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Prognostic is an essential part of condition-based maintenance, which can be employed to enhance the reliability and availability
and reduce the maintenance cost of mechanical systems. �is paper develops an improved remaining useful life (RUL) prediction
method for bearings based on a nonlinear Wiener process model. First, the service life of bearings is divided into two stages in
terms of the working condition. �en a new prognostic model is constructed to re�ect the relationship between time and bearing
health status. Besides, a variety of factors that cause uncertainties toward the degradation path are considered and appropriately
managed to obtain reliable RUL prediction results. �e particle 	ltering is utilized to estimate the degradation state, qualify the
uncertainties, and predict the RUL. �e experimental studies show that the proposed method has a better performance in RUL
prediction and uncertainty management than the exponential model and the linear model.

1. Introduction

�e condition-based maintenance (CBM) is a widely used
maintenance policy which schedules the maintenance for
components or systems according to the condition moni-
toring data [1]. Generally, the CBM focuses on two aspects
of work: diagnostics and prognostics [2–6]. �e condition
monitoring data, such as vibration, current, acoustic emis-
sion, and temperature, can be utilized to implement the
CBM. Diagnostics attempt to detect and identify faults in
a speci	ed system, while prognostics are detecting changes
in system states and predicting the remaining time before
the occurrence of failure [1, 7]. �erefore, reasonable main-
tenance policies o�en schedule maintenance plans according
to prognostics results to avoid unnecessary maintenances
or replacements, which can signi	cantly reduce the overall
life-cycle costs and increase the reliability and availability
of mechanical systems. As a result, more and more impor-
tance is attached to the prediction of remaining useful life
(RUL), and it triggers a certain amount of research in this
area.

Roughly speaking, the prognostics approaches for me-
chanical equipment can be classi	ed as data-driven methods
and model-based methods [8]. For data-driven methods,

no prior knowledge about systems is needed, and the
relationship between the RUL and the historical failure data
is constructed with machine learning techniques. Arti	cial
neural network (ANN) is one of the most commonly used
tools. Tian et al. [9] proposed an ANN based prognostics
method using both failure data and suspension data. Besides,
support vector machine (SVM) is also a widely selected
technique for prognostics. Tran et al. [10] forecasted the RUL
through the SVM and time-series methods. However, data-
driven methods do not use the useful information among the
degradation process, and they are restricted to the quantity
and quality of the collected data.

Di
erently, model-based methods deal with the prob-
lem of prognostics by building mathematical models which
can describe the deterioration process. �e model-based
approaches can be generally divided into two categories,
physics model-based methods and statistical model-based
methods [11]. Physics model-based methods construct the
models based on the failure mechanisms of equipment [12].
�e Paris law is one of the most commonly used physics
model in describing the degradation process of machinery,
and many investigations employed it and its variants for RUL
prediction [6, 7, 13]. Besides, other physics models were also
used in prognostics, such as the Forman law and the Norton
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law [14, 15].�e physics model-based techniques can forecast
the RUL accurately when there is enough knowledge about
the physics of damage. However, it is di�cult to completely
understand the failure mechanisms of some complex systems
and new equipment.

For statistical model-based methods, they o�en build
stochastic models based on empirical knowledge to achieve
machinery prognostics [16]. A lot of work has been done on
how to estimate the RULwith stochastic models. Lawless and
Crowder [17] constructed a gamma process model to 	t crack
growth data. Wang and Xu [18] used the inverse Gaussian
process model to process the degradation data and estimate
the parameterswith the expectationmaximization algorithm.
Besides, the Wiener process models were also widely used
in RUL prediction. �ere are three di
erent Wiener process
models, i.e., the linear model, the exponential-like model,
and the nonlinear model. Investigations of the linear model
for RUL prediction can be found in [19–21]. However, most
mechanical systems o�en experience nonlinear deterioration
process, which limits the application of the linear model.
�e exponential-like model is a special nonlinear model,
which can be transformed into the linear model. Gebraeel
et al. [22] put forward an exponential degradation model
for bearing RUL prediction. �is model was extensively
used and improved by many researchers [23–26]. However,
it is restricted to the exponential degradation process and
cannot describe other nonlinear degradation process. As
a result, the nonlinear model is used to make up for
this de	ciency. Si [27] presented an adaptive prognostics
method based on the nonlinear model and applied it to
battery RUL prediction. However, these models are usu-
ally not suitable for practical mechanical systems whose
deterioration process is more complicated than the battery
degradation.

In this study, we attempt to predict the RUL of bearings
with a Wiener process based nonlinear model. Generally,
there are three stages during the entire life of bearings, i.e.,
the normal stage, the degradation stage, and the failure stage
[28]. In the failure stage, the bearing is out of order and should
be replaced to guarantee the safety of the whole mechanical
system. Consequently, we focus on the former two stages. In
the normal stage, the health status of bearings is relatively
stable, and the condition monitoring data rarely change
during this period. In contrast, the condition monitoring
data vary a lot from time to time in the second stage.
To predict the RUL accurately, it is necessary to manage
di
erent stages di
erently. For degradation modeling with
switches in di
erent stages, Si et al. [29, 30] and Zhang et
al. [31] focused on this topic and provided applications for
the prognostics of gyroscopes, the inertial navigation system,
and li-ion batteries. Based on the previous work, in this
paper, we attempt to properly separate the bearings’ two
working stages and model the degradation process to avoid
unnecessary computational cost and obtain accurate RUL
prediction results.

In addition, no model can perfectly describe the stochas-
tic degradation process of a speci	c system due to various
uncertainties resulting from the materials, load, environ-
ment, and sensors [32, 33]. Uncertainties due to di
erent

factors can be re�ected by the model parameters, and, by
updating the parameters with the real-time observations,
reliable prognostics results can be obtained. In general, it
is more appropriate to include all the parameters related
to various uncertainties as multiple states in state space
modeling and update them simultaneously.

Many investigations were conducted to reduce the uncer-
tainties of the deterioration process in structure reliability
analysis and health monitoring [34, 35]. An et al. [36]
studied the in�uence of noise and bias in updating the
parameters of Paris law based model. Sankararaman et al.
[37] quali	ed the uncertainties with 	rst-order reliability
methods. Sun et al. [7] estimated the parameters related
to the Paris law, the process noise, and the measurement
noise.

Regarding the work of uncertainty management in the
mechanical area, Zhao et al. [6] used the Paris law to
describe the development of the gear crack and updated
the two correlated parameters in the model. But it was a
simulation based framework and the uncertainties resulting
from process noise and measurement error were neglected.
Lei et al. [13] used a Paris law based model to predict
the RUL of bearings, but only one parameter was updated
simultaneously with the health state. As for previous studies
about prognostics based on the nonlinearWiener process, the
dri� coe�cient was the only state in the state space model
[27, 38, 39]. Consequently, another objective of this work is
to consider all the parameters related to the nonlinear model
during the state estimation process. Speci	cally, the particle
	ltering (PF) algorithm is utilized to incorporate the model
and measurements for parameters estimation as well as RUL
prediction. Unlike Kalman 	ltering techniques, the PF is not
restricted to the Gaussian assumption, and it can also deal
with nonlinear scenarios.

�is study proposes a new Wiener process based RUL
prediction approach for bearings, and the major contribu-
tions are summarized as follows.

(1) �e service life of bearings is divided into two stages,
i.e., the normal stage and the degradation stage, and
the two stages are managed di
erently during the
prognostics. Based on the health stage division, an
improved Wiener process based nonlinear model
is developed to describe the degradation path of
the degradation stage, and various uncertainties are
included in this model.

(2) Besides the dri� coe�cient, other parameters in
the nonlinear model are also considered as hidden
states in state space modeling. With the PF, all the
parameters are updated simultaneously.

�e remainder of this paper is organized as follows.
�e Bayesian inference and the PF algorithm are brie�y
introduced in Section 2. �e proposed method for bear-
ing prognostics is illustrated in Section 3. In Section 4, a
numerical example and an application in bearing prognostics
are provided to manifest the e
ectiveness of the presented
approach. Conclusions are drawn in Section 5.
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2. Theoretical Background of the PF

2.1. Bayesian Inference. In general, a dynamic system can be
represented by a process model (1) and an observation model
(2) as follows:

z� = � (z�−1,��-1) , (1)

s� = ℎ (z�, ��) , (2)

where z� and s� represent the actual states and the corre-
sponding measurements at current time t�, respectively; f
is the state transition function, re�ecting the relationship
between the states at t� and the states at ��-1, whereas h is
the observation function, indicating the relationship between
s� and z�; ��-1 is the i.i.d. (independent and identically
distributed) process noise, and �� is the i.i.d. measurement
noise.

With the application of Bayesian inference, the posterior
probability density function (PDF) p(z0:� | s1:�) of the states
z0:�={z0, . . . , z�} from t0 to t� can be estimated with a series of
observations s1:�={s0, . . . , s�}. Speci	cally, p(z0:� | s1:�) can be
calculated recursively by the following equations:

� (z� | s1:�−1) = ∫� (z� | z�−1) � (z�−1 | s1:�−1) 	z�−1, (3)

� (z� | s1:�) = � (s� | z�) � (z� | s1:�−1)� (s� | s1:�−1) , (4)

where p(z� | s1:�-1) is the prior PDF de	ned by the process
model, p(s� | z�) is the likelihood determined by the obser-
vation model, and p(s� | s1:�-1) is the evidence, which can be
described as follows:

� (s� | s1:�−1) = ∫� (s� | z�) � (z� | s1:�−1) 	z�. (5)

2.2.�e PF Algorithm. Generally, it is impractical to solve (3)
and (4) analytically. Hence, the PF is utilized to approximate
the posterior PDF by a group of particles with corresponding
weights [40, 41]. Speci	cally, the estimated posterior PDF can
be denoted as follows:

� (z� | s1:�) ≈ �∑
�=1
���
 (z� − z��) , (6)

where {z��}��=1 represents the particles, {���}��=1 are the associ-
ated weights,� is the number of particles, and 
(⋅) stands for
the Dirac function.

Particles {z��}��=1 are sampled from an importance PDF�(z� | s1:�), and their weights can be calculated by the fol-
lowing:

��� = ���-1� (s� | z
�
�) � (z�� | z��−1)

� (z�� | z��−1, s1:�) . (7)

Usually, the importance PDF is de	ned as �(z� | s1:�) =�(z� | z�-1) for an easy implementation. �erefore, (7) be-
comes the following:

��� = ���-1� (s� | z��) . (8)

�e procedures of standard PF are concluded as follows
[42].

(1) Initialization. Set k = 0, and sample particles {z�0}��=1 from
the initial distribution �(z0). Also, initialize the weight of

each particle as ��0 =1/N.
(2) Importance Sampling. Set � = � + 1, calculate the prior
PDF �(z� | z�-1) with (1), and draw {z��}��=1 from �(z� | z�-1).
(3) Weights Updating. Update the weights with the newly
obtained measurement with (7), and normalize the weights
by

��� = ���∑��=1 ��� . (9)

(4) Resampling. Remove particles with small weights and
copy those with large weights. �e implementation of the
resampling is shown in detail as follows [43]:

(a) Set 	 = 1 : �, and generate a random data �� from
the uniform distribution �(0, 1).

(b) Set � = 1 : �, and calculate the cumulative distribu-

tion function (CDF) of weights as ∑��=1 ���. If ∑��=1 ���≥ ��, duplicate z�� as a new particle ẑ�� with a weight
of 1/�, and go back to Step a; otherwise, set � = �+1,
and return to Step b.

(5) State Estimation. Estimate the current states with the
resampled particles and the associated weights:

ẑ� = 1�
�∑
�=1
ẑ
�
� . (10)

�en turn to Step 2 and repeat Steps 2-5 for the next
inspection time.

3. The Proposed Method

�e framework of the proposed method is illustrated in
Figure 1, which consists of three parts: health stage division,
Bayesian inference, and RUL prediction. At the beginning,
data collected from the normal stage is used to determine
the deterioration threshold (DT). �en newly obtained
measurements are used to detect the degradation. Once
the bearing begins to deteriorate, the PF is employed to
update model parameters and estimate the bearing’s health
status. For a speci	c bearing, its health state and model
parameters can be initialized by failure history data or
experience. At each inspection time in the degradation stage,
the updated health state and parameters can be input into
the degradation model for RUL prediction in the next part.
�e update and prediction process will repeat until the
estimated health state exceeds a prespeci	ed failure threshold
(FT).
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Figure 1: Flowchart of the proposed method.
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Figure 2: �e degradation detection mechanism.

3.1. Health Stage Division. To conduct the proposed method,
an important task is to divide the health stages precisely.
�e statistical feature Root Mean Square (RMS) is used as
the health indicator (HI) of bearings in this study due to its
sensitivity to the global damage of bearings [44]. To detect
the degradation, the HIs obtained from the healthy state are
used to determine the DT. Speci	cally, the mean �n and the
standard deviation�n of theseHIs are calculated, respectively,
and�n + 3�n is de	ned as theDT in this study.�en the health
state of bearings is monitored by comparing the DT with the
newly obtained HI.

However, there are some abnormal values due to random
noises, which could mislead the recognition of health states.
To solve this problem, some measures are taken to 	nd
the start point of degradation, as shown in Figure 2. �e
process of the degradation detection mechanism is described
as follows:

(1) At inspection time t�, calculate the RMS of the new
measured data.

(2) Compare the RMS at t� (HI�) with the DT (�n + 3�n).
If HI� > �n + 3�n, de	ne t� as t�; otherwise, set k = k
+ 1, return to Step 1.

(3) Compute the RMS at t�+1 and t�+2, respectively.
If these two values of RMS satisfy {HI�+	-�n >3�n}	 = 1,2, consider t� as the beginning point of
the degradation stage and conduct RUL prediction;
otherwise, set k = k + 1, and return to Step 1 and repeat
Steps 1-3.

Practically, the RMS of a bearing may exceed the DT
because of random noises rather than the degradation.
However, these abnormal scenarios are di�cult to arise three
times consecutively in the normal stage. �erefore, we de	ne
the bearing begins to degrade when three consecutive values
of RMS are bigger than the DT.

3.2. Development of the Bearing Degradation Model. �ere
are four major variability sources related to the uncertainties
of machinery deterioration: the temporal variability, the
measurement variability, the unit-to-unit variability, and the
nonlinear variability [39]. To manage the uncertainties in a
degradation process appropriately, it is necessary to consider
all these factors. Accordingly, the degradation process of
bearings can be illustrated by a nonlinear form as follows:

� (�) = � + ��
 + �� (�) , (11)

where S(t) is the health state of a bearing at time t, a represents

the initial health state of the degradation stage; �t
 denotes
the degradation process, � re�ects the degradation speed, and
b represents the nonlinear characteristic; B(t) is the standard
Brownian motion (BM), and � is the di
usion coe�cient.

For convenience, (11) is transformed into

 (�) = � (�) − � = ��
 + �� (�) . (12)

Accordingly, we can obtain the following di
erence equa-
tion of the degradation process:

!� = !�−1 + ��−1 (�
�−1� − �
�−1�−1) + "�, (13)
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where "� = �(�(��) − �(��−1)) follows a normal distribution�(0, �2Δ��), and Δ�� = �� − ��−1.
In practice, vibration signals are the most commonly

selected condition monitoring data, for the advantage that
it can well indicate the degradation process of machinery.
However, there exists a di
erence between the actual health
state and the HI extracted from the vibration signal due
to the noises from the sensors, acquisition systems, and
data processing. �us the measurement variability should be
considered, and the observed health state can be described as
follows [39]:

$ (�) = � (�) + ], (14)

where Z(t) represents the HI extracted from the vibration
signal at time t, and ] is themeasurement noise, which follows

a normal distribution �(0, %2). Also, (14) can be derived as
follows:

& (�) = $ (�) − � =  (�) + ]. (15)

In this paper, we use Θ = [�, b, �, %] to denote the
unknown model parameters.

3.3. RUL Prediction. �e RUL '� at time �� can be de	ned as
follows:

'� = inf {-� :  (�� + -�) ≥ 2 | Y1:�,Θ} , (16)

where inf{⋅} stands for the inferior limit of a variable, l� is the
time between t� and the failure time, and 2 is the prede	ned
FT; Y1:� represents the available observations from the initial
point of degradation stage to time t�, and the estimated health
state at time t�+l� is denoted as follows:

 (�� + -�) = !� + � ((�� + -�)
 − �
�)
+ � (� (�� + -�) − � (��)) .

(17)

According to the dependent increment properties of the
standard BM, B(t�+l�)-B(t�) is also a standard BM. �us the
predicted PDF of RUL at time t� can be illustrated as follows
[27]:

���|��,Θ (-� | !�,Θ) ≅ 2� − � (8 (-�) − -�� (-�))�√2<-3�
× exp[−(2� − �8 (-�))22�2-� ] ,

-� ≥ 0,

(18)

where 2� = 2 − !�, 8(-�) = (-� + ��)
 − �
�, and �(-�) = A(-� +��)
−1.
3.4. Implementation with the PF Algorithm. In this work, the
PF algorithm is utilized to integrate the vibration signals with
the nonlinear degradation model described by (12) and (15).

Due to the existing of uncertainties for the speci	ed system
under a certain working condition, the model parameters are
not deterministic. Condition monitoring data like vibration
signals contain speci	c information corresponding to the
concerned system. By updating the parameters with on-line
collected data, the uncertainties can be reduced. �erefore,
the RUL can be forecasted more accurately with the updated
parameters.

�e model parameter A is regarded as a constant for a
simpli	ed case in reported studies [27, 38, 39]. However,
two parameters � and A are statistically dependent random
variables for the degradation process. For a more realistic
demonstration, in this paper, � and b are both updated
with the available data. In practical, there is no certain
information about the BM and the measurement noise for a
speci	c system. Hence, parameters related to the BM and the
measurement noise are also updated with � and A, and we can
get the following state space model:

!� = !�−1 + ��−1 (�
�−1� − �
�−1�−1) + "�
"� ∼ �(0, �2�Δ��)

�� = ��−1
A� = A�−1
�� = ��−1
%� = %�−1
C� = !� + ]� ]� ∼ �(0, %2�) .

(19)

Let z� = [!�, ��, A�, ��, %�]
 denote the states of the system
and execute the procedures of the standard PF explained
in Section 2.2; we can get the estimated states ẑ� and the

corresponding particles {ẑ��}��=1 at each inspection time.
Based on the state estimation, we can achieve a p-step

ahead state prediction by propagating the current distribu-
tion with the state space model (19) recursively. Speci	cally, it
can be implemented with the following formula [40]:

�̃ (z�+� | y1:�)
= ∫ �̃ (z� | y1:�)

�+�∏
�=�+1

� (z� | z�−1) 	z�:�+�−1. (20)

However, it is both formidable and time-consuming to
solve these integrals. By applying the PF algorithm, we can

use the particles {ẑ��}��=1 as the initial condition �̃(z� | y1:�)
for prediction. If the particles {ẑ��}��=1 can well represent the
posterior PDF at current time, the predicted PDF at time ��+�
(F=1, . . ., p) can be approximated by (21).

� (z�+� | z1:�) = ∫� (z�+� | z�+�−1)
⋅ � (z�+�−1 | z1:�) 	z�+�−1
≈ ∫ �∑
�=1
���+�−1
 (z�+�−1 − z��+�−1)
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⋅ � (z�+� | z�+�−1) 	z�+�−1
= �∑
�=1
���+�−1� (z�+� | z��+�−1) = �̂ (z�+� | y1:�)

(21)

To calculate (21), the particles at each time instant are
regarded as the prior state of the latter prediction at the
next time instant. Speci	cally, the particles are recursively
propagated by the state transition function:

ẑ
�
�+� = � (ẑ��+�−1) . (22)

Since this approach can reduce computational time, it is
suitable for on-line forecasting cases. Besides, we can derive
the failure PDF for future time instants with p-step ahead
prediction. �e number of particles is N, which means that
there areN predicted state transition paths. Consequently, the
number of theHIs at time ��+� isN. If a HI exceeds the FT, the
time ��+� is considered as the failure time for this prediction
path, which means that we can calculate the failure PDF at
any future time instant with the following:

�̂� (��+�) = �∑
�=1

Pr (!̂��+� ≥ 2) . (23)

Particularly, what we concern in this paper is to obtain
the RUL distribution �(RUL | y1:�). As described above, N
degradation paths can be producedwithN particles, and each
path has a failure time. Hence, the number of RULs is also�. Let '̂�� denote the RUL obtained by particle G, and for
each degradation path, calculate its future states recursively

by (22). When !��+� > 2, let '̂�� = F. �en we can get the PDF

of RUL by {'̂��}��=1 at the given time ��.
�e detailed procedures of the parameters update and

RUL prediction process with the PF are illustrated in Table 1.

4. Experimental Studies

4.1. Simulation. In this section, a numerical example is
utilized to verify the performance of the presented approach.
Measurements of the normal stage and the degradation
stage are both simulated. A nonlinear degradation path
is generated according to the running process of bearings
with (10), (12), and (13), which incorporate four uncertainty
sources. �e degradation path includes the measurement
time and the corresponding HI extracted from sensor data.
Speci	cally, the interval between two adjacent observations
is 10 s, and the simulated HI is the RMS extracted from
the vibration signal. �e details of model parameters used
in the simulation are shown in Table 2. In the simulation,{!�}100�=1 represent the hidden and actual health states of a

bearing, while {C�}100�=1 are the corresponding measurements,
as illustrated in Figure 3.�e FT is set to be 55 g, and therefore
the simulated process fails at 1000 s. �e beginning point of
the degradation stage is 510 s, as marked by the red line in
Figure 3.

Table 1: Parameters update and RUL prediction process.

Step 1: Monitor the bearing’s health state using the method
described in Section 3.1. When the degradation starts, de	ne the
beginning time as t0.

Step 2: At time t0, de	ne the initial distribution of z0. �en
sample particles {z�0}��=1from the initial distribution and initialize

particle weights with ��0 =1/N.
Step 3: At any inspection time tk (k≥1), sample particles {z��}��=1
from the importance PDF de	ned by the state space model (19).

Step 4: Update particle weights {���}��=1 with the newly obtained
HI using equation (8).

Step 5: Resample {ẑ��}��=1 from {z��}��=1according to {���}��=1.
Step 6: Update the HI and the model parameters at time tk with
equation (10).

Step 7: Calculate the future states recursively by equation (22) for
each particle, producing N degradation paths. For each

degradation path, its failure time Ĥ�� is de	ned as the time when

the predicted HI exceeds the FT, and '̂�� = Ĥ��-�� is the RUL of this
degradation path. Consequently, the failure time PDF and the
RUL PDF can be obtained from all the values of failure time{Ĥ��}��=1 and RUL {'̂��}��=1, respectively.
Step 8: For the next inspection interval, let k = k + 1, then turn to
Step 3 and repeat Step 3-7 until the estimated HI !� > 2.

Table 2: Parameters of the simulated degradation path.

Model parameters a � b �2 %2
Value 5.00 0.02 2.00 0.25 4.00

Table 3: Prior distribution of the states.

Variable Distribution

x0 x0 ∼ U(0, 0.001)�0 �0 ∼ U(0, 0.05)

b0 b0 ∼ U(1.5, 2.5)�0 �0 ∼ U(0.1, 1)%0 %0 ∼ U(1, 3)

In this case, the model parameters Θ=[�,b,�,%] are
updated together with the HIs {!51:51+ℎ} (h=1, . . ., 49). In
practice, it is di�cult to conduct enough life tests to obtain
a reliable prior PDF for a speci	c system. Hence, the prior
distributions of the HI and the model parameters are given
empirically, as shown in Table 3. �e number of particles is
1000.

�e estimations of the HI are shown in Figure 3. It can
be observed that the proposed method can track the actual
degradation trend accurately. At each inspection time, we
can calculate the mean of all the model parameters. Figure 4
illustrates the updating history of parameters during the
estimation process. It can be seen that all the parameters
�uctuate to some degree. �e parameters �, A, % tend to
approximate their true values a�er 820 s, while � still varies
slightly at this stage. �e 	nal estimated results of � and A are
0.0172 and 2.055, respectively, which are a little deviated from
the real values. �e 	nal estimated value of � is 0.4406, and
there is still a small gap between it and the actual value 0.5.
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Figure 3: Simulated degradation path.
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�e 	nal estimation of % is 2.0208, which is very close to the
prede	ned value 2.

At each inspection time, a�er we get the posterior
distributions of the HI and all the related parameters, the
RUL can be predicted by Step 7 in Table 1. �e mean
values of the predicted RULs are shown in Figure 5. It can
be observed that the predicted RULs deviate a lot from
the real values at the beginning because of the multiple
uncertainties. As more measurements become available, the
RUL can be estimated more accurately due to the reduction
of uncertainties. Speci	cally, accurate results can be obtained
a�er 750 s.

As described above, even the 	nal estimated values of
parameters �, b, � still di
er a little from their real values, the
predicted RUL converges to the real RUL as time goes. �e
reason for this phenomenon is that di
erent combinations of
parameters �, b, and � in the nonlinear degradation model
can result in the same value of HI. Although there is a small
di
erence between the estimations of parameters and their
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Figure 5: RUL prediction results.

true values, the RUL can still be predicted accurately. A
similar conclusion was also drawn in previous work [6]. In
a word, this simulation indicates that the proposedmethod is
e
ective in RUL prediction and uncertainty reduction even
with random prior parameters.

4.2. Bearing RUL Prediction. In this section, real condition
monitoring data collected from accelerated life tests for bear-
ings are used to verify the proposed method’s e
ectiveness in
real application. �e datasets were used for the IEEE PHM
2012 Data Challenge [45]. �e RMS is extracted from the
vibration signal as the HI to indicate the health status of
bearings, and then the presented approach is used to forecast
the RUL of bearings.

4.2.1. Experimental Setup and Data. �e accelerated
tests were conducted on an experimental platform called
PRONOSTIA, which was designed and realized at FEMTO-
ST Institute. �e con	guration of the platform is shown in
Figure 6. �e experimental system can o
er run-to-failure
condition monitoring data for ball bearings. With the
accelerated test techniques, bearings can fail within only a
few hours, which saves a large amount of time and makes it
possible to obtain enough run-to-failure data for research.

During the test, the radial force is set to be higher than
the bearing’s maximum dynamic load. As a result, the time
for a bearing to fail is reduced. �e loading force and the
rotating speed are constant during the overall life cycle. Two
vibration sensors are installed on the vertical axis and the
horizontal axis, respectively. �e sample frequency of the
vibration is 25.6 kHz, and the length of data is 2560. During
the operational life, vibration signals are collected every 10 s.

�e force exerted horizontally is the main reason for
the failure of bearings, so the horizontal signals capture
more relevant information about the degradation status of
bearings. Consequently, the RMS extracted from vibration
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Figure 7: Typical bearing vibration signals.

signals in this direction are chosen as the HI of bearings
in this study. Even in the same operation condition, the
life durations of tested bearings vary a lot from each other.
Accordingly, the uncertainty for each bearing should be
quanti	ed to obtain accurate RUL prediction results.

4.2.2. RUL Estimation of Bearings. Figure 7 shows the vibra-
tion signals evolution of a typical degradation process during
its life time. �e values of RMS during the bearing’s service
life are illustrated in Figure 8. It can be observed that the
bearing works normally for a long time. However, it is not
necessary to predict the RULwhen the bearing is healthy, and
what we concern is the performance of the bearing during its
degradation stage. �erefore, in the normal stage, we do not
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Figure 8: RMS results of the bearing.

conduct the updating process, while in the degradation stage
we incorporate the model developed in Section 3.2 and the
vibration signals to track the health status and perform RUL
prediction. Besides, prognostics based on the health stage
division can improve the estimation accuracy and reduce the
computational cost [46, 47]. Hence, the operational process
of the bearing is divided into two stages according to the
method described in Section 3.1. According to the steps of
the degradation detection mechanism, the bearing begins to
deteriorate at t = 15850 s, asmarked by the red line in Figure 8.

When the bearing begins to deteriorate, the PF is uti-
lized to estimate the health status and the parameters. �e
number of particles is 1000. �en the RUL can be forecasted
with the updated results. �e initial parameters are given
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randomly like what we did in Section 4.1. �e exponential
Wiener process model proposed by Gebraeel [22] and the
linear Wiener process model are utilized for comparison and
demonstrate the performance of the presented framework.
�e number of particles for the Gebraeel’s model and the
linear model are also 1000. �e prior parameters for these
two models are optimal which are obtained by 	tting the
RMS results. Speci	cally, following Steps 3-6 in Table 1, once
a new measurement is obtained, we can update the health
state and the parameters. �e RMS estimations through the
three models are shown in Figure 9. From the 	gure, we can
see that the RMS tracking results of the exponential model
and the linear model almost coincide with the real RMS,
while the results of ourmethod deviate a little from the actual
RMS. Besides, the estimated RMS of the proposed approach
has fewer �uctuations. �e reason for this may be that our
method is a
ected less by the random errors, which can
indicate the intrinsic degradation evolution.

At each inspection interval, we can obtain the RUL dis-
tribution by Step 7 in Table 1 with the newly updated HI and
parameters. Figure 10 illustrates the mean values of predicted
RULs in the degradation stage with the three models. As
more measurements become available, the prediction of our
model converges to the real RUL a�er 15980 s. However, the
predicted RUL by Gebraeel’s model still deviates to some
extent until 16210 s. Among the three models, the linear
model converges slowest, which do not get close to the actual
RUL until the end. To evaluate the prediction accuracy of
the three models, the root mean square error (RMSE) is
calculated for each method. �e RMSE of the Gebraeel’s
model and the linearmodel are 217.79 and 115.05, respectively,
which are both larger than 78.11 of our model. Consequently,
ourmodel can achieve a higher accuracy than the comparison
models.

To further verify the superiority of the presented method
quantitatively, we use a commonly used metric, named
Cumulative Relative Accuracy (CRA) [48] to evaluate the
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Figure 10: RUL prediction results.

Table 4: CRA of three models for di
erent intervals.

I� Gebraeel’s model Linear model Our model

10 0.3638 0.9281 0.6365

20 0.2739 0.8183 0.7876

30 0.3141 0.6701 0.8443

40 0.4189 0.5064 0.8678

52 0.5034 0.4807 0.8688

performance of the three models. �e CRA is expressed as
follows:

JKL� = 1I�
�=
�∑
�=1
M('∗�)RA�, (24)

where I� is the number of time indices, '∗� is the real RUL at

t�, and W('∗�) is a weight factor at t�, which is a function of'∗�. Here we de	neW('∗�)=1 for all the time indexes.�e RA�
is the Relative Accuracy (RA) of RUL prediction at t�, which
is de	ned as follows:

KL� = 1 −
NNNN'∗� − '�NNNN'∗� , (25)

where L� is the predicted RUL at t�.
We calculate the CRA values for each model in di
erent

intervals, and the results of CRA are shown in Table 4. It is
seen that the CRA of our model are much larger than that of
theGebraeel’smodel for all the time intervals listed in Table 4.
�e linear model performs better than our model in the 	rst
two intervals, which indicates the severity of the degradation
increases linearly at the beginning of the deterioration stage.
However, our model can provide more accurate results in
the latter three intervals, and our model can achieve much
higher overall accuracy for the entire degradation stage than
the linear model.
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Figure 11: Updated failure time distribution of our model.

Table 5: MAD of three methods at di
erent time indexes.

I� Gebraeel’s model (s) �e linear model (s) Our model (s)

10 4847.5296 13.1931 110.9541

20 1007.8243 16.0942 4.6667

30 217.8650 14.4032 5.2765

40 33.8555 12.2644 4.6832

50 27.2808 12.3839 3.7097

To sum up, among the three methods, our model con-
verges fastest and provides the most accurate prediction
results during the whole prognostics process.

In order to demonstrate the e
ectiveness of the proposed
model in uncertainty reduction, we calculate the PDFs of
failure time for three approaches at di
erent inspection time
according to Step 7 in Table 1, and the results are illustrated
in Figures 11, 12, and 13. �e distributions are all wide at
the beginning. According to Table 1, the failure time PDF
at a speci	c time instant is determined by the estimated
health state and parameters. At the beginning of the updating
process, there exist lots of uncertainties in the updated health
state and parameters, which may cause an inaccurate failure
time estimation. As the update times increase, the PDFs get
closer to the actual failure time and become narrower. Since
the distribution of failure time is nonnormal, we use Mean
Absolute Deviation (MAD) [48] to measure the variance of
distribution, which is shown in Table 5. It is observed that all
the variances of our model at the listed updating indices are
much smaller than that of the Gebraeel’s model. Besides, the
variances of the linearmodel formost time indexes are bigger

than that of our model except the 10th update. �erefore, our
model performs best in the uncertainty management.

To further demonstrate the e
ectiveness of the proposed
approach, we calculate the RUL of other bearing datasets
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Figure 12: Updated failure time distribution of Gebraeel’s model.
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Figure 13: Updated failure time distribution of the linear model.

with the proposed method. Due to the lack of space, we
do not show the pictures of their results and just give the
above-mentioned bearing for example. Table 6 displays the
CRA values during the whole degradation stage for the
tested bearings. It is observed that our model performs
better than other two models for almost all the tested
bearings, which further proves its e
ectiveness in real appli-
cation.

�e superior properties of the presented method can be
explained as follows:
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Table 6: CRA for tested bearings.

No. Gebraeel’s model Linear model Our model

Bearing 1 0.6230 0.5890 0.6960

Bearing 2 0.6096 0.7661 0.7530

Bearing 3 0.5411 0.7771 0.8429

Bearing 4 0.6961 0.6402 0.7808

Bearing 5 0.7487 0.7579 0.8324

Bearing 6 0.6876 0.7573 0.7647

Bearing 7 0.3101 0.6159 0.7603

(1) �e operational process of the bearing is divided into
two stages, which are processed separately. Modeling
and prognostics with the information of degradation
stage alone can avoid the inference caused by the
measurements from the normal stage.

(2) Compared with our model, the exponential model
and the linear model estimated the actual health
state less accurately because of the random errors.
Consequently, there is a relatively large gap between
the actual RUL and their estimated results. However,
the random errors have less in�uence on the health
state estimation of the presented approach. �us, the
corresponding predicted RUL accords better with the
real RUL.

(3) In ourmodel, bothBM�(�(��)−�(��−1)) and themea-
surement noise ] are considered, and the correspond-
ing parameters are updated by Bayesian inference. As
a result, it can indicate the temporal variability and the
measurement variability in real time. Moreover, the
exponential model can be transformed into a linear
model. In our model, the nonlinear variability and
the unit-to-unit variability are both updated with the
condition monitoring data. In a word, the proposed
method provides the best uncertainty management
among the three approaches. �erefore, our model
can achieve higher prognostics accuracy than the two
traditional methods.

5. Conclusions

�is paper presents a new RUL prediction method for bear-
ings based on a Wiener process model. First, the condition
monitoring data collected in the normal stage is used to de	ne
the DT. �en we use the DT to detect whether the bearing
begins to deteriorate. When the degradation occurs, the PF is
used to integrate the degradation model with measurements
for parameters updating and RUL prediction. Tomanifest the
validity of the presented framework, the Gebraeel’s model
and the linear model are used for comparison. �e results
show that our model performs best in RUL prediction and
uncertainty management. Additionally, our model can deal
with the cases whose initial parameters deviate a lot from
their real values, which makes our model applicable in the
situation where there is no enough failure history data for
parameter initialization.
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