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ABSTRACT 

A novel approach to the theory of nonlinear mode coupling 

in hot magnetized plasma is presented. The formulation retains the 

conceptial simplicity of the familiar ponderomotive-scalar-potential 

method, but removes the approximations. The essence of the approach 

is a canonical transformation of the si~le-particle Hamiltonian, 

designed to eliminate those interaction terms which are linear in 

the fields. The new entity (the "oscillation centre") then has no 

first-order jittering 1110tion, and generalized ponderomotive forces 

appear as nonlinear terms in the transformed Hamiltonian. This view-

point is applied to derive a compact symmetric formula for the general 

three~wave coupling coefficient in hot uniform magnetized plasma, 

and to extend the conventional ponderomotive-scalar~potential method 

to the domain of strongly magnetized plasma. 

* 
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I. Introduction 

The subject of this paper is a generalized concept of 

"pondero1110tive force", the nonlinear force on particles arising from 

the beating of two high-frequency waves. The generalization leads to a 

novel and powerful approach to the theory of nonlinear interactions 

among waves and particles, such as those which occur in problems of 

parametric instability (Advances in Plasma Physics 1976) and weak 

plasma turbulence (Davidson 1972; Tsytovich 1977). 

The term "ponderomotive", as used in plasma physics,refers 

to nonlinear low-frequency phenomena induced by high-f~equency fields. 

The notion of a time-averaged ponderomotive force dates back to the 

radio-frequency confinement schemes of the late 1950's (Motz and 

Watson 1967). The essential idea was that particles are expelled 

from regions of higher time-averaged field intensity (Kibble 1966). 

More recently, ponderomotive-force effects have been studied in 

connection with profile modification in laser-plasma interaction 

(Lee et al. 1977). The nonlinear force arising from a single 

monochromatic field's beating with itself bears a simple and general 

relation to the linear susceptibility of the plasma medium (Cary 

and Kaufman 1977). 

In the presence of several interacting fields, an extended 

notion applies. The usual version of the concept is the following: 

two high-frequency modes beat together to produce a low-frequency 

scalar potential; this "ponderomotive potential" then drives a 



-J-

nonlinear current which acts as a source for the self-consistent 

beat disturbance. This point of view (when applicable) has led to 

an appealing intuitive understanding of certain parametric-insta

bility processes. Drake and co-authors (1974) used the approach to 

unify in a simple way the various parametric instabilities associated 

with laser fusion schemes. Manheimer and Ott (1974) extended the 

method to the case of weakly magnetized plasma, assuming the electron 

gyrofrequency to be much less than the high frequencies of the inter

acting modes. Other authors have also applied the method to magnetized 

plasmas in various limits (Litvak and Trakhtengerts 1972; Bujarbarua 

et al. 1974;fBerger and Chen 1976; Sanuki and Schmidt 1977). However, 

a formulation which is valid for arbitrary magnetic-field strength has 

not yet been derived and justified. 

The assumption of only weakly magnetized plasma, if necessary, 

repre~ents a serious deficiency of the method; in particular, it 

excludes from consideration all radio-frequency heating schemes. We 

were therefore led to explore the limits of validity of the pondero

motive-scalar-potential approximation. Our motivation has been the 

notion that, in considering nonlinear processes in plasma, it should 

be helpful to think in terms of entities which experience purely 

nonlinear forces. We wished to extend the usual point of view in 

several directions: arbitrary ordering of frequencies, kinetic effects 

for all modes, strongly magnetized plasma. Such a generalized 

formulation is presented in this paper. It implies velocity dependent 

ponderomotive forces and, in particular, the notion of a ponderomotive 

~ potential. 
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The technique that we employ is based on a canonical trans

formation of the single-particle Hamiltonian. The transformation is 

designed to eliminate the first-order interaction of nonresonant 

particles with the perturbing fields. The new entity (the "oscil

lation centre") then has no first-order jittering motion, and the 

"ponderomotive forces" appear as nonlinear terms in the transformed 

Hamiltonian. Note that no frequency ordering or time averaging is 

required here; only a transformation to new variables is involved. 

The Hamiltonian formalism leads to explicit expressions !'or the 

required nonlinear currents, which can be decomposed into the current 

of oscillation centres and the "polarization" corrections. The 

procedure is quite general in principle. 

The oscillation-centre representation is appealing con

ceptually, and is ideally suited for understanding how the familiar 

ponderomotive scalar-potential approximation relates to more 

general theories. The canonical formalism was first developed 

by Dewar (197J) to establish a rigorous theory of quasilinear 

diffusion for unmagnetized plasma. It was then used by Johnston 

(1976) to study induced scattering of waves in magnetized plasma, 

greatly simplifying the standard Vlasov derivation (Porkolab and 

Chang 1972). The useful extension of the point of view to other 

nonlinear processes will be demonstrated here. 

The paper is organized as follows. In Section II, the 

apparatus of the oscillation-centre transformation is developed. 

We derive there a compact formula for the Hamiltonian of an oscil

lation-centre in hot magnetized plasma. In Section III, we calculate 

• 

, 
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the nonlinear perturbation in current density from the oscillation

centre point of view. Then in Section IV, we apply these results 

to the problem of resonant three-wave interaction, and so obtain a 

general symmetric formula for the coupling coefficient. Although this 

compact formula has been derived previously (Larsson 1975; Larsson 

and Stenflo 1976), our novel formulatipn gives new insight into 

the origin of the various terms. 

In the remainder of the paper, we then turn our attention 

to the four-wave problem and to certain limiting cases of our 

general formulas. In Section V, we investigate beat forces and 

currents in the cold-plas~ approximation. We recover the usual 

formulas for ponderomotive scalar potential, and introduce the 

notion of a ponderomotive ~potential. In Section VI, the pon

deromotive-scalar-potential method is developed as a consistent 

limiting case of our more general theory and without restriction on 

magnetic-field strength. The formulation is then used to tie 

together several scattered results in the literature. In Section VII, 

we show-that the usual ponderomotive-scalar-potential approximation 

is generally inadequate in strongly magnetized plasma. We then 

present the necessary generalization of the method. Our approach and 

philosophy are discussed further in Section VIII. 
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II. Oscillation-Centre Transformation 

Consider a physical system described by a Hamiltonian 

and subjected to a small perturbation liH(_~_, E.• t) 

of order £. The application we have in mind is to a single particle 

of a plasma, where H0 corresponds to the equilibrium fields and 

OH to perturbing wave fields. Let us perform any near-identity 

canonical transformation 

( q,p,H) -> (Q,P,K) K H
0 

+ 6K, 

characterized by the perturbative generating function S(~,~,t) of 

order £. _The corresponding transformation equations are then 

(Goldstein 1950) 

If we choose to eliminate variables (~,E_) in favour of variables 

(~,~), then (1) becomes the Hamilton-Jacobi equation 

( 1) 

( 2) 
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Since p is just a d~ variable, we can now replace it by ~ 

in order to avoid hybrid notation in (2). 

The Hamilton-Jacobi equation (2) determines the generating 

function S when the nature of the new Hamiltonian K is specified. 

To solve it, we expand all quantities in powers of the perturbation 

parameter E, and then arrange that the equation be satisfied order 

by order. Thus, we substitute into (2) the series expansions 

H 

s 

H + 
0 

00 

L 
n=l 

00 

n=l 

n..( n) 
E l1 1 

K H + 
0 

00 

L E~(n) • 

n=l 

In this paper, our calculations are correct to second order. 

in E. We impose the requirement that K(l) = 0, and name the 

resultant transformation the "oscillation-centre transformation." 

The new entity (the "oscillation-centre") sees only a second-order 

perturbation; the first-order "jitter" in response to H(l) has 

Although the Condition K(l) = 0 does not been transformed away. 

determine s< 2 > uniquely, we find the choice s<
2

) = 0 to be 

useful in this work. There remains from the expanded Hamilton- ' 

Jacobi equation a formula for the new Hamiltonian, 

K( 2) H( 2) + 
aH(l) as<l) 1 a~o as< 1) as< 1 ) 

a .E. • as_ - 2 as_ as. ~ Cl:E_ 

1 a~o as< 1 ) as< 1 > 
+ 

2 a .E. a :e. ag:- ~· 
( 3) 
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and an equation for the generating function s(l), 

o s< 1 ) 
t 

(4) 

where Dt denotes the convective time derivative following the un

perturbed orbit, 

(5) 

The braces in (5) denote the Poisson-bracket operation. 

In the case of a "resonant" perturbation, the operator Dt 

cannot be inverted in ( 4), the perturbation procedure breaks down, 

and a two-time-scale refinement of the transformation becomes necessary 

(Dewar 1973). In the context of this paper, however, no such re-

finement will be necessary since resonant-particle effects are ignored. 

Let us apply these general relations to the Hamiltonian 

of a single particle in collisionless Vlasov plasma. We permit the 

plasma to be magnetized and hot, but assume it to be nonrelativistic 

and uniform in space. The unperturbed vector potential corresponding 

to a uniform magnetic field B
0
z can be written 

~ (x) 
-1 ( ~ ~ ) 2 a

0 
-yx + xy . (6) 

The perturbation will consist of a finite set of coherent linear 

waves whose amplitudes can vary slowly (compared with their periods) 

.... 

.. 
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due to resonant mode coupling ( see Appendix A). Thus, the perturbed 

scalar and vector potentials are of the form 

t. cp exp( ik • x - iw t ) , 
a -e - a 

a/0 

A exp( ik • X - i w t ) 
-e -e- a 

a/0 

where the reality conditions 
!' 

w 
-a 

-w 
a 

are implicit. We refrain from specifying a gauge ,condition here 

in order that we may test later for gauge invariance. 

The Hamiltonian of a nonrelativistic charged particle 

viewing the fields (6) and (7) is 

(7) 

where E. denotes the Cartesian position vector in physical space 

and E. the canonically conjugate momentum. The coefficients in 

the series expansion in powers of £ are thus 

-10-

-1 r -1 c >, 2 c s > 
HaC,!:.' E) = (2m) l!:. - ec ~ E. J , 

H(l)(~·:E.•t) eacp(E_,t)- e(~cf 1 [E.- ec-
1 ~(::._)] • M(E_,t) 

H(Z)(r,p,t) e
2
(2m:!2)-l[ 6A(E_,t)]

2
, 

0 for n ~ 3. 

It is helpful to work with the velocity variable 

instead of the unphysical momentum variable E.· Since the 

independent variables in our Hamiltonian formalism are E. and 

E. , we must therefore take due account of the chain-rule re

lations 

a~t 
1 a 
m aw ' 

a~) a~) + 
n Z X 

a 
2 aw 

- p - w 

where n denotes the signed gyrofrequency e B
0

/mc. 

According to prescription (4), the generating function 

(9) 

for the oscillation-center transformation is to be determined from 

the equation 
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ec-
1L (w • A - ccj>) exp (ik • r- iwt). 
a--il. a -il.- a 

(10) 

The solution to (10) has the form 

L '\ S ( w ) exp ( ik • r - ito t ) ; L a- -tl.- a 
a a 

Let us introduce cylindrical coordinates in velocity space, 

( ~, w z, 1jJ), and expand the functions Sa (!) in terms of Fourier

Bessel transforms (Johnston 1976) by writing 

S (w) 
a-

= exp [i(k~w~/0) sin (ljl- wa>] 

x ~ S (p) (w.L,w ) J (k w,/fl) exp[-ip(ljl- 1jJ ~ L a z p a.L.... a'J 
p=..co 

where ljla denotes the cylindrical angle for vector !a , 

(11) 

the p-th order Bessel function. We can then solve ( 10) to obtain 

S(p)(w.l,w) = iec-1
(w - k w - rof1 

a z a az z 

• {<•,•ax- '0•) • ·~ (k:•i) (\~i) 

.. ~ [ J~ (·~·i), Jp (·~·,_1J (~c, .} (12) 
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Since our concern in this work is with nonresonant mode coupling, 

we simply exclude the "resonant" particles for which ( w - k w - pQ) 
a az z 

~E. 

The oscillation-centre Hamiltonian K(
2

) consists of 

bilinear combinations of the fundamental frequencies wa. From 

( 3)' the component at frequency (~ +we) is given by the 

K( 2 )(b,c) 
a~l) as< 1 ) ClH( l) ~1) 

H( 2 )(b,c) + ap- • c + c 
---rr- ~ . ---rr-

a
2
H a~l) as< 1 > a

2
H a~l) as< 1 > 

0 c + 0 c - --. 
Clr Clr Cl:E_ dE_ Cl:E_ Cl:E_ Clr_ Clr_ 

Now, (8) and the chain-rule relations (9) imply 

Clr ar 

...r.2 
JUH (1 ZZ) 4 w,;-

Let us define the operators 

Da9 !! -i(w - k • !)~- n a~/Clljl 
a -tl. 

lsQ- DQ + ozx~, 
a- a-

1 --
m 

1 
"WW 

formula 

(lJ) 

and introduce the notation a Cl/Clw. There follows the commutation 

identity 

, 

• 
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an D a ik + n z X ~' -a a- -e. 
(14) 

and, from (10 ), the relation 

D sC l) -H( 1) 
a a a 

Combining these results, we obtain from ( 13) the compact formula 

( )
-1 ~ 

2m (1\r-~) • (D as)+ (b•c). 
c--:. c 

(15) 

In summary, we have now calculated explicitly the Hamiltonian 

of an oscillation-centre in terms of the known generating function 

(11). The forces derivable from K( 2) may be viewed as generalized 

(i. e., velocity-dependent) ponderomotive forces. Note, however, 

that we have not ordered frequencies and averaged over time; we 

have simply performed a canonical transformation. The "corrections" 

to the representation are stored in the generating function and c~ 

be recovered systematically. 

III. Nonlinear Currents 

To demonstrate the usefulness of the oscillation-centre 

viewpoint, let us consider the coupling of three coherent linear 

waves a, b, c, which satisfy the resonant matching conditions 

w 
a· 

k 
-e. 

+ k 
-c 

( 16) 

For simplicity, we specify the radiation gauge condition ~ = 0 for 

this investigation; the arbitrary gauge will be restored in Sec. V. 

According to (A 10), the evolution of the action density 

in each wave is determined by the nonlinear current density produced 

by the beating of the other two waves. To evaluate these nonlinear 

currents, it will be necessary to sum our single-particle formulas 

of Sec. II over a distribution of particle velocities. The.distri-

bution function for particles, f( !:.• E.• t ) , and for oscillation 

centres, F(~,~.t), each satisfies its respeciive Vlasov equation 

0, 

o. (17) 

Accordingly, the unperturbed steady-state distribution satisfies 
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with Dt ~-:t:!n by (5), and so must have the form f 0(wJ.,wz) 

i. e., 1r.:.:··-rm in space and independent of cylindrical angle tJ! 

~UT spproach will be to decompose the true· physical current 

into two p::.:-~,s, namely, the current of oscillation centres and the 

"polarizati::n" corrections. It is therefore convenient to introduce 

+,he "polarizstion density" ll(!_,,E_,t) defined by 

ll(r,;;,t) f'(r,p,t) - F(r,p,t) ( 18) 

A series e~JJSion for 6 in powers of E is easily obtained 

(Johnston 1976) by substituting the transformation equations ( 1) 

into the relation 

f(r,p,t) F(R,P,t). 

The first-order ~oefficient is 

which yields 

-m-1(ik s + nz x as)· af
0 -aa -a -

( 19) 

-16-

with· S (w) given by (11). In second order, we find the more 
a-

complicated bilinear expression 

6( 2 )(b,c) 
a~ll a2s(l) af

0 
as< 1) a2s( 1) af

0 - --·- • __ c_ ·- ._b_ • __ c_ ·-
ar ap_ ap_ <r ar ag a!. d.£ 

asO> as< 1 ) 2 a~l) as< 1 > a
2

f 
+ 

1 b c a fo 1 c • 0 
2 ag ~E. : rrTr + 2 -ar ar-· ag aE. 

+ (b~ c) . 

Use of the chain-rule relations (9) and the special form of 

r
0

(wL,wz) then leads to the formula 

~~~ <:!> m-
2 (i~Sb + 2-

1n z x! ~) 

·(i! sc .!c ~ n i (z x !)sc] • 2.fo 

+ 2m- 2 (i~~ + 2 n z X!~) Ci!.::Sc + 2-
1n z x!Sc) !!fo 

2 -1 
-in{4m) ~(zx!Sc)~=!!fo +(b~c). 

In the unmagnetized limit, this formula simplifies considerably, 

yielding 

lim 
Q+O 

(2) -2 
li · ( w) = -m s_ · ( k. • a s ) ( k • af ) o,c - -b ~ -· c -c - 0 

-2 
- 2m s_ s k k : a a f

0 
+ (b~) . 

-b c ~-c --

.,. 

( 20) 

• 
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The leading perturbation in the oscillation-centre distri-

bution F is or· second order in E, since we have arranged that 

K(l) = 0. From (17), this perturbation F(
2

) must satisfy 

D F( 2 ) 
t 

and hence 

D F( 2 ) (.w) 
a b,c -

m-1 (ik K( 2 ) + n z 
-e. ·o,c 

x a K( 
2 > ) • ar , 

- ·o,c -0 
(21) 

where the beat Hamiltonian K.(
2

) is given by formula (15). The ·o,c 

matching conditions (16) are implicit in (21). 

Armed with these formulas for the perturbed distribution 

functions, we turn next to the perturbation in current density. The 

total curreJlt density J..( !.> t) in the plasma can be writ :ten in the 

forin 

where the indicated summation is over-all species s. Since 

·r,= (F + ll) and F(l) = 0, the second-order perturbation in J.. 

is therefore 

-18-

( 22) 

The final term is actually zero by (8) since the plasma is nonrela-

tivistic. 

Now according to (AlO), the desired coupling coefficient is 

the interaction energy 
-1 If 0 ( 2) 

-c ~ • ~,c . Noting the relation 

e oA • 3H ()H 
c aE - a£ 

we obtain from ( 22) the result 

-1 A* .( 2) 
-c -e. • .J.o, c 

(23) 

+ \ Jd3w (H(l)* 11_(
2

) + 2H( 2 )* ll(l) + 2H( 2 )* ll(l)) . L a o,c a,-c o a,-b c 
s 

The first term on the right-hand side of ( 23) rray be viewed as 

the coupling by oscillation centres, and the remaining terms the 

coupling due to "polarization" corrections. Note the pleasing 

structural symmetry of the various terms. 
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IV. Kinetic Three-Mode Coupling Coefficient 

In this section, we complete the explicit evaluation of 

the coupling coefficient (23) by inserting our formulas (19), 

( 20), a.r1d ( 21) for the perturbed distribution functions. The 

result will be compact and manifestly symmetric in the three gener-

ating functions. 

From (21), the oscillation-centre (F(
2

)) contribution to 

( 23) is 

O.C. term \ m-1 I d3w H(l)* o."'1 r(ik Jd 2
) +flzx (llC )•<lfo] L a a [ -a-o,c -·o,c -

s 

\ -lfd3w [o-1 H(l)*) (ik ·,( 2
) + n z x aKS 2 >) • ar - L m a a - ~,c ....;o,c - 0 

s 

where ~~~ is given by formula (15). Since DaH~l) 

we get 

-S 
a 

0. c. \ lf J * n~ X "1(_(
2))• ()f , 

term= '-g.m- dwSa(i!e_~,c+""" ~-o,c -0 

Partial integration then yields the result 

0. C. term 

x ( -ik • as )K_' ... ( -ik s + n 2 x .! s ) • ~ Kb c 
( 

* (2) * * (2) 1 
- -a ·o,c -a a , 

-20-

Notice that if modes b and c are cold plasma waves, then only 

the first term survives since K_(
2

) will be independent of velocity! 
-1> ,c 

Finally, upon insertion of (15) for ~~~' the oscillation-centre 

contribution to the coupling coefficient becomes 

0. C. term 

* * + ( -ik S + Q Z X () S ) • 
- a - a 

'o {(i~. ~ s: lin,< S.,l • cii, ~s,) 

~[rob~ S.,l· cii, ~s,)] + (b<->o)} 
( 24) 

Turning next to the t/ 1 ) terms in ( 23), · we note from ( 8) 

that 

2H( 2) 
a,-b 

-1 (1) (1)* 
m aH • ::IH_' 

-a ..::::-o 

and from (19) and (14) that 

t:.( 1) 
c 

-m-
1(aD s - D as )· ar0. 
-cc c-c-

Thus, integrating by parts to extract f
0

, we find 

t:.(l) terms = ~ m- 2 ~d 3 w f
0 

( 25) 

x [ (i~· iCc) (i DCSC) •(iDa\*) + (bf-t c) 1· 
~is statement is actually incorrect as we shall see in Section V. 
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There remains the 6( 2 ) term in (23). To evaluate it, 

we insert formula (20) for ~b( 2 ) and again integrate by parts to 
,c 

eliminate all derivatives of f
0

. After some straight forward 

(though admittedly lengthy) algebra, we obtain 

term • ~ (2,,2)-l J•'• r0 

• {co.'s.' l [ (i!,• ! s,l(i~ · l s,> - (i!, • l S,l(i~ · ! s,>] 

+ 2 ( ik. • a s_ ) (a n *s * ) • ( n as - an s ) 
~ - -b - a a c- c - c c 

+ n[cna*sa* )(,! ~)(i.!a_) - q (!Da* sa* )('z x .!~)] : .! ( 2 x _!)Sc 

- o (i!, ·! n.' s.' )(! s,> · (b ! s,> • (b ..... '} 

Again, this formula simplifies considerably in the unmagnetized 

limit. 

To complete the derivation of the coupling coefficient, we 

must add the three contributions (24), (25) and (26). With 

judicious manipulation, the resultant sum can be cast in a form 

which is manifestly symmetric in the three generating functions. An 

outline of the algebra is given in Appendix B. We present here just 

the final result 

-22-

-1 * 
-c ~ J

( 2) 
• .l<.b,c L 

s 

x {(-ik·as*><n Cl&)·(n as) 
~-a b--b c-c 

( 27) 

+ ( i~c • ~ sc) ( na* ~sa*) • (Db ~ ~) 

-0 (!S.')· ['"",(!S,)•(D
0
!S

0
)•(b<->o)J}· 

The ,generating functions Sa ( !_) appearing in ( 27) were calculated 

explicitly in Sec. II and are given by (11) and (12). Our formula 

* is compact and symmetric under interchange of the labels (a ,b,c). 

This symmetry, together with ( AlO), implies the l&l.nley-

Rowe action-transfer relations 

-1 • 
w w 

a a 

-1 • 
-w W 

c c 

The symmetric expression (27) has previously been derived 

[Larsson 1975, Larsson and Stenflo 1976] using different notation 

and a different method. The present formulation illustrates the 

oscillation-centre veiwpoint and gives new insight into the origin of 

the various terms in (27). The first term arises from the oscillation

centre contribution (24). The second and third terms can be traced 

to the polarization contributions (25) and (26). The final term 
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apoears only in magnetized plasma and has hybrid origins; its 

symmetry is a consequence of the matching conditions (16) and the 

triple-product vector identity. 

An appealing feature of formula (27) is that the coupling co

efficient is expressed in terms of just three scalar functions of 

velocity, namely, the generating functions for each wave. In par

ticular applications, it may be possible to approximate these 

functions. Stenflo and Larsson (1977) have illustrated the use of 

the general expression (27) in several particular situations. In 

the remainder of this paper, we shall also turn our attention to cer-

tain limiting cases. 

-24-

V. Beat Forces and Currents in the Cold-Plasma Approximation 

Consider again the interaction of a resonant triplet of 

waves a, b, and c, which satisfy the matching conditions (16). 

We have treated the general case in Sections III and IV. In order 

to simplify our general formulas, let us suppose in this section that 

two of the three waves (say modes a and c) are adequately.described 

by a cold-fluid model for the magnetized plasma (Stix 1962). No 

assumption will be made about the "beat mode" b, however, We shall 

also restore here the arbitrary gauge of Section II in order to display 

manifest gauge invariance of certain quantities to be derived. The 

invariant electric-field vectors !a are related to the scalar and 

vector potentials ~a and Aa according to 

E - -ik ~ + 

- a 

-1 
iw c A 

a -

( 28) 

Since modes a and c are to be treated as cold plasma waves, 

it is appropriate to expand the associated generating functions Sa(~) 

and S (w) in powers of the velocity w. Accordingly, we write 
c-

S (w) 
a-

N 

L 
n=O 

where s 011 (w) is of order 
a -

n 
w. From ( 11 ) and (12 ) , 

the leading terms in such an expansion 

( 29) 

we find for 



-25-

-ew;2 [!. k}wa) • ~] 

-e w-lw-
2 

(wE ) [! • v_(wJ • !...] 
a p z az .;.;v ~ 

( 30) 

-2-l ew-lw-2 \ (w ± iw )(E + iE ) 
ap L x yax ay 

+,-

where wp denotes the plasma frequency. We have employed here the 

notation Jo{ w) to denote the familiar cold-plasma linear suscep

tibility tensor evaluated at frequency w, i.e., (Stix 1962) 

kJ(w) 

1 i~-1 0 

-i~-1 1 0 

0 0 

The oscillation-centre Hamiltonian K( 2 ) corresponding to 
a,c 

the expanded generating functions (29) can be similarly represented 

in the form 
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K( 2 ) (w) 
a,±c -

e~(2) 
a,±c 

Our notation for the leading coefficients in this velocity series 

expansion is deliberately suggestive, since ~( 2 ) and ~( 2 ) play 

the role of scalar and vector potentials experienced by an oscillation 

centre. Insertion of the expanded generating functions (29) into 

expression (15) leads to the following gauge-invariant formulas for 

these potentials: 

rp( 2) 
a,-c 

rp< 2) 
a,c 

A( 2) 
a,-c 

A( 2) 
a,c 

-icrl( .2JmJ f
1 

i:l (E a --e. 
* + (a~c) , (32) 

4 -1 [ 

1 
r [ 2 -2 ] = ecw ( 2l!lJ.I ) y_( w ) • E ) k • y_( w ) - w w 1 • 

a p ~'U c -c L -c .:oiJ a p a -

-icrl(2l!lJ.I r 1 
i:l [E • (z X i:l S[2))] + (a~c), 

a --e. -c 

[2] . ( ) where S is given by 30 . 
c 

The associated "pseudo-electri~ '' 

( 31) 

and "pseudo-magnetic" fields acting on an osc:::.lation centr<: a:-<: 



then, in analogy with (28), 

-i(k + k )~( 2 ) 
-e. - -c a,±c 

i(k + k ) X A( 2 ) 
-e.- -c -e.,±c 

+ 
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-1( ic w 
a 

± w >i 2> 
c -e.,±c 

Our result (31) for the oscillation-centre scalar potential 

is consistent with the known formula for "ponderomotive potential" 

in the presence of a magnetic field (Motz and Watson 1967), Note, 

however, that we have not assumed lw - w I << w ,w , and averaged 
-- a c a c 

over a fast time scale; we have simply transformed to new variables. 

Formulas (31) and ( 32) simplify greatly in the unma.gnetized limit. 

One obtains, for example, 

lim 
Q+O E( 2) 

-e.,-c 
-ie( ll¥1l w ) ( k - k ( E • E ) -1 { ) * 

ac -e. -c -e. -c 

+ 2(w - w ) w E (k • E + w E k 
[ 

-1 * ) -1 ( 
. a c c -c-c -e. a -e.-e._ 

( 33) 

In the ordered-frequency case lwa- wei << wa, we, the last two 

terms in (33) can be neglected, and one obtains the usual ponderomo-

tive force, derivable from a scalar potential. However, in the general 

unordered case, the contribution from the oscillation-centre vector 

potential must be retained, even in this cold-plasma limit. 
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The contribution to the nonlinear current density due to the 

response of oscillation centres to the beat pseudo~electric field can 

be written 

( 34) 

s 

where ~~~) denotes the linear conductivity tensor for the plasma 

at frequency ~ (not necessarily cold). The linear conductivity 

tensor 2 is, of course, related to the susceptibility tensor 

X by .,.., 

SJ! w) 
-1 

iui4n) ~w) 

Now, the self-consistent electric field ~ 

driven by the~ nonlinear current J(
2

) 
"'fi,-c 

(see Appendix A) 

~b).~ 4n(i )-l i( 2 ) 
~ !41,-c 

at frequency ~ 

according to 

is 

( 35) 

where Jtb) denotes the linear dispersion tensor. Defining the 

"polarization current" as the difference between the true 

nonlinear current and the oscillation-centre current (34), 

.( 2) 
- le,-c 

•• 



,. 

• 
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we find from ( 22) that 

r 
s 

Let us introduce the perturbed fluid-velocity vectors v 
-a 

defined by 

( 36) 

and 
:!c' 

( 37) 

into our Then, inserting the expanded generating functions (29) 

formulas ( 19) and ( 20) for the polarization density f1, 

from ( 36) the gauge-invariant result 

-~ 

-I 
s 

-\ ne( 2w w ) -l v ( w k - w k ) • * L ac -a c-a a-c !c 
s 

inne( 4W W f 1 
( Z X !.,. ) ' ( v* k + k v*) 

a c --.. -c -c -c-c 

iQne(4mw )-l [n(~ x v • a)l 
a -a --

+ em-l a E 1 
--a 

we obtain 
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where s(
2] is given by (30). The nonlinear current density to be 

c 

inserted in (35) is the sum of the two contributions (34) and (38). 

The expressions derived in this section have been obtained 

from our general formulas in Sections II to IV on the basis of a 

single assumption, naBely, that modes a and c can be adequately 

described by the cold-plasma model (Stix 1962). No assumption was 

made concerning the beat mode b for which a full kinetic treatment 

has been implicit. The familiar "ponderomotive-scalar-potential 

method" (Drake et al 1974; Ma.nheimer and Ott 1974) can be derived 

from the results of this section by making certain further approx-

imations; we study this limit in the next section. Note, however, 

that outside its domain of validity, we already have the needed 

correction terms here at our disposal. 
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VI. The Ponderomotive-Scalar-Potential Method 

Theterm "ponderomotive-scalar-potential method" is used 

in ~his paper to apply to the resonant interaction between cold-plasma 

modes ("high frequency") and modes for which kinetic effects are 

retained ("low frequency"). The method consists of the following 

prescription for describing such interactions. The high-frequency 

nonlinear currents are approximated by the product of the low-frequency 

density perturbation and the high-frequency velocity perturbation. 

The low-frequency nonlinear current is approximated by the linear 

response to a scalar ("ponderomotive") potential produced by the 

beating of the high-frequency modes. Note that in the language of 

Section V, both the ponderomotive ~potential (32) and the 

polarization current (38) are omitted. These approximations can be 

inferred to be consistent, even in strongly magnetized plasma, since 

they imply the Ma!uey-Rowe relations; we verify this statement in 

Appendix C. The approach has intuitive appeal and has been found 

useful by many authors. It has been applied to unmagnetized (n = 0) 

plasma (Litvak and Trakhtengerts 1971; Drake et al 1974; Hasegawa 

et al. 1976), to weakly magnetized {II « w
0

) plasma ( Mannheimer and 

Ott 1974; Bujarbarua et al. 1974), and (uncritically) to strongly 

magnetized (II"' w
0

) plasma (Litvak and Trakhtengerts 1972; Sanuki 

and Schmidt 1977). In this section, we develop the method without 

restriction on magnetic-field strength and use the formulation to 

tie together several scattered results in the literature. General 

criteria for the validity of the method in strongly magnetized plasma 

will be given in Section VII. 
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Let us consider, then, a representative four-mode inter-

action in magnetized plasma involving a "pump" mode ( w k ) a'--e. , 

two "sideband" modes (we'~), (wd,~), and a ''beat" mode(~,~). 

The associated matching conditions are shown in Figure l; for 

example, and We assume that 

the frequency of the beat mode b is much less than the high 

frequencies wa' we' wd. Kinetic effects are retained for mode b, 

but the other modes are described by cold-plasma equations. We there-

fore need not distinguish among the susceptibility 

tensors AD( rua), ltD( we) and JIJ( wd), since they are independent 

of ~ and the frequencies are approximately equal; we write 

!!' ( s) 
.&l . 

Note that ~ s) is an Hermitian matrix. 

Now, the effective electric field seen by an oscillation 

centre of species s at the beat frequency ~ can be written 

~s) ~ +~s) ( 39) 

where ~ denotes the self-consistent electric field in the plasma, 

and ~s) the field derived from the scalar ponderomotive 

potentials, 

.. 



· .. 
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Inserting formula (31) for ~( 2 ) , we get 
a,-c 

~s) 

According to the prescription given above, the low-frequency 

equation (35) is to be approximated as 

41T(i~)-l I JZ~s) .IJ,s>, 

s 

where .~s) denotes the kinetic conductivity tensor. Using 

(39), we can recast (41) in the form 

(40) 

(41) 

,I!(b) • !is) $~s) + I. .As'). (~s) _ ~s')) • ( 42) 

I 

s Is 

Turning to the corresponding high-frequency equations, 

we note that the high-frequency velocity perturbation v(s) . -e. 

is defined by ( 37), and the low-frequency density perturbation 

~~s) is, from the continuity equation, 

I 
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6 {s) 
nt, (43) 

with !is) given by (39). According to the stated rules of the 

method, the high-frequency versions of (35) are then 

£0 (a) fl I. e ( v< s) o{ s) + v( 8 ) o{ s )*> ' • E 4 n( iw 
-e. a s-c ..:..d_ 

s 

8Q( c) • 
-1 I (s) ( s )* 

E 4n (iwc) e v 6nt, ' -c s-e. 
s 

Jk}d) • ~ 
-1 I e v< s) o{ s) 4n ( iwd) s-e. 

s 

Upon insertion of (37) and (43), we get the coupled equations 

~(c) • E 
-c 

i L (41Tllsesfl [<~s) • ~)(~· Jks) 

s 

_ (~s) ·~)(~. J~s)*. ~s)*>] , 

-i L (41Tllsesfl (~ s) • ~ )(~ ( s )* .~s)*), 
• Jb 

s 

i L (41TTI e )-1 (~s). E )(~ ( s) • ~s)). • X 
ss W< -a .,JJ 

s 

( 44) 

( 45) 

(46) 
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* If (45) and (46) are solved for ~ and ~' and 

the solutions inserted into (40), then (42) leads to the equations 

Jtb) • ~s) ( )-1 Q( ")( k • x< s") • E.< s") , 
ns"es" - s,s ~ "''b ~ 

where we have defined 

g_( s,s") - !<,(n
8
e

0
)-l {[!b(of1 ·<:f:,'"l'. i;>]· <j.,•l ""-) 

• (,..._, d)•} 

+ 2: (~~s~) ·~){[EcJ(c)-l•(j/')*. ~)] 
s Is 

(47) 

[ 
-1 (s) -1 (s')] *} • ( n e ) Y.:. - ( n 1 e 1 ) Y.:. • E + ( c ~d) • 

s s WN s s ,.;,-v ~- . 

Suppose there are N species of charge, s = 1,2, •.. ,N. Then 

(47) represents JN linear algebraic equations for the components 

of vectors ~l), ~ 2 >, ... ,!iN) • The nonlinear dispersion relation 

is the condition which allows a nontrivial solution of these 

equations. In general, it is obtained by setting the determinant of 

the JN-dimensional matrix of coefficients equal to zero. 

..:;6-

Suppose, however, that the beat mode b is longitudinal, 

with ~s) ~s)~ . The JN equations (47) can then be 

reduced to N equations for ~s) by. projecting vectors onto the 

A 

direction ~- If the sideband modes c and d are also treated 

as electrostatic, then these N equations reduce further to the form 

= - \ 

L 
-S" 

x f(k2£ )-1 (s")*[ (s) + \ l c c IJC IJC L 
s'ls- ( 48) 

· 2 -1 ( s") []Jd( s )* + \ . 
+ (k d Ed) IJd L (s 1 

)( (s)* 
xb JJd -

( S I )*1} ]Jd . , 

s'ls 

where we have defined the parameters 

1 A ( ) • 

- ( 411Il e f ( k • y:.. s • E ) 
ss c WI-) -Q 

If, in addition, one treats the pump mode a in the "dipole 

approximation" ( lkal + 0), one has that ~ = -!c = ~ and 

hence IJ~s) -IJ~s) = ]Js' where 

IJS [(kt' 
.. 
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Suppose there exists a species s such that 

Ill- I » Ill I 
s s 

v s t s 

Then choosing s = s in ( 48), and retaining only the term 

s" = 5 on the right-hand side, we obtain the nonlinear dispersion 

relation 

I 
sts 

- dwh lxb(e)l >> 1, When s corresponds to electrons, an en 

lx~i)l » 1, this dispersion relation agrees with that derive_d by 

Porkolab (1974) for lower-hybrid heating [his Eq. (15)}. 

A different special case obtains when N = 2 with 

lla"' llB and lx~a)l »1, lx~B)I » 1. Equation (42) then implies 

that 

and one therefore obtains from (48) the dispersion relation 

-}S-

In the limit wa >> na, n
8

, this result agrees with Eq. (10) of 

Ott et al. (1973), derived for a plasma containing two ion species 

with different charge-to-mass ratios . 

Let us now withdraw these various approximations and restore 

our 3N electromagnetic equations (47). That complicated analysis 

simplifies considerably if we do not insist upon treating all 

species symmetrically. Suppose the plasma consists of electrons 

e and several species of ions i. Based on the fact that 

m1 >>me, we shall neglect ~i) and ,~ 1 ). Equations (47) 

therefore reduce to 

Jl{b) • i,e) 

£(b) • i,i) 

(J, + L j~i)) ·~~e) , 

i 

(e) c(e) 
-Jb . 4 ' 

where, from (40), (45) and (46), 

iie) = - (4TI!lee)-2 ~ (~ • J~e) • ~e)) 

• }.o(of' . <.f;>•. ~>]· ~e) • ~) 

• [.Jlo(d)-1. <_d,•l. ~>]· ~'!},·>•. ~·>} 

( 49) 

(50) 

(51) 
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We introduce ~, cofactor tensor of the transpose of JJ! b), 

defined by 

~I det£(b). 

Then substitution of (51) into (49) and the inner product of 

the resultant equation with ( k · • i e)) lead to the dispersion 
~ ..,b 

relation 

det D(b) - ~ (.) 1 
L.:..b~ )· ~ 
i 

·{[!1,(•)-1
- c,j,•l·. ~)]· (~e). E._) (52) 

()(~e)* ·E* )\. 
tiiJ -a j 

This relation g~n~r11.lizes the results of Drake et al. ( 1974) and 

of Manheimer and ott ( 1974) to the case of strongly magnetized plasma. 

Indeed, consider the limit of a weak magnetic field. When 

the ion susceptibilities can be taken to be scalars. 

Furthermore, when ne << wa' the high-frequency modes can be 

treated as unaffected by the magnetic field, and so we have in 

particular 

-40-

ie) 
"' -W2 w-2 

1 ' 0 "' pe a rNJ 

,Po< c) ~ DR. k k + Dt ( 1 - k k ). 
c c c c .,.. c c 

The dispersion relation (52) thus reduces to 

det IJ(b) -(4n n ef
2 2 w~2 (1 + ~ X~i))(~. ~~e))·~·~ w 

,V« e pe 

{ lk. 
• E 12 lk X E 12 (c--4d)} X 
~ 

+ 
c -DR. 

+ 

D 
c c 

in agreement with Eq. ( 13) of Manheimer and Ott ( 1974). 

In summary, we have developed the ponderomotive-scalar-

potential method as a limiting case of our more general theory. 

The oscillation-centre viewpoint· is especially well-suited for 

understanding how this familiar limiting theory relates to the 

general case. The approximations in this section are shown to be 

internally consistent in Appendix C. The domain of validity of 

the method and generalizations beyond that domain are.the subject 

of the next section. 

... 
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VII. Validity of the Ponderomotive-Scalar-Potential Approximation 

in Magnetized Plasma 

In this section, we examine the validity of the approximations 

in Section VI, and then develop a more general theory by reinstating 

certain neglected terms. This generalized theory is a continuation 

of our work in Section V and assumes only that (in three-wave 

interaction) two of the three waves are cold-plasma modes. 

The ponderomotive-scalar-potential method approximates the 

true low-frequency nonlinear current 

(2) 
J 
-a,-c 

4- tJ./2) 
~.-c 

by ( 41 ), i. e., by just the scalar-potential portion of 

cr< s) • ( -ik ) 41( 2 ) 
""b ~ a,-c , 

Contributions from the ponderomotive~vector potential A( 2 ) 
-,-c 

and the polarization current !J.j(
2 ) are omitted. Collecting our 

--,-c 

results in Section V, ·we find that the retained and omitted contri-

butions to J(
2

) are, in terms of the perturbed fluid-velocity 
..:.Ji,-c 

vectors ( J? ) , 
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Retained (53) 

X v* ) + iD ·(w + w )(2w w )-1(£ x v ) 
-c s a c ac -

• v* 1 
-c ' 

Omitted \ { -1 2 
~ ( 4TTC) ups ( 

2 -2 ( s ) ) A ( 2 ) 
.l + wbw ps .&, • -a,-c 

+ n e ( w w f 1 
[ w v ( k • /) + w / ( k • v ) 

s s a c a- -c -c c-c - -

2-\ k + k )( ~ X V ) • v* ] 
- -c - -c 

where, 

A( 2) 

+ D n e 2m w w ) iw ( :! x v ) 2 ( -1 [ * 
s s s s a c a -c • 2Jt • !)S~ 2 ] • (a.-.dJ} 

from ( 32 ) and ( 30 ) , A ( 2 
) 

-,-c 
and s[2J are given by 

a 

-,-c -m
9

c (e
5
wc)-l lc ~ ·[!a+ iD

5 
(2waf

1
(2 x !a,) 1 

- o,o(2e,)-l !i!, • iO,w~ 1 (t • :;,.>]· (t • !S~]')} 

* + (a~ c) , 

± D ) [ v ± i( z X v 
s ~ -
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7hus, the general criteria for the validity of the ponderomotive-

3calar-potential method in magnetized plasma are, first, that the 

plasma be cold with respect to the high-frequency modes, and, second, 

* that the projection of the omitted current (54) on ~ b be 

negligible compared with the projection of the retained current (5J). 

This last criterion is clearly very complicated in the most general 

case. It has been shown by Manheimer and Ott (1974) that a suf-

ficient condition is !"Is « wa' i. e., a "weakly magnetized" 

plasma. For stronger magnetic fields, we see from the above 

formulas that contributions from the omitted polarization current 

and ponderomotive vector potential tend to become important. 

Let us, then, reinstate the omitted current (54) in order 

to develop a generalized theory which can be safely applied in 

strongly magnetized plasma. We consider again the resonant triplet 

of waves of Section V; kinetic effects are retained for mode b, 

but modes a and c are described by cold-plasma equations. 

Our only other assumption will be that there are no particles 

resonant with mode b, and hence that the susceptibility tensor 

(s) 

~ 
is Hermitian. 

It is helpful to define the resistivity tensor n(s) 
a 

(s) 
~ 

( s )-1 
0 ' -a 

( s) 
..!loa 

= c s) I - .!Ja cold ' 
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and to introduce the notation 

w -

J. s) 
vwa 

v - ie (m w )-1E , 
-e. s sa -e. 

-iw2 (4TTW f 1 (n(s)- r{s)) • 
ps a Ma wl\Ja 

im (2w )-
1

(k v + v k ) 
s a -e-e -fi-£ 

+ w a a s f21 
a-- a 

+ ifl a (z x a) sc2J + ifl (z·x a) a sC2J. 
s- - a s --a 

(56) 

Now, by (A 10), the desired low-frequency coupling coefficient 

is the interaction energy ( <1> *b p ( 
2

) - c -l A *b • i 2 ) ) • Adding 
a, -c - :.a, -c 

(53) and (54), we find after some straightforward algebra 

(<I> *b p( 2) 
a,-c 

~n m [w-1
(k • v )(v*b • v* ) L s s a -fi -e. - -c 

s 

-1 * ) * 
+ ~ (!t,. !.b (!c ··:!e) (57) 

- w k ) v • (v x v ) -1 * * 1 
a az -b -e. - c + Q ' 

where Q represents the additional terms 

.... 
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Q "' 
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L r. -1 -1 * * * 

l
n m ( w k - w k ) ( v v - v v ) • u. 
ss c-<: a-a -a---c -c-a -o 

s 

-1 [ -1 A * !2] -1 [2] ] * 
+ 2 n n ~ w ( z x v ) • a a s - w ( z " v ) • a a s ·u. 

s s c -<: -- a a -a -- c 
11 

o 

x v) .Js)* ·w*Jl 
-a woe -b { 

J 

It can be shown, by substitution of formula (55) into definition 

(56), that Js)and Js)are each identically zero. Thus, the 
"'So ~ 

low-frequency coupling coefficient (57) can be rewritten in the 

form 

(·,.* p(2) -1 * 
"'b -a,-c - c !b • /2) ) 

:-a, -c * * • v )( v • v ) 
-a -b -c 

* * • v )( v • v ) 
-c -e -b (58) 

10w.-
1
(w-

1
k -w-

1
k )v*b •(v xv*) +A( 2 ) ·u*J 

s o c cz a az- -a -c -a,-c -b ' 

where 

* - v v ) 
-<:-e 
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Formula (58) exhibits a pleasing structural symmetry, 

* similar to that of our general result ( 27). Since ~ and ~ c 

are zero (a and c are cold-plasma modes), it is simple to 

cast (58) into a manifestly symmetric form by adding the appro

priate vanishing quantities. We can immediately deduce the corres

ponding high-frequency coupling coefficients since we have verified 

the Manley-Rowe relations for the general case (27); the low

frequency coupling coefficient was just simpler to evaluate in the 

present limiting case. If wave b is also treated in the cold

plasma approximation, then ~*b ..,. 0 and our coupling coefficient 

(58) reduces to that derived by Stenflo (1973) using a cold-

fluid model for the plasma. 

In summary, we have shown the usual ponderomotive-scalar-

potential approximation to be generally inadequate in strongly 

magnetized plasma, and have developed the necessary generalization 

of the method for the case of resonant three-wave interaction. 
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VIII. Discussion 

In this paper, we have shown that the oscillation-centre 

representation provides a systematic and intuitive framework in 

which to study problems of nonlinear mode coupling. The approach 

represents a natural extension of the familiar ponderomotive

scalar-potential approximation, and has allowed us to generalize 

that method to the domain of strongly magnetized plasma. Since our 

formulation is Hamiltonian, it is therefore quite general in principle. 

Indeed, we have used the approach to derive a Poisson-bracket fornrula 

for the general three-mode coupling coefficient in nonuniform 

relativistic magnetized plasma (Johnston and Kaufman 1977, 1978). 

Our work in this paper has been restricted to the nonlinear 

coupling of discrete coherent waves. It is ~ppropriate to mention 

here some recent complementary work of Dewar ( 1976, 1977a, 1977b) 

concerning the use of the oscillation-centre picture for statistical 

spectra. Dewar ( 1976) has constructed a "renormalized oscillation

centre transformation" which removes the coherent oscillatory motion 

of a particle in a stochastic potential and thereby isolates the 

"purely stochastic" part of the motion. Dewar(l977a) obtains an 

exact nonperturbative solution of the Hamilton-Jacobi .equation for 

the generating function, applicable to resonant trapped particles in 

a stationary one-dimensional potential. He suggests that if such 

solutions also exist for a random, time-dependent potential, then 
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the oscillation-centre approach might lead to Markovian kinetic 

equations. Finally, Dewar (1977b) has studied the motion of a 

particle in an ensemble of monochromatic waves of random phase, such 

as arises in narrow-bandwidth plasma turbulence. By evaluating the 

averaged propagator in oscillation-centre variables, he finds that 

the momentum-space operators in the problem simplify greatly, leading 

to a remarkable factorization of the wave-particle collision operator. 

Reflecting on Dewar's work cited here together with our own work, 

we conclude that the oscillation-centre viewpoint is one of very 

wide applicability and usefulness. 
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Appendix A: MUltiple-time-scale derivation of the action-transfer 

equations for resonant three-wave interaction 

In this appendix, we derive the action-transfer equations 

governing the resonant interaction among three coherent waves in 

a uniform plasma. 

to obtain 

We begin by combining the two ~Aaxwell curl equations 

-4TT a 
t 

J. {E} (Al) 

The current density J. in the plasma is a functional of the electric 

field ! and can be written formally as 

,!?;! +J!! + ,l!!! + ... , 

where g, Jj and J;, denote linear, bilinear and trilinear differential 

operators, respectively. Reladon (Al) can thus be rewritten in 

the form 

LE 
wl-

(A2) 

where we have defined the linear operator 
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Following Verheest (1976), .we seek a nonsecular series solution 

of (A2) by developing both the operators and the electric field in 

powers of a small ordering parameter e:: 

E ... , 

L + ••• ' -
+ ••• , + ••• 

Equating equal powers of e: in (A2), we obtain, correct to third 

order, 

0, 

(AJ) 

- L ( l) i 2 ) - L ( 2 ) E( l) 
~ ~ - ~ -

Jv! !!! ~ ! + c
2 ~X(~ X!) + 4TT(lt .2, !• 
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We now introduce a multiple-time-scale formalism'(Frieman 

1963; Sandri 1963, 1965) by writing TO = t to denote the fast 

oscillation time scale for the waves in ~(l), and T
1 

= e:t, 

T
2 

= e:
2
t, etc., to denote successively slower interaction time 

scales. The freedom represented by the additional time variables 

is used to remove secularities order by order in the perturbation 

solution. We proceed by making the replacements (Verheest 1976) 

f( t) 

a a 2 a 
+ ••• , at ~ 

aTO 
+ £ 

aT
1 

+ £ 
a, 

2 

L(O)( a ) 1(0) ( a ) 
~ 

..... t - a-rc 
L(l)(a ) Jl) a a 

~ (E) a-r::- ' 
vN t .,., 0 1 

J(o)(at,at) 8
( o) ( a a 

~ aT:"). 
wJ a-rc· 0 

For a set of N coherent waves in a uniform plasma the 

field E(l) takes the form 

N 

~ 

> 
L-
a=-N 
aiO 

( A5) 

The reality condition 

E 
--a 

* E , 
-a 

k 
--a 
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w 
-a 

are implicit in (A5). Collecting our results (A3) to (A5) we 

obtain a chain of equations, the first two of which are 

0, 

-41T ~ ~ ~c .§(b,c) ~ exp[i(~ .j. ~) • ~ 
To b 

( A6) 

~ ~a) ~ exp[i(~ • ~- waTo)] 

(A?) 

The operator JJ a) is defined by the relation 

L(O)(ik -iw ) exp(ik • X- iwaTO) 
..., -e.' a . -e. 

and the operators B(b,c) and !>(a) are similarly related to 
W( . WI . 

lo) and ~1), respectively. Note that, from (A4), 
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M( a) 

""' 
i a;aw L(a) • 

a ... 

From (A6) and the linear independence of the exponential 

functions, it follows that 

L (a) E 
..... -e. 

o, a ±1, ±2, ••• , ±N. 

Thus, the waves in l 1
) must separately satisfy the linear 

dispersion relation 

Proceeding to (A7), we note that if secularities are to be avoided 

in !(2
), then either il!a/ilT

1 
must vanish or else a balancing 

JDUBt occur between the two sums on the right-hand-side of ( A7). 

The second possibility requires matching conditions of the form 

and leads to the relation 
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(A8) 

b+c=a 

Introducing the beat current density j~ 2 ) and the usual linear 
-u,C 

dispersion tensor EJ. a) through the relations 

.( 2) 
J.b ,c 

D( a) 
WI 

~(b,c)~ , 

we can rewrite (A8) in the form 

ilE 
-e. 

ilTl 

Now, the energy density in mode a is 

W = ( 411 )-l E* • {w -l d/ilw [w2 D( '3 )1} • E 
a -a a a a w J -e. 

Thus (A9) implies that 

-2 Re( / 2 ) • E* ) 
~,c -e. 

(A9) 
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Let us express ~ in terms of scalar and vector potentials ~a 

and ~· 

E -
and invoke the charge-continuity relation 

i.!s, • J ( 2) 
-u -9;) ,c 

iw o.( 2 ) 
a· o,c 

where p(
2

) denotes the beat charge density. We thereby obtain b,c 

the promised action-evolution equation 

2 Im( o.( 2 ) l' - c -1.( 2) • A* ). 
· o,c a ~.c -a (AlO) 
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Appendix B: Outline of some algebra for Section IV 

In Section III, the kinetic three-wave coupling coefficient 

was decomposed into an oscillation-centre contribution and polariza

tion contributions fsee Eq. (23)]. In Section IV, these contri-
1 . 

butions were each evaluated; the results are given in (24), (25), 

and (26). The purpose of this appendix is to indicate how the sum 

of these contributions can be manipulated to yield the compact 

symmetric formula (27). 

The first step after adding the quantities (24), (25) 

and (26) is to separate out the desired result (27). The final 

triple-product terms in (27) occur in consequence of the identity 

(_! • ~)(_!! • Z X _Q) + (.! • _!!)(.Q • Z X ~) + (.! • _Q)(~ • Z X _!!) 

k C • (_!! X ~), 
z-

which holds for arbitrary vectors !• ~· ~. and C. It remains, 

then, to show that the excess terms in the sum vanish identically. 

We can distinguish two categories of excess terms. The terms in the 

first group are those not explicitly proportional to the gyro

grequency n and which persist in an unmagnetized plasma. Col-

lecting these terms, we find 

.. 



.-, 

• 

•' 
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EEe" tems I " ~ m-
2 J•'• f 0(•,,•,l 

• { 2-
1
(n'.s'.l[(i!<,,' ~s,)(i~ · ~S,l- (i!<,,'~S,l(i~· ~s~ 

* + ( i k • D a s )( s ik • a s.. ) 
~ c- c a -e - -b 

( Bl) 

It is straightforward to show that the terms in (Bl) add to zero; 

use the definition of the operators Da' Db, De' invoke the matching 

conditions ( 16), and integrate by parts on tjJ (using the fact that 

f
0 

is independent of tjJ ). 

The remaining excess terms are those explicitly proportional 

to n. They can be combined and written compactly in the form 

Excess terms II ~ o (,,,2]-' f•'• r0<•,.•,l 

x((i!e!a - n zx !S:) •J4t,. (z X!Sc) + (b+->c)1' 

where we have defined the tensor 

(B2) 

It is then simple to use the commutation identity (14) to prove that 

~ and ~ are each identically zero, and hence that the remaining 

excess terms (B2) all vanish. 
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Appendix C: Internal consistency of the ponderomotive-scalar-

potential method 

In this appendix, we show that the ponderomotive-scalar-

potential approximation in magnetized plasma (SectioR VI) preserves 

the Manley-Rowe action-transfer relations (Sturrock 1960). We verify 

this claim for the particular cases of three-wave interaction and 

induced scattering of two waves by resonant particl~s. 

1. Three-wave interaction 

Consider three waves a', b, and c, which s::ttisfy the 

resonant matching conditions (16). We proceed from the coupled-

mode equations (41), (44) and (45), which were derived in the 

ponderomotive-scalar-potential approximation (here, we let ~ + 0). 

These equations can be represented schematically as 

_p(k) • ~ 

I 

Let us introduce the symbols ek, D(k), D (k), defined by 

D(k) 

I 

D ( k) 
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The inner cproduct of the low-frequency equation (41) with 

then leads at once to 

I o 

i D (b)\ -il:b E* E 
c a 

where we have defined the coefficient 

( Cl) 

-1\ 
= ~(4TT) L 

s 

-1 A* (s) ~)(A* (s) A ) ( n e ) ( e o x: o e o x;:.. o e . 
ss b W¥0 c WJJ a 

( C2) 

Since we are considering the case D(b) +o, we note from 

(41) that the self-consistent field ~ dominates the ponderomotive 

( ) ( s) 
fields. ~bs • We are therefore justified in approximating ~ 

[defined in (39)) by~ where it appears in the high-frequency 

A * currents. Thus, the inner products of (44) and (45) with ea 

Etc, respectively, lead to the relations 

where the complex coupling coefficients are 

r 
a 

-HE lb , 
c a 

(CJ) 

. e > , 
c 

( C4) 

r 
c 
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(C5) 

We now introduce the action density Jk of each wave, defined 

by 

The equations of action transfer to be tested are 

j _j 
a c 

It follows from the structure of (Cl) and (OJ) that these 

relations are satisfied provided that 

r 
a 

_{ 
c 

Inspection of our results (C2), (C4) and (C5) verifies 

these conditions since, in the absence of resonant particles, the 

susceptibility tensor ~~s) is Hermitian. 

•• ·~ 

• v 



.. 
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2. Induced scattering 

This case differs from case 1 in that the low-frequency 

beat mode b is no longer a normal mode of the plasma. We follow 

Litvak and Trakhtengerts (1972) (who~ the Manley-Rowe 

relations) by treating mode b as longitudinal and by neglecting 

the high-frequency ion susceptibility. We therefore invoke the 

low-frequency equations (49) and (50), writing 

4e) 

~i) ie:.-1 x< e) ~(e) 
0 b b 

where 

~(e) = -ik (4nn lei )-i (/ • x~e) • e ) E*E 
b o e c WIJ a .c a 

These relations are to be substituted into the high-frequency 

equations (44) and (45). We again neglect the ion susceptibility 

~i ) and take inner products with @*a and e* c ' respectively' 

to obtain 

I • 

i D (a)E 
a 

I • 

i D (c)E 
c 
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2 ( -2 I A* (e) A 12 
-K:" 4 nn e) e • x:. • e -o e c ~ a 

The corresponding action-transfer relations are therefore 

j 
a 

2 J C4nn e>-2 11 • le> · e 12 

o e c Y#J a 
( C6) 

and so the total action in waves a and c remains conserved by 

the induced-scattering process. Both resonant electrons and resonant 

ions contribute to (C6). 
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FIGURE CAPTIONS 

Fig. 1: Matching-condition diagram for four-mode interaction. 
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