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Classical bearings-only target-motion analysis (TMA) is 

restricted to sources with constant motion parameters (usually 

position and velocity). However, most interesting sources have 

maneuvering abilities, thus degrading the performance of classical 

TMA. In the passive sonar context a long-time source-observer 

encounter is realistic, so the source maneuver possibilities may 

be important in regard to the source and array baseline. This 

advocates for the consideration and modeling of the whole source 

trajectory including source maneuver uncertainty. With that aim, 

a convenient framework zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the hidden Markov model (HMM). A 

basic idea consists of a two-levels discretization of the state-space. 

The Probabilities of position transition are deduced from the 

probabilities of velocity transitions which, themselves, are directly 

related to the source maneuvering capability. 

The source state sequence estimation is achieved by means of 

classical dynamic programming (DP). This approach d m  not 

require any prior information relative to the source maneuvers. 

However, the probabilistic nature of the source trajectory confers 

a major role to the optimization of the observer maneuvers. This 

problem is then solved by using the general framework of the 

Markov decision process (MDP). 
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The basic problem of target-motion analysis 
(TMA) is to estimate the trajectory of an object (or 
source) from noise-corrupted sensor data. However, 
for numerous practical applications and especially 
for long-time scenarios, the source is maneuvering. 
Tracking methods for maneuvering sources is a 
classical theme and a huge amount of literature is 
devoted to this subject [9]. The fields of applications 
are as varied as radar systems [ 1 11, infrared systems 
[3], and sonar [21]. 

One of the first attempts to estimate the trajectory 
of a maneuvering target was presented by Singer [28] 
where an exponentially correlated model of moving 
target maneuver was considered. More precisely, 
the target acceleration was modeled as a stochastic 
process having an exponential correlation function. 
However, the suggested Kalman filter was matched to 
the averaged maneuver so there was no adaptativity 
with respect to the changes in maneuver. Various 
authors have tried to improve tracking performance 
by using time-varying filters (see for instance [23]). 

Targets and especially manned targets most of 
the time have a constant speed vector. At random 
moments, they perform sudden maneuvers and after 
resume with uniform motion. The algorithms which 
estimate trajectory of such targets can be broadly 
divided into three classes. 

The first one is the fixed model approach, 
where the general approach is to provide the best 
trajectory smoothing possible, trying to adjust to 
maneuvers within the constraints of a unique model. 
The limitations and drawbacks of such methods are 
evident. 

In order to remedy the drawbacks of the unique 
model, switching model algorithms have been 
developed. They consist of one Kalman filter tuned 
to each motion model. and they try to detect model 
change and activate the correct Kalman filter. It often 
seems reasonable to consider the statistical properties 
of the innovation [30] to detect a maneuver occurence. 
It is also possible to cionsider general statistical 
methods for the deteclion of model changes [5]. 

The third approach is that of Multiple Models 
algorithms where all the Kalman filters are active 
at all times and the process of model change is 
Markovian with known transition probabilities. The 
optimal solution to the maneuvering target tracking 
then requires the consideration of an exponentially 
growing number of histories. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASo suboptimal solutions 
like GPB 1 or GPB 2 have been proposed [12]. For 
the IMM approach [6] the estimated state consists of 
the estimated states of the various elementary models, 
themselves estimated by linear combinations of the 
previous estimates. These (suboptimal) algorithms do 
not require the problematic step of maneuver detection 
since they consider a progressive change of the model. 
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According to this brief panorama, it is obvious that 
tracking maneuvering sources has motivated important 
and fruitful efforts. However, it is worth noting that 
these efforts are mainly focused on radar system 
applications [l 11. The context of sonar systems is 
rather different since it is frequently a passive system 
whose observations (basically the estimated bearings) 
depend non-linearly on the state. Furthermore, 
considering a long-time source-observer encounter, 
the source maneuver possibilities are quite numerous 
and diverse. A similar remark can be made for the 
detection of the source maneuvers which requires a 
suitable estimation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the source state, itself needing a 
sufficient signal-to-noise ratio and, overall, a sufficient 
time between consecutive source maneuvers. All these 
considerations advocate for the consideration and 
modeling of the whole source trajectory including 
source maneuver uncertainty. 

With that aim, a convenient framework is the 
hidden Markov model (HMM), widely used in other 
contexts like speech processing [26], frequency 
line-tracking [33] and recently in infrared detection 
and tracking of dim moving sources [4]. A first 
attempt at using HMM tools in the sonar system 
area seems to be the works of Martinerie, et al. [21, 
221 where the observations were constituted of the 
measurements of three active buoys. Applications to 
passive sonar systems appeared in [ 18, 3 1, 321. In 
order to apply HMM methods to the bearings-only 
tracking (BOT) context, a basic idea consists of 
a two-levels discretization of the state-space. The 
probabilities of position transitions are deduced 
from the probabilities of velocity transitions. 
These transitions correspond themselves to the 
maneuverability constraints inherent to the source. 
It is thus possible to avoid a too-precise source 
maneuver modeling to the benefit of a rather coarse 
stochastic modeling. 

General Markovian models of source trajectory are 
considered in Section 11. More precisely, discretization 
of Markovian modeling are investigated from which 
the (discretized) probabilities of transition are 
deduced. A general two-level transition process is 
thus developed, especially relevant to target-motion 
analysis (TMA). The observation model is presented 
in Section 111. In the BOT context, the source state 
is only partially observed through noisy nonlinear 
measurements. Given a measurement sequence, the 
estimation problem consists in finding the sequence 
of states which maximizes a conditional probability 
density function (pdf). This is achieved by means 
of classical dynamic programming (DP) algorithm 
(Viterbi) [lo, 161, described in Section IV. This 
approach is an elegant solution to the maneuvering 
target tracking problem since it does not require any 
prior information on the source maneuvers. 

Even if the state sequence estimation appears as a 
direct application of DP, a major problem (specific to 

BOT) comes from the optimization of the observer 
trajectory. The problem is then immersed in the 
general framework of Markov decision process 
(MDP [2, 131). In the MDP context, the problem is 
to determine the control policy optimizing an averaged 
cost functional. However, our problem differs from 
the classical one by the nature of the cost functional 
which is defined as matrix space. The choice of 
the matrix functional is very critical. Actually, it 
is required that the matrix functional satisfies a 
monotonicity property which considerably reduces 
the possibilities for its choice. 

The problem has been considered both from the 
complete and partial information point of views. For 
the complete information approach, the sequence of 
source states is assumed to be known. The aim of this 
analysis is mainly to provide a catalogue of optimized 
observer trajectory and to investigate the theoretical 
problems occuring with the application of the DP 
principle (see Section V). A general framework based 
on the calculation of Fisher Information Matrices 
(FIM) of increasing dimensionality is developed. 
These matrices are the FIM matrices associated 
with the estimation of the source state sequence of a 
randomly maneuvering source. The major contribution 
is this general framework, the MDP problem itself is 
solved by means of the classical DP principle. 

Practically, the source state is only partially 
observed through nonlinear measurements. A natural 
approach is then that of partially observable Markov 
decision process (POMDP) for which a general 
framework is presented (Section VI). More precisely, 
the absence of knowledge of the state leads to replace 
it by the information vector. The components of 
this information vector are the state probabilities 
conditionned on the history of measurements 
and controls. Actually, it may be shown that this 
information vector is itself a Markov process. Using 
updating formulas, the DP algorithm may be rewritten 
as an extremization of a scalar product. This is the 
algorithm of Smallwood and Sondik, which is very 
briefly presented in Section V. For a summary of 
the related optimization problems and the practical 
implementations, we refer to [ 15, 201. 

11. BEARINGS-ONLY TMA FOR MANEUVERING 
SOURCES: A GENERAL FRAMEWORK 

The source located at the coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( r , , , ~ - ~ ~ )  
moves with a constant velocity (vx,,vys). The state 
vectors of the source and the observer are 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x, = [rxs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 ry, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 v,, , vy,l T ,  

In terms of the relative state vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, defined by 

A 
x = x, -x, =[r,,ry,v,,vy]T 
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the discrete-time state equation takes the following 
form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x k + l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= * ( t k > t k + l ) x k  + u k  + G w k  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Id, = [:, ;] 

In the above definition, the vector uk accounts for 
the effects of the observer accelerations, while w k  

corresponds to a temporally (vectorial) white noise 
modeling the proper source motion. We thus have 

(2) ~, 

c o v { ~ ~ ~ x ~ }  = 0. 

From (2) we see that the system' (1) has the 
Markov property, so that: 

d X k + l  I x k , . . . ? % )  = d X k + 1  I x k ) .  (3) 

In the BOT context, the_measurements are the 
estimated source bearings Ok (defined relatively to the 
North axis): 

A -  
y k  = %, = %k + u k  = f ( x k )  f uk 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(4) 

u k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM(0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg;). 

In (4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0: represents the variance of the 
measurement noise and is given by the Woodward's 
formula, [8]. Furthermore, the following 
independence properties are quite realistic: 

cov{%, v k }  = 0 
( 5 )  

c o v { w k ,  v k }  = 0. 

In view of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  the following property is satisfied 

p ( y k  1 x k , . . . , x O , Y k - l , . . . ~ Y ~ )  = p ( Y k  1 x k ) *  (6) 

Now, it remains to specify the matrices Q and 
G .  Actually these matrices are deduced from the 
modeling of the source acceleration and various 
models are considered later. 

Let us stress upon the nonlinearity of the 
measurement functional f ( x k )  so that linear algorithms 
(Kalman filters) are inappropriate. This leads us 
to consider the use of DP (Viterbi algorithm) for 

estimating the sequence of states modeling the source 
trajectory [13, 161. 

This type of algorithm requires a discretization 
of the state space. Obviously there is a compromise 
between the discretization size and the computation 
cost. Each discretized value of the state will be a 
four-dimensional cell (2D for the position and 2D for 
the velocity vector). If the source state is in a cell qi, 
then its discretized state will be defined by q,. 

Q and G for various modeling of the source 
accelerations. Classical calculations yield3 [ 131 : 

We now consider the calculation of the matrices 

d X k + m  I X k , U k + m - l , * * . r U k )  

(m-1 

m- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

j =O 

Note that in (7) the matrix Qk is assumed to be 
constant. The simpler model is 

I ' x ,k+ l  = "x,k + ATwx,k 

I ' y , k + l  = 'y,k -k ATwy7k' 

We thus have 
AT, 

'x,k + 1 = 'x,k + + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 wx,k 

(8) 
AT2 
T w y , k .  'y ,k+l  = 'y,k + ATvy,k 

Assuming wx,k  and w ~ , ~  to be independent, the x 
and y motions may be separately modeled. We then 
have [ 191: 

xk ('x,k> vx,k)Tt 

A = = (  1 AT ) ,  
0 1  

 AT^ 
G = :  (E), 
Q == g2 

and therefore 
G Q ~ G ~  = g 2 ~ ~ T .  (9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

'6: Kronecker symbol; p :  probability. 
2N: normal density. 

3Xk+,, l lk is the covariance matrix of the resulting noise at time k + m 
given the noise from time k to k + m. 
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Elementary calculations then yield4 

and recalling the following result (direct consequence 
of the Bayes rule): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P('k+l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ' k )  = P('x,k+l I 'x,k2vx,k) 

P ( v x , k + l  I r x , k+ l~ rx , k ' vx , k )  (lo) 

= p ( v x , k + l  I ' ~ , k 7 ~ x , k )  

P('x,k+I 1 V x , k + l ~ v x , k 7 r x , k ) ~  

= P(vx ,k+ l  I %,k) 

P('x,k+l I vx ,k+ l 'Vx ,k~ rx ,k )  (I1) 

we finally obtain from direct identification (with (10)): 

) 
2 

p ( v x , k + l  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' x , k + l > ' k )  = ' ' x , k + l  ' x , k  - E ( ' x , k + I  - % , k )  * 

(12) 
( 

The transition probabilities relative to velocities 
appear rather restrictive. So we now consider a more 
general model of source motion, more precisely [25]: 

I .  

rx = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvx I .  . 
I vx = wx 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW x  is a white Gaussian noise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w is a 
Wiener-Levy process), and the symbol " ' " denotes 
the differentiation (versus time). 

Discretizing (13) we obtain 

' x , k+ l  = vx,k + <x,k 

with 

( k  = w x ( l k + l )  - w x ( l k ) ,  w&n. N(0, ATa2). 

(14) 

Integrating (14) the position equation is obtained, 
yielding 

' tk+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

' x ,k+ l  = rx,k + lk LVx,k + (wx(t> - W x ( t k ) ) l d t  

. 9 + 1  

= 'x,k + ATvx,k + / (wx(t> - wx( tk ) )d t  
tk  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. k + l  

'x,k + ATvx,k + lk ( l k + l  - l > d w x ( t ) *  (15) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
46 is the Kronecker symbol. 

Finally, the following discretized model has been 
obtained 

'x,k+l = 'x,k + ATvx,k -k qx,k 

'x ,k+ l  = 'x,k + (x,k 

where 
1 t x , k  - w.g.n. N(0, ATg2) 

Using (16) the matrix Q (eq. (2)) is easily 
calculated (see Appendix A): 

AT3 AT2 \ 

The transition probabilities are then deduced from 
(16) and (17) by integrating on the corresponding 
cells the density of the Gaussian vector ( Y ~ , ~ , V , , ~ ) ~  = 

x;. Writing (15) in a vectorial form: 

x k + l  = M X k  + wk 
where 

(18) 

direct calculations give the transition probabilities (see 
Appendix B): 

d X k + l  I ' k )  = d r x , k + 1  I X k ~ v x , k + l ) P ( v x , k + l  I ' k )  

where 

d V x , k + l  I ' k )  N(vx,k,ATo2)'  

Therefore, fixing a single parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a2) we 
are able to calculate the transition matrix of the 
Markov chain defined by (18) where the vector xk 
is associated with the center of a cell. The transition 
probabilities are then calculated by integrating the pdf 
defined by (19) on the volume cells qi and q j :  

Pr{xk+l E q, I ' k  E 9,) 

J' J' d X k + l  I X k ) P ( x k ) d X k d X k + l  

. (20) 
- e % - 

d X k )  dxk 

For the sake of computation time (Viterbi 
algorithm), transition probabilities under a certain 
(relative) threshold are considered null. The transition 
matrix then becomes essentially sparse. This 
calculation of the transition matrix is illustrated by 
Fig. 1, which depicts the set of transitions from 
the origin. Each vertex of the grids, corresponds to 
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1 
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~0 .03  
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1 

Fig. 1. Transition matrix from origin. Each graph corresponds to position transition for a fixed speed. 

a cell. For this example, the width of the position 
cells is 1 km, the width of the speed cells is 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm / s  
and the sampling time is 100 s. The variance of the 
Wiener-Levy process has been set to 1. This leads to 

i o 6  104 Q = ( $  :)a 

Under certain conditions (e.g., cell size) the pdf 
p(xk) may be considered as approximately constant on 
the cell qi so that the transition probability becomes 

(Vol(q,) is the volume of the cell qi.) 

obtain using Bayes rule: 
As the transitions on x and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy are independent, we 

W X k + l  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX k )  = W r k + I  I ‘k,Vk)Pr{Vk+l I Vk,rk+l?rkk). 
(22)  

In order to simplify this model, one can consider 
that the transitions probabilities relative to position 

Ini(illpiti0n 

EILirmlcd 
m v d  pit ioo 

A”d 
uri*d paitioo 

Fig. 2. Position transition process in two-level point of view. 

and velocity are independent, so that (22)  yields 

Pr{x,+, I Xk) = Pr{rk+l I ‘k7Vk)Pr{Vk+l I Vk). (23)  

In that way, we have a two-level transition process 
which is depicted in Figs. 2 and 3. The transition 
probability on the position which is centered on the 
estimated position (rt+ = r, + v,), and, independently, 
the velocity is authori:zed to change smoothly. 

Ill. OBSERVATION MODEL 

In the passive sonar (BOT) context, the 
observations are estimated bearings (denoted yk) .  The 
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Speed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgrid 

Initial velocity 

A u t h o d  velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 3. Velocity transition process in two-level point of view. 

the coefficients are multiplied by a constant so as to 
have the sum equal to one. 

In that case the discrimination between the 
cells is done only on the position space. If multiple 
bearings is used to compute a global observation, 
different speed for a same position will yield different 
probabilities. 

NULL,, 

1 Cel 

--.I. Line of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 sight zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

IJX Cell qi 

Ana, 

Fig. 4. Different types of cells in observation process. 

conditional pdf of the observations is given by 

or more simply, if we assume that p(xk) is constant 
on qi: 

For the sake of computation time and memory, 
this calculation may be replaced by a (slightly) less 
rigorous one: 

In the absence of any prior information about the 
probabilities Pr{yk) and Pr{xk E qi), it is reasonable to 
consider them as constant, so that 

Pr{yk I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' k  E %) pr{xk E qi I Yk}. (26) 

The density Pr{x, E q, 1 y k )  itself is calculated 
by considering the relative positions (Cartesian 
coordinates) of the cell q, on the one hand and of 
the line of sight issued from the array center and 
associated with yk on the other hand. 

taking the maximum of the pdf in the cell. Cell zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqj is 
intersected by the line of sight, so its coefficient will 
be set to 1. Cell qi is not intersected by the line of 
sight, so its coefficient will be set to the maximum 
of the exponential part of the pdf which is found on 
the corner which has the lowest bearing deviation 
from the line of sight (the first one in the example). 
Its probability is set to exp[-$(a,/~,)~]. After that, all 

Fig. 4 depicts one way to compute Pr{x, E q, 1 yk} 

- 
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IV. ESTIMATION OF SOURCE TRAJECTORY 

We assume that the source trajectory may be 
modeled by a Markov chain with known transition 
probabilities. The observations are the estimated 
bearings yk (yk = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOk). Note that yk is a scalar 
nonlinear function of the 4-dimensionnal state xk. The 
estimation problem we deal with is posed as follows. 

* 

Larson-Peschon (LP) problem [ 161 : Given a 
measurement sequence Yk = {yl ,y2,. . . , yk} find the 
sequence Xk of states that maximizes the conditional 
pdf: 

P(Xk I Y k ) .  (27) 

A sequence of states Xk is called a trajectory. 
The trajectory corresponding to a solution of the LP 
problem is denoted 

We thus have 

Using Bayes rule, we obtain directly 

Invoking the Markov hypothesis, we have 

The next step consists in simplifying p(Xk+, I Yk) 
thanks to the Bayes rule and the Markov property: 

= P(Xk+l I Xk)P(Xk I Yk). (31) 

Combining (29) to (3 l), the LP following 
recursion is obtained 

and the DP recursion is directly deduced: 
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Fig. 6. Computational procedure to implement DP recursion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where 

(33) 

The state maximizing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ*(xk) is denoted ?klk, the 
rest of the trajectory is found by tracing backward a 
stage at a time, formally (eq. (33)): 

the procedure being initialized by sklk. It is illustrated 
in Figs. 5 and 6. 

discretization. Actually, for computation time saving, 
it is necessary to choose a rather coarse grid but 
the occupation time of a cell then becomes very 
inferior to the discretization time. The DP algorithm 
then performs poorly. A first remedy consists of 
increasing the discretization time and therefore 
reducing the number of observations. This approach 
presents evident drawbacks. So, a natural way to 
overcome these difficulties consists in considering a 
vectorial observation formed of adjacent observations. 
In the simpler modeling, the conditional pdfs of 
the observations are calculated by replacing the 
components of the observation vector by their 
centroid. 

The LP recursion requires that the transition 
probabilities p(xk+ 1 xk)  adequately describe the 

A particular difficulty comes from the 

reality. However, the algorithm appears quite tolerant 
with respect to (wrt) the parameters of the Markov 
model. This seems essentially due to the generality of 
the two-levels Markov model. 

V. OPTIMIZATION OF OBSERVER MOTION 

Since the performance of the source trajectory 
estimation is tightly related to the observer motion, 
this step is instrumental. This problem is immersed in 
the MDP framework. 

a sequence of decisions, generally denoted d (the 
observer maneuver in our context), which maximizes 
a criterion related to the states of the Markov chain. If 
the process is in state 1; at time k and if a control d is 
chosen, then a two step process is launched [13, 271: 

The general aim of the MDP is to determine 

1)  a cost c( i ,d)  is incurred, 
2)  the next state of' the system is chosen according 

to the transition p j j (d ) .  

If we let xk denote the state of the process at time 
tk and dk the decision (chosen at tk, the assumption zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) 
is equivalent to state that 

Pr{xk+,  = j l % , d O  ,..., x k = i , d k = d } = p i j ( d ) .  

(34) 

Thus both elementary costs c( i ,d)  and the 
transition probabilities pi j (d)  are functions only of the 
last state and of the subsequent control. It is easily 
shown that if a stationary policy T is employed, the 
sequence of states { X k ,  k = 0, 1,  . . .} forms a Markov 

chain with transition probabilities pi j (d)  = pj j ( i . ( i ) ) ,  

giving thus the denomination MDP to the process. 

associated with policy T. The problem is to find an 
optimal control process dk which minimizes a cost 
functional. Classicaly, this cost functional is defined 
from elementary cost f'unctionals ck(xk,dk). 

This functional represents the cost to pay if, at 
time tk, the state of the: process is xk and the control is 
dk. On a finite horizon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ,  the following cost functional 
is considered: 

A 

We denote dk = gk(xk) the control process 

T-1 

J ( g )  = E ( g ) c T ( x T )  + c c k ( x k , g ( x k ) )  

k=O 

= CPrd[xT = x)cT(x) 
X € S  

T-1 

+ W X k  = X)Ck(X, g(x)) (35) 
k=O X€S 

where S is the finite set of states. 

g* which minimizes (315). 
The MDP problem consists of finding the control 
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Practically, (35) is solved by a computationally 
efficient method based on the optimality principle 
(due to Bellman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[14]). This principle simply asserts 
that if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7r* = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ u & u T , .  . . , u ; - ~ }  is an optimal control law 
then the truncated control law { U T , .  . . , u ; - ~ }  is optimal 
for the ith truncated problem. 

Using the optimality principle, the MDP problem 
may be solved by the following algorithm (called DP 
algorithm): 

The optimal control law is obtained as the solution 
of 

initialized by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ*(T, i )  = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i  E S). 
This is the classical approach of DP. However our 

problem, which consists in optimizing the observer 
trajectory, may differ from it by the nature of the cost 
functional. It is a functional of the FIM, indeed the 
FIM is a convenient measure of estimability. 

Various choices of the FIM functional have been 
considered in the literature. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASo, to be more precise, the 
cost functional (35) must be replaced' by 

where H is a matrix functional, and Fk(xk,Xk+l,g(xk)) 
is the instantaneous FIM associated with the transition 
from state xk to xk+l and the control g(xk) .  

The choice of H is critical since the control policy 
depends on it. Actually, it can be shown [17] that 
a necessary condition for applying the optimality 
principle (37) is that H satisfies the following 
condition. 

Monotonicity Property. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and B (in '7 in)6 
be two matrices, then H ( f i n  --+ R, differentiable) 
owns the DP property if the following monotonicity 
property holds. 

the matrix C in 'Hn : H ( A  + C )  > H ( B  + C) .  

the monotonicity property may be written as 

Let A and B in 3-1, s.t. H ( A )  > H ( B )  then whatever 

It has been shown that the functionals H having 

where g is a monotone real function, Tr is the matrix 
trace and R is a fixed matrix. 

It remains now to consider more precisely the 
structure of the FIM. The partial derivatives of the 

- 
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5E: expectation. 
%, is space of Hermitian matrices 

exact bearing 6, wrt ~0 the state vector, are easily 
obtained (rectilinear and uniform motion), yielding 
the following gradient vector gk: 

T cos 6, sin 6, k cos 13, k sin Ok 
- _- ~ _- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9 

rk 'k 'k 
gk = ( rk 9 

Under the rectilinear motion assumption, the 
elementary FIM Fm is directly deduced from (39), i.e., 

n 
k = l  k= 1 

F n = x g k & =  

with 

1. f i k  = ( - sin 6, cos 0, sin2 0, 

1 C 0 S 2 B k  - sin e k  cos 8, 

This structure of the FIM is quite remarkable and 
may be easily extended to the case of a maneuvering 
source. For that purpose, the source trajectory is 
modeled as a multileg one which is quite coherent 
with our discrete modeling of the source trajectory. 
Consequently, for this approach, the dimension of 
the state vector is enlarged for each new (from the 
reference time) leg since it includes now the initial 
position of the source as well as its various velocity 
vectors (associated with the successive legs). 

To be more precise, consider a source trajectory 
formed of n legs (all of the same length), each one 
corresponding to J bearings, the complete FIM 
(denoted F, ,n j )  takes the following form: 

with 

P 4-P-2 - & 
dp,q(k )  1 (1 J A T . * . J A T  ( k - p J ) A T  O...O) '  

\ + / 

4 

(41) 

and nk is given by (40), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 is the Kronecker product. 
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Consider now the calculation of the FIM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF, with: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 (I + l ) J  (I index of the leg) 

then quite similarly to (41) we have 

Fk = [dr-l,l+l(k)d~-l,,+l(k)l (8 (42) 

and the trace is: 

Tr(Fk) = [dT-l,l+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (k)dl-l,l+ 1 ( k ) ]  . Tr(n,) 

= [K,,,, 1 ( W - l , , +  1 (MI. (43) 

For this cost functional, the DP algorithm takes the 
following form: 

Initialization: 
Fori = 1, ..., N 

J,*(i) = 0. 

Recursion: 
F o r k = T - 1 ,  ..., Oand fo r i=  1 ,..., N do: 

Ft(i,dk,j) is the FIM associated to the fact that the 
source comes from the state i to the state j while the 
observer takes the decision d. 

We noticed at the end of Section IV that for 
computation time problem, the sampling time had 
to be increased. This technique leaves numerous 
unprocessed data which can be used to compute the 
trace of the “instantaneous” FIM. Suppose that only 
one sample over N, is used in the estimation process, 
here are few notations: 

St is the sampling time (of the basic system), 
AT = N,St is the time between two steps of the 

J is the Number of DP steps on one leg, 
1 is the number of the current leg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 1,2,. . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r(t) is the range of the source at time t, 
as(t) is the standard deviation of bearing estimation 

at time t. 

With these notations, the trace of the FIM 
associated to the transition between states i and j 
under command dt takes the following form: 

estimation process (DP algorithm), 

N , - l  ~ + ( I - ~ ) J ~ A T ~ +  t + - - ( i - i ) ~   AT^ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Tr[Fc(i,dt,Al = ( is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) 2  

r=O 

(44) 

The range of the source depends directly on i, 
j ,  and dt. &+(T,Ns)l depends not only on command 
dt but also on the observer heading and on source 
bearing. To compute thle trace we have to be able 
to compute the heading of the observer from the 
system state. That is why a new system state had been 
chosen, including the relative position of the source, 
the velocity of the source and the one of the observer. 
Furthermore, the decisions act directly on the system 
state via the observer velocity. 

However, in practical situations, the source state is 
not directly observable. The only available information 
consist of estimated bearings. The MDP problem then 
becomes far more complicated. A general approach 
consists in using the general framework of POMDP. 

Let us recall now the basics of POMDP. The 
central process (the Markov chain) xk is not directly 
observable. An observation 0, (here the bearing) 
is associated with xk. L,et II(x) = {7r E R” I T  2 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

xi = 1) be the set of all the distribution on x and 
H, = {7r( l),dl ,0 , ,  . . . ,dk-l,O,-l} (0 E 8: observation, 
d E D: decision or action, D finite set) the “history” of 
the decisions and observations up to time k. 

Each vector 7r is a probability distribution on x 
(probabilistic interpretation) and is also geometrically 
represented by a point of the associated unit simplex 

(XI. 
At time k, H, contains all the information available 

to the decision maker. ‘The global system evolution is 
then modeled as follows: 

1)  Decision, knowing the history of the decisions 
(controls) and of the observations (i.e., H,), decision 
d, is taken, the system transits from state xk to state 
gx,,, with a given prolbability of transition p$: 

A 
p$ =Pr[x,+, = j I x, = i ,dk = d ] .  

2) An observation 1 9 ~  E Q is received accordingly 
with the probability rjde: 

A 
rfQ =Pr[0, =: 0 I x,+~ = j,d, = dl. 

3) The information vector is updated with two 

4) Elementary cost w$ is the immediate 
reward associated with the following event. Under 
the decision d the state goes from i to j and and 
observation 0 occurs. 

new data: Hk+l = Hk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu .[dk,ek}. 

The absence of kno’wledge of the state leads to 
replace it by the information vector 7r(k) defined by 

7r(k) = (x,(k) ,...,x, (k)>*. 

A 
~ , ( k )  = F’r[x, = i I H,]. 

Actually it may be shown that { ~ ( k ) } ,  is itself 
a Markov process. This means that Pr{7rk+l I 7ro, 

(45) 
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..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7rk,dk} = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPr{rk+l I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr k , d k } .  Moreover, for a 
decision d and an observation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB the following 
updating equation holds [29] 

The transformation T updates the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7r vector 
conditionally to the new observation B and the new 
decision d. In fact, it is straightforwardly obtained by 
means of the Bayes formula. 

With matrix notations, the above formula takes the 
following form: 

with 
g(7r,d,B) = rlpdRd(B)e. 

In the above formula, the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApd is the transition 
matrix, whose elements are {p$ } ,  while the matrix 
Rd(B) is a diagonal matrix with ( j , j )  element equal to 
r$. Finally, e is a vector uniquely formed of 1. 

The initial POMDP is equivalent to a sequential 
decision problem with state space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn(x) and dynamic 

Consider now the computations of the optimal 
decisions. In that aim, it is legitimate to deal with the 
maximum expected value (&(7r)) of the cost function 
that the system can accrue if the current information 
vector is 7r and if k iterations remain. Then, expanding 
over all possible next transitions and observations 
yields the following recursive equation: 

equation x k + l  = T(Tk,dk,Bk). 

r~ N 1 

(47) 

This equation can be slightly simplified if we define 
the expected immediate cost q for state i if the 
decision d is taken during the next control interval, 
giving 

r r 11 

(48) 
with 

Using (46) and (47) the following fundamental 
result has been obtained by Smallwood and Sondik 
P91. 

and can be written as 
The function &(T) is piecewise linear and convex 

&(T) = max((uYk(k),7r) (49) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+rL 
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where ( , ) represents a scalar product and the vectors 
~ " ( k )  are calculated by a recursion derived from (47). 

Equation (49) represents the key for practical 
implementation of the POMDP in our context 
[31]. The Q vectors are calculated by means of the 
following recursion [29]: 

where Z(r,d,B) is the index of the CJ vector of l?(k+l) 
which determines 

The proof of the validity of this recursion is 
constructive [29]. The main idea of the Smallwood 
and Sondik algorithm consists in starting with an 
(u vector, corresponding to a solution with an initial 
probability distribution ro, to compute its action area 
looking for the boundaries with contiguous regions 
until the whole partition of the simplex is done. 

To start, one needs to choose an (arbitrary) 
initial distribution 7ro and to compute the associated 
Q vector, corresponding to the different possible 
decisions ( a d ( k )  = qd + CQ pdRd(B)a'(T*d,Q)). 

on no is the vector which maximizes the scalar 
product (7ro, ad@)). We thus have 

in the image of T(7r I d,B). 

Among these a vectors, the one which is "active" 

d* = arg max(7ro, (ud(k)) (51) 
d 

a*@) = (ud*(k). 

The partitioning of the simplex 
the two types of constraints: 

is determined by 

The POMDP problem is thus reduced [29] to 
linear programming. More precisely, one has to deal 
with the following set of linear problems: 

v j = 1, ... M 

min(7r, bj) ,  (objective function) - 

(7r,b") 2 0  m = 1, ..., M 
(53) 

Various implementations of the basic algorithm exist. 
Applications to the TMA problem is detailed in [31]. 
However, it is worth stressing that the computation 
and, overall, memory requirements rapidly increase 
with the problem dimensionality thus rendering it very 
difficult [3 11. 
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Fig. 10. Source trajectory estlmation. Example 3. 

VI. NUMERICAL RESULTS horizon. Figs. 7 and 8 (depict two bidimensionnal 
The DP algorithm using the trace of the FIM as 

the cost function has been programmed. The aim of 
this algorithm is to compute an array (optimal policy) 
of optimal decisions for every relative position of 
the source, for all velocities of the source and of 
the observer, and finally, for every time on a finite 

portions ofThis array. Onleach node (system state) 
an arrow represents the: optimal decision, which is the 
change to apply to the speed vector of the observer if 
the system is in this state. 

Figs. 9 and 10 depict two simulations where 
the observer uses the exact system state (complete 
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information) to compute the optimal decision given by 
optimal policy; the source trajectory is then estimated. 
The solid lines correspond to the observer trajectory, 
the dashed lines correspond to the real source 
trajectory and finally the dashdot lines represent the 
estimation of the source trajectory given by the Viterbi 
algorithm, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA circle corresponds to the beginning of 
the trajectory. The scale in position is in kilometers. 
Note that the observer trajectory is always originating 
at 0. 

Numerous simulations have been conducted, 
and two of them are presented here. The main 
conclusion that can be deduced is that the position 
is generally estimated with quite a good precision and 
that the speed estimation is not really crucial for the 
performance of the algorithm. In general, it can be 
seen that in the position space, the estimation is better 
at the end of the simulation than at the beginning. 

VII. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACONCLUSION 

Markovian modeling for maneuvering source 
trajectory has been considered and their statistical 
properties (covariance) have been derived. The BOT 
problem has been considered in this Markovian 
framework. DP algorithms appear as a feasible and 
efficient method for solving the BOT problem. A 
major advantage is that the nonlinearities of the 
measurements are directly incuded in the algorithm. 
The exhaustivity of the search procedure constitutes 
another decisive advantage. Finally, the computation 
cost is quite acceptable. 

The problem of observer trajectory optimization 
has been considered. Specific problems for application 
of the general DP principle have been pointed. The 
general framework of MDP provides a feasible 
solution for the complete information case. Opposite, 
the BOT problem with partial information can be 
theoretically solved by means of POMDP algorithms 
but basic difficulties emerge due to the number of 
states and decisions. 

APPENDIX A. COVARIANCES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v a r ( < k )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAT@2. 

Recalling the following general result (valid for 
stochastic integrals): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IE { J j / ( S ) d W ( s ) / a X ( S ) d w ( s ) }  = u q  f(s)g(s)ds 

we obtain 

AT3 
3 

( t k + l  - t )2dt  = CT2- 

and similarly 

APPENDIX B. CONDITIONAL PDF 

Since the variables rx,k+l and Vx,k+l  are jointly 
Gaussian, the conditional pdf f('x,k+l I V x , k + l )  is also 
Gaussian and is given by 

p( rx , k+  1 I 'x,k+ 1 ) N(mr,k+ 1 7  a?,k+ 1 )  

with 

A T 2  
~ mr,k+l = ' q k  ATvx,k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi- T A T - l ( v x , k + l  - vx,k)  

AT 
= 'x,k y ( V x , k + l  $- vx,k)  

APPENDIX C. STOCHASTIC OBSERVABILITY 

In order to study the system observability, it is 
worth reformulating the nonlinear system (eq. (1)-(4)) 
into the following one: 

x k + l  = F X k  $. u k  $. W k  

z k  = H k x k  

with 
H k  = (cos e,, - sin e k ,  0,o). (54) 

Thus the nonlinear measurements 6 k  (eq. (4)) can 
be manipulated to provide a pseudomeasurement 
zk which is linearly related to the target state. This 
constitutes the basis of the pseudolinear estimation 
methods [24, 311. 

observability for a Markovian state (eq. (1)) and 
the BOT measurements. The benefit of using 
measurements in state observation is normally 
manifested by the reduction of a certain cost function 
with respect to their values when no such signals are 
used. 

say that a stoschastic linear system is stochastically 
observable if, in estimating its state from its output, 
the posterior error variances of the state components 
are strictly smaller than the priors. 

Let i i k  be the linear least-mean-square estimate of 
x k  given the measurements { Y k , Y k - l , .  . . ,yo} and define 

Let us now consider the problem of stochastic 

According to the definition of Boguslavskij [7 ] ,  we 
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the matrices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,: 

n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= E{xkxi} 

P, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE{(X, - %,)(x, - %,)*}. 

Then we consider the following definition of 
observability. 

DEFINITION 1 The system (eqs. (1)-(4)) is 
stochastically observable if and only if (iff): 

erPkei < eTn,ei, 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 5 n 

{ei}yZl, usual orthogonal basis of Rn, n = dimx. 

form of P, is 
It can be easily shown [7, ch. 41 that the general 

P, = n, - L&L;. (55) 

The rectangular matrix (n x kn) L, is defined later. 
Since the matrix E, is the covariance matrix 

of the noise measurements, the matrix II, - Pk is 
positive semidefinite. So, the general inequality 
elPkei 5 e;rIkei always holds. The values of the 
index i ensuring a strict inequality are the observable 
state composents. Actually, the above definition is 
rather arbitrary and does not take into account the 
possible coupling between the estimate of the state 
components. Then, a convenient definition may be the 
estimability definition of Baram and Kailath [3]. 

DEFINITION 2 The system (eq. (1)-(4)) is estimable 
if: 

II, - Pk is positive definite. 

Denote B(L,) the number of rows of the matrix 
L, with non-zero elements, then a direct consequence 
of (55) is that the system ((1)-(4)) is stochastically 
observable (Def. 1) iff B(L,) is equal to n. 

that the system is estimable (Def. 2) iff the rank of Lk 
is equal to n. 

The matrix P, is actually the covariance matrix of 
the conditional expectation of the state xk given the 
measurements {yo,yl,. . . , y k }  and direct calculations 
[3, 71 give the following expression of L,: 

Since E, is positive definite, it follows from (55) 

where 

= Fk-’, j < k  

@k,k = Id 

N .  = n . H *  
J J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj .  

and I I j  satisfies the Lyapunov equation: 

IIj+l = FIIjF* + Q. (56) 

From (56) and quite direct but lengthly 
calculations we see that the BOT system (eq. (1)-(4)) 

is stochastically observable except very pathological 
cases, i.e., the sequence {cos e,, . . . , cos e,} or 
{sin eo, . . . , sin e,} are idlentically null. 

than deterministic observability [24] which requires 
a maneuver of the observer. Furthermore, direct 
calculations prove that the rank of L, is generally 
equal to 4 except for a zero bearing-rate scenario 
proving thus that the BOT system is generally 
estimable. 

Stochastic observability is thus less demanding 
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