. It is

important to study how to achieve formation control using

locally measured bearings. Third, more sophisticated collision

avoidance strategies such as reciprocal velocity obstacle [34]

could be employed to achieve avoidance of dynamical obsta-

cles.

REFERENCES

[1] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent
formation control,” Automatica, vol. 53, pp. 424–440, March 2015.

[2] R. Tron, J. Thomas, G. Loianno, K. Daniilidis, and V. Kumar, “A
distributed optimization framework for localization and formation con-
trol: applications to vision-based measurements,” IEEE Control Systems

Magazine, vol. 36, no. 4, pp. 22–44, 2016.

[3] G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor network
localization techniques,” Comupter Networks, vol. 51, pp. 2529–2553,
2007.

[4] Y.-Y. Dong, C.-X. Dong, W. Liu, H. Chen, and G.-Q. Zhao, “2-D
DOA estimation for L-shaped array with array aperture and snapshots
extension techniques,” IEEE Signal Processing letters, vol. 24, no. 4,
pp. 495–499, 2017.

[5] M. Basiri, A. N. Bishop, and P. Jensfelt, “Distributed control of
triangular formations with angle-only constraints,” Systems & Control

Letters, vol. 59, pp. 147–154, 2010.

[6] T. Eren, “Formation shape control based on bearing rigidity,” Interna-

tional Journal of Control, vol. 85, no. 9, pp. 1361–1379, 2012.

[7] A. Franchi, C. Masone, V. Grabe, M. Ryll, H. H. Bulthoff, and P. R.
Giordano, “Modeling and control of UAV bearing formations with
bilateral high-level steering,” The International Journal of Robotics

Research, vol. 31, no. 12, pp. 1504–1525, 2012.

[8] S. Zhao, F. Lin, K. Peng, B. M. Chen, and T. H. Lee, “Distributed
control of angle-constrained cyclic formations using bearing-only mea-
surements,” Systems & Control Letters, vol. 63, no. 1, pp. 12–24, 2014.

[9] E. Schoof, A. Chapman, and M. Mesbahi, “Bearing-compass formation
control: a human-swarm interaction perspective,” in Proceedings of the

2014 American Control Conference, (Portland, USA), pp. 3881–3886,
June 2014.

[10] S. Zhao and D. Zelazo, “Bearing rigidity and almost global bearing-
only formation stabilization,” IEEE Transactions on Automatic Control,
vol. 61, no. 5, pp. 1255–1268, 2016.

[11] D. Zelazo, A. Franchi, and P. R. Giordano, “Formation control using a
SE(2) rigidity theory,” in Proceedings of the 54th IEEE Conference on

Decision and Control, (Osaka, Japan), pp. 6121–6126, 2015.

[12] G. Stacey and R. Mahony, “A passivity-based approach to formation
control using partial measurements of relative position,” IEEE Transac-

tions on Automatic Control, vol. 61, no. 2, pp. 538–543, 2016.

[13] F. Schiano, A. Franchi, D. Zelazo, and P. R. Giordano, “A rigidity-
based decentralized bearing formation controller for groups of quadrotor
uavs,” in Proceedings of the 2016 IEEE/RSJ International Conference on

Intelligent Robots and Systems, (Daejeon, South Korea), pp. 5099–5106,
2016.

[14] M.-H. Trinh, D. Mukherjee, D. Zelazo, and H.-S. Ahn, “Formations on
directed cycles with bearing-only measurements,” International Journal

of Robust and Nonlinear Control, vol. 28, no. 3, pp. 1074–1096, 2018.

[15] R. Tron, J. Thomas, G. Loianno, K. Daniilidis, and V. Kumar, “Bearing-
only formation control with auxiliary distance measurements, leaders,
and collision avoidance,” in Proceedings of the 55th Conference on

Decision and Control, (Las Vegas, USA), pp. 1806–1813, 2016.



14

[16] M.-H. Trinh, S. Zhao, Z. Sun, D. Zelazo, B. D. O. Anderson, and H.-
S. Ahn, “Bearing-based formation control of a group of agents with
leader-first follower structure,” IEEE Transactions on Automatic Control.
accepted (DOI: 10.1109/TAC.2018.2836022).

[17] S. Zhao and D. Zelazo, “Localizability and distributed protocols for
bearing-based network localization in arbitrary dimensions,” Automatica,
vol. 69, pp. 334–341, 2016.

[18] C. Godsil and G. Royle, Algebraic Graph Theory. New York: Springer,
2001.

[19] S. Zhao and D. Zelazo, “Translational and scaling formation maneuver
control via a bearing-based approach,” IEEE Transactions on Control of

Network Systems, vol. 4, no. 3, pp. 429–438, 2017.
[20] X. Dong and G. Hu, “Time-varying formation tracking for linear multi-

agent systems with multiple leaders,” IEEE Transactions on Automatic

Control, vol. 62, no. 7, pp. 3658–3664, 2017.
[21] B. Zhu, L. Xie, D. Han, X. Meng, and R. Teo, “A survey on recent

progress in control of swarm systems,” Science China Information

Sciences, vol. 60, no. 7, p. 070201, 2017.
[22] H. K. Khalil, Nonlinear Systems (Third edition). Prentice Hall, 2002.
[23] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry, An Invitation to 3D Vision.

New York: Springer, 2004.
[24] S. Zhao, “Affine formation maneuver control of multi-agent systems,”

IEEE Transactions on Automatic Control, vol. 63, no. 12, pp. 4140–
4155, 2018.

[25] H. Tnunay, Z. Li, C. Wang, and Z. Ding, “Distributed collision-free
coverage control of mobile robots with consensus-based approach,” in
Proceedings of the 13th IEEE International Conference on Control &

Automation, pp. 678–683, July 2017.
[26] T. Liu and Z.-P. Jiang, “Distributed formation control of nonholonom-

ic mobile robots without global position measurements,” Automatica,
vol. 49, no. 2, pp. 592–600, 2013.

[27] K. Fathian, T. Summers, and N. R. Gans, “Distributed formation control
and navigation of fixed-wing UAVs at constant altitude,” in Proceedings

of the 2018 International Conference on Unmanned Aircraft Systems,
pp. 300–307, 2018.

[28] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus
in multivehicle cooperative control,” IEEE Control Systems Magazine,
vol. 27, pp. 71–82, April 2007.

[29] Z. Li, Z. Duan, G. Chen, and L. Huang, “Consensus of multiagent
systems and synchronization of complex networks: A unified viewpoint,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57,
no. 1, pp. 213–224, 2010.

[30] L. Wang and F. Xiao, “Finite-time consensus problems for networks
of dynamic agents,” IEEE Transactions on Automatic Control, vol. 55,
no. 4, pp. 950–955, 2010.

[31] Z. Zuo, B. Tian, M. Defoort, and Z. Ding, “Fixed-time consensus
tracking for multiagent systems with high-order integrator dynamics,”
IEEE Transactions on Automatic Control, vol. 63, no. 2, pp. 563–570,
2018.

[32] S. Zhao, D. V. Dimarogonas, Z. Sun, and D. Bauso, “A general approach
to coordination control of mobile agents with motion constraints,” IEEE

Transactions on Automatic Control, vol. 63, no. 5, pp. 1509–1516, 2018.
[33] X. Dong and G. Hu, “Time-varying formation control for general linear

multi-agent systems with switching directed topologies,” Automatica,
vol. 73, pp. 47–55, 2016.

[34] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles
for real-time multi-agent navigation,” in Proceedings of the 2008 IEEE

International Conference on Robotics and Automation, (Pasadena, CA,
USA), pp. 1928–1935, 2008.

Shiyu Zhao received the B.Eng. and M.Eng. degrees
from Beijing University of Aeronautics and Astro-
nautics, China, in 2006 and 2009, respectively. He
got the PhD degree in Electrical Engineering from
National University of Singapore in 2014.

He is currently an Assistant Professor in the
School of Engineering at Westlake University, Chi-
na. From 2014 to 2016, he served as post-doctoral
researchers at the Technion - Israel Institute of
Technology and University of California at River-
side. From 2016 to 2018, he was a Lecturer in the

Department of Automatic Control and Systems Engineering at the University
of Sheffield, UK. He is a corecipient of the Best Paper Award (Guan Zhao-Zhi
Award) in the 33rd Chinese Control Conference. He serves as an Associate
Editor for UNMANNED SYSTEMS and a number of international conferences.
His research interests lie in intelligent and networked dynamical systems.

Zhenhong Li received his B.Eng. degree in elec-
trical engineering from Huazhong University of Sci-
ence and Technology, Hubei, China, in 2013, and the
M.Sc. degree in control systems from the University
of Manchester, Manchester, U.K., in 2014. He is
now a Ph.D. candidate in control engineering with
the School of Electrical and Electronic Engineering
at the University of Manchester, U.K. His research
interests include distributed optimization, and coop-
erative control of multi-agent systems.

Zhengtao Ding received the B.Eng. degree from
Tsinghua University, Beijing, China, and the M.Sc.
degree in systems and control and the Ph.D. degree
in control systems from the University of Manch-
ester Institute of Science and Technology, Manch-
ester, U.K.

After working as a Lecturer with Ngee Ann
Polytechnic, Singapore, for ten years, in 2003, he
joined The University of Manchester, Manchester,
U.K., where he is currently Professor of Control
Systems with the School of Electrical and Electronic

Engineering. He is the author of the book Nonlinear and Adaptive Control

Systems (IET, 2013) and a number of journal papers. His research interests
include nonlinear and adaptive control theory and their applications.

Prof. Ding serves as an Associate Editor for the IEEE TRANSACTIONS ON

AUTOMATIC CONTROL, IEEE Control Systems Letters, Transactions of the

Institute of Measurement and Control, Control Theory and Technology, Math-

ematical Problems in Engineering, Unmanned Systems, and the International

Journal of Automation and Computing.


	Introduction
	Preliminaries and Problem Statement
	Notations for Formation
	Target Formation
	Problem Statement

	Bearing-Only Formation Tracking Control: Single-Integrator Agents
	Stationary Target Formation
	Moving Target Formation

	Bearing-Only Formation Tracking Control: Double-Integrator Agents
	Bearing-Only Formation Tracking Control: Unicycle Agents
	Tracking Moving Target Formations
	Formation Stabilization subject to Constraints

	Simulation and Experimental Results
	Simulation for Single-Integrator Agents
	Simulation for Double-Integrator Agents
	Simulation for Unicycles
	Experiment for Unicycles

	Conclusions
	References
	Biographies
	Shiyu Zhao
	Zhenhong Li
	Zhengtao Ding


