
Beat the MTurkers: Automatic Image Labeling from Weak 3D Supervision

Liang-Chieh Chen1 Sanja Fidler2,3 Alan L. Yuille1 Raquel Urtasun2,3

1UCLA 2University of Toronto 3TTI Chicago

{lcchen@cs, yuille@stat}.ucla.edu {urtasun, fidler}@cs.toronto.edu

Abstract

Labeling large-scale datasets with very accurate object

segmentations is an elaborate task that requires a high de-

gree of quality control and a budget of tens or hundreds of

thousands of dollars. Thus, developing solutions that can

automatically perform the labeling given only weak super-

vision is key to reduce this cost. In this paper, we show how

to exploit 3D information to automatically generate very ac-

curate object segmentations given annotated 3D bounding

boxes. We formulate the problem as the one of inference in

a binary Markov random field which exploits appearance

models, stereo and/or noisy point clouds, a repository of 3D

CAD models as well as topological constraints. We demon-

strate the effectiveness of our approach in the context of au-

tonomous driving, and show that we can segment cars with

the accuracy of 86% intersection-over-union, performing as

well as highly recommended MTurkers!

1. Introduction

Over the past few years, we have witnessed immense

progress in solving visual recognition tasks. This is due

to the availability of new sources of labeled data as well as

the development of richer, holistic representations that com-

bine multiple tasks [9, 15, 37]. Most recent datasets provide

annotations for multiple recognition tasks. For example,

PASCAL VOC [6] provides classification, detection and se-

mantic segmentation labels for a handful of objects. Ima-

geNet [4] provides large-scale image classification and ob-

ject localization annotations. Acquiring ground-truth data

for each of these recognition tasks is very expensive even

when employing crowd-sourcing systems such as MTurk.

Thus, recently a number of approaches have tackled seman-

tic segmentation in scenarios where weak annotations such

as image tags, 2D bounding boxes, or strokes, are available.

In this paper, our aim is to leverage the already labeled

tasks in order to automate labeling of the more time con-

suming ones. In particular, we show how to exploit an-

notated 3D bounding boxes (available e.g., in KITTI [11])

to perform accurate object segmentation without any user

in the loop. This is in contrast to interactive segmentation

RGB	 image	 stereo	 depth	

CAD	 models	 3D	 bbox	 (GT)	

Figure 1: Our goal is to automatically generate segmenta-

tion ground-truth (bottom) using weak labels (top image).

techniques, where the user can iteratively correct mistakes

by giving additional strokes/seeds. Towards this goal, we

develop an approach that exploits 3D information in the

form of stereo, noisy point clouds, 3D CAD models, as well

as appearance models and topological constraints (Fig. 1).

We demonstrate the effectiveness of our approach in

the context of the challenging KITTI autonomous driving

dataset [11], which has been annotated with 3D bounding

boxes, but not segmentation. This dataset is particularly

rich as it contains image pairs collected with a stereo rig as

well as point clouds captured with a LIDAR. It is also very

challenging, as both the objects present in the scene as well

as the ego-car (where the sensors are mounted) are moving.

This poses many difficulties, some of which are illustrated

in Fig. 2. First, the ground-truth 3D bounding boxes can

be fairly noisy, as annotation in the presence of occlusion is

very difficult. Non-reflective materials such as car windows

and certain types of paint make the LIDAR point clouds

very sparse. The point clouds also contain outliers, particu-

larly near occlusion boundaries due to errors in registration.

Furthermore, the objects in the scene move (fast) and the

LIDAR does not perform instantaneous capture. The 3D

information is also particularly ambiguous for the far-away

objects as the density of the point clouds decreases with the

distance to the sensor. Similarly, errors in the stereo estima-

tion process also increase dramatically with the distance to

the camera. Occlusion, low-resolution and saturated areas

are other sources of ambiguities.

1

Our approach successfully deals with these difficulties

and is able to perform as well as human annotators (i.e.,

MTurk) while being fully automatic. We conducted our

experiments on a subset of KITTI [11], which contains

950 cars with different scales, lighting/shading conditions,

and occlusion levels. We reach a remarkable accuracy of

86% IOU in this challenging setting, outperforming Grab-

Cut [24] by 23%. Importantly, we require as little as 10

to 20 labeled objects to train the system. Furthermore, our

approach can also be used to de-noise MTurk annotations,

improving by additional 3%. Our code and annotations are

available at: https://bitbucket.org/liang chieh chen/segkitti.

2. Related Work

Interactive segmentation: In [1], scribbles were used as

seeds to model the appearance of foreground and back-

ground, and segmentation was performed via graph-cuts

by combining appearance cues with a smoothness term [2].

GrabCut [24] utilizes annotations in the form of 2D bound-

ing boxes, and computes the foreground/background mod-

els using EM. [12] extended this idea to 3D by employ-

ing point clouds. 3D information as well as video has been

used to ease the labeling task. Optical flow and structure

from motion constraints are used in [32] to propagate im-

age labels in RGB-D videos. Our work bears similarity

with [18, 35] as we also exploit existing annotations for seg-

mentation. However, while they utilize 2D boxes provided

in ImageNet or tags in SIFT flow, we leverage 3D boxes and

define a rich set of 2D and 3D potentials.

Point clouds: Point clouds have been exploited for se-

mantic segmentation [3]. [33] enforced multiview consis-

tency by feature tracking. In [34], neighboring points in a

point cloud were grouped to form planar patches to which

labels (walls, floors, ceilings, clutter) were assigned. [17]

over-segmented the point clouds and modeled object co-

occurrences and geometric arrangement. In [38], the physi-

cal stability of objects is employed when segmenting point

clouds. [15, 23, 38] proposed to explore the compatibility

between multiple segmentation hypotheses and 3D maps in

order to perform 3D object detection. In contrast, we seek

to exploit labeling compatibility between 2D image pixels

and 3D point clouds. Besides, we focus on object segmen-

tation, rather than object localization.

Shape priors and CAD models: Many approaches have

incorporated shape priors into MRFs. [14] combined MRFs

and deformable models, [10] utilize a template with a level-

set formulation, and [37] incorporate shape priors computed

from deformable part-based models in holistic scene un-

derstanding. [31] use DijkstraGC to impose object con-

nectivity priors into segmentation. Objcut [19] employed

learned object poses, while PoseCut [16] exploits a human

pose-specific shape prior. [20] encodes tightness of the seg-

mentation to the bounding boxes provided by users. The

star shape prior of [30] enforces connectivity along rays

launched from a user-specified center. This was improved in

[13] by using multiple stars and Geodesic paths. The preva-

lent use of CAD models has been to augment the training

data with synthetically generated views or to learn a geo-

metric model from them [21, 22, 39], for the task of object

detection. In [25], whole synthetic scenes are matched to

real ones in order to transfer segmentation labels. Similarly,

we fit CAD models to our examples and use the mask of the

best fit as a potential.

3. Segmentation from Weakly Labeled Data

In this paper, we are interested in performing automatic

segmentation given annotated 3D bounding boxes, a collec-

tion of CAD models, LIDAR point clouds and/or stereo im-

age pairs. We frame the problem as the one of figure/ground

segmentation in a Markov Random Field (MRF), which

exploits appearance, smoothness, shape priors from CAD

models and 3D information. To exploit 3D, we use two

alternative depth sources: LIDAR, which provides us with

sparse point clouds, and depth from stereo. We first describe

how we compute depth in both settings. We then detail the

energy of our MRF and discuss learning and inference.

3.1. Obtaining Dense Depth Maps

We employ PCBP [36] to compute stereo depth maps,

as it is the current state-of-the-art in KITTI. PCBP is a

slanted plane MRF model with explicit reasoning about

the type of boundary (coplanar, hinge, occlusion) between

neighboring superpixels. This allows us to encode physical

validity at junctions, resulting in better plane estimates.

As shown in Fig. 2, the LIDAR point clouds can be

very sparse, even for nearby objects. To overcome this is-

sue, we reconstruct a dense depth map from the sparse set

of points. Let di be a continuous random variable encoding

the depth of the i-th pixel, and let d̂i, with i ∈ VD, be the

observed depth at pixel i, with VD the sparse subset. We

formulate the dense reconstruction as the one of inference

in a continuous MRF. Specifically, the MRF encourages the

reconstructed depth to be close to the observed depth mea-

surements as well as the depth of neighboring pixels to be

smooth. We define the energy as follows:

E(d|I, d̂) =
∑

i∈VD

‖di − d̂i‖
p
p +

∑

(i,j)∈E

wij‖di − dj‖
p
p

with d = (d1, · · · , dN) the set of variables encoding depth

for all pixels, d̂ the set of observed depth values, I the

color image and E the set of 4-connected neighbors. We

use wij = λ · exp(−
‖Ii−Ij‖

2

2

β
), with λ the relative weight

between the first and the second term, and β a scalar. Note

that this energy generalizes [5] to p-norms: When p = 2 we

obtain a Gaussian MRF, and when p = 1 a Laplacian MRF.

Exact inference can be performed in both cases [26].

https://bitbucket.org/liang_chieh_chen/segkitti

(a) 0 degree (b) 45 degree (c) 90 degree (d) 135 degree (e) 180 degree (f) 225 degree (g) 270 degree (h) 315 degree

Figure 2: Challenges of LIDAR: (Top box) Points falling inside the ground-truth 3D boxes are white, and black outside.

Gray pixels indicate there is no LIDAR observation. Points are sparse for small cars as well as large ones due to non-reflective

materials (see first two examples). The projected points do not align well with image boundaries (see trunk and pole in the

third and fourth examples). The GT 3D boxes are noisy, clipping car points or including background ones, e.g., floor (see last

two images). (Bottom box) Point clouds are averaged over the dataset for 8 different viewpoints. Red: car points that fall

outside the foreground GT mask (false positives). Green: background points that fall within the GT mask (false negatives).

3.2. Semantic Segmentation using 3D Data

Our setting is the following: we assume we are given

an example annotated with a 3D bounding box. Our goal

is to produce a figure-ground segmentation of the depicted

object. Note that the image within the projected box can

in fact contain two objects due to occlusion. Our evaluation

measures instance-level overlap, and thus our goal is to only

label the correct object corresponding to the given 3D box.

Let yi ∈ {0, 1} be a random variable encoding whether

the i-th pixel is background or foreground, respectively. We

now describe the potentials in our segmentation MRF.

Appearance Model: Following [24], we utilize two

Gaussian Mixture Models (GMMs) to model the appear-

ance of foreground/background. However, instead of using

a human in the loop to define the seeds, we employ the avail-

able 3D information. We define the foreground seeds F to

be the set of pixels inside the 2D bounding box which, when

projected to 3D (using depth from either LIDAR or stereo),

lie inside the 3D box (white pixels in Fig. 2). To compute

the background seeds B, we take the remaining pixels in

the 2D box (black pixels in Fig. 2) as well as a 2-pixel band

around the box. To make this process more robust, we com-

pute a 2D convex hull around F . We then remove all back-

ground seeds that fall inside this hull and have larger depth

values than the mean depth value of the foreground seeds.

These outliers are usually caused by the laser rays passing

through the car windows. This simple procedure led to a

slight improvement in performance. Then

φ
app
i (yi) =

{

− logPr(Ii|θ
I
F) if yi = 1

− logPr(Ii|θ
I
B) if yi = 0

where Ii is the color of pixel i, and θIF and θIB are the color

appearance models for the foreground and background.

Smoothness: We employed an Ising prior

φ
ising
ij (yi, yj) = ✶(yi 6=yj)

as well as a contrast sensitive Potts model

φcs
ij (yi, yj) = exp{−

‖Ii − Ij‖
2
2

β
} · ✶(yi 6=yj)

where β = E(2·‖Ii−Ij‖
2
2) and E(·) denotes the expectation

over an image sample [1].

Topological Information: We modify the generic shape

prior of [13, 30], which enforces the connectivity of seg-

mentation pixels along the rays originating from a point

(i.e., the star), to be asymmetric as follows

φ
topo
ij (yi, yj) = ✶(yi = 1, yj = 0)

for pixels on the ray going from j to i. Unlike [13, 30],

we automatically obtain the stars via K-means on the set of

foreground seeds F . Furthermore, we learn the importance

of this potential instead of assigning it an infinite weight.

Leveraging CAD models: We use a collection of 180 car

CAD models collected in [8]. The idea is to find, for each

3D KITTI object, a CAD model that best fits this example

and use the resulting CAD’s shape as a prior for segmen-

tation. Towards this goal, we first solve for the best 3D

transformation that aligns each CAD model with each input

3D bounding box in terms of vertex error in 3D. This can be

done in closed form via Procrustes analysis. The next step

is to select the model which best represents each example.

We chose the model that minimizes an error function con-

sisting of 3 terms: 3D and 2D vertex error and real-world

dimensions error. To compute the 2D error we project the

(a) CAD shape (b) contour (c) dist. trans. (d) signed d.t.

Figure 3: (a) CAD model projected to image plane, (b) con-

tour, (c,d) distance and signed distance transform.

CAD’s 3D box to the image, fit a 2D box around it and com-

pute the L2 distance between its vertices and the vertices of

the input 2D box. To compute the last error term, we use

the real-world dimensions of each CAD model. This cap-

tures, for example, that a VW Golf is smaller than a Toyota

Tundra. This cannot be obtained from the CAD models, as

they have arbitrary scale. Instead, we obtain this informa-

tion from the car manufacturers and other online resources,

as each CAD model’s meta-data contains information about

the car brand and model [8]. Real-world dimension error is

then the sum of L1-distances between the real-world dims

(length, height, width) of a CAD and the dims of the input

3D box. We weigh each error term differently and learn

the weights by cross-validation on the training set. The best

CAD model is then projected to the image plane and its

contour is extracted. We perform the signed distance trans-

form [7] on the contour (the sign is negative within the car

contour), and normalize it to be between −1 and 1 for every

example in order to not bias large cars. Thus

φCAD
i (yi) = sdt(i|CAD) · ✶(yi = 1)

where sdt(i|CAD) is the value of pixel i after signed dis-

tance transform. This is illustrated in Fig.!3.

Depth seeds: We penalize labelings that misclassify fore-

ground and background seed points as follows

φ
depth,f
i (yi) = ✶(yi = 0, i ∈ F)

φ
depth,b
i (yi) = ✶(yi = 1, i ∈ B)

with F ,B the set of foreground and background seeds.

Dense depth: We learn two GMMs to represent the his-

togram of depth for the background and foreground. Thus

φ
depth
i (yi) =

{

− logPr(di|θ
S
F) if yi = 1

− logPr(di|θ
S
B) if yi = 0

with di is the dense reconstructed depth (either from stereo

or the MRF defined in section 3.1), and θSF and θSB are the

depth appearance models for foreground and background.

3.3. Learning and Inference

We use a log-linear model

E(y|I,d) = w
T ·Ψ(y|I,d)

where Ψ(y|I,d) is the concatenation of all potentials

summed across cliques (as we share the weights between

0 1 2 3 4 5 6 7 8
50

55

60

65

70

75

80

85

90

IO
U

 (
%

)

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

se
c

(Training time in minutes) (Avg. inference time)

Figure 5: Time: (Left) IOU as a function of training time,

(Right) average inference time as a function of scale.

them). This results in w ∈ R
8, with one weight for appear-

ance, two for smoothness, two for discrete depth, one for

continuous depth, one for the topology and one for CAD.

Inference in our model can be done exactly via graph-

cuts, as we have a binary MRF with sub-modular poten-

tials. We use the graph-cut implementation of [2]. We em-

ploy structural SVMs [28, 29] to learn the parameters of the

model, and use the parallel cutting plane algorithm of [27].

As loss we use Hamming distance, which counts the per-

centage of pixels that are wrongly labeled. This loss decom-

poses into unary potentials, and thus the loss-augmented in-

ference can be solved exactly via graph-cuts.

4. Experimental Evaluation

We selected a random subset of images from the KITTI

raw data [11], having a total of 950 cars. We asked 9

in-house annotators to provide very high-quality segmenta-

tions. It took on average 60 seconds to label each car, and

16h to label the full dataset, where each image is labeled

by a single annotator. As shown in Fig. 4 (left), our dataset

contains cars at very different resolutions. The projection of

the 3D bounding boxes into the image ranges from 20× 24
to 279 × 372 pixels. In order to maintain the same dis-

tribution of scales, we build a 30 bin histogram of object

sizes and select randomly within each bin 40%, 10%, and

50% of cars as training, validation, and test set, resulting in

382 examples for training, 100 for validation, and 468 for

testing. Following PASCAL VOC we utilize intersection-

over-union (IOU) as our evaluation metric.

The 3D LIDAR point clouds are very sparse. As shown

in Fig. 4 (center), small cars contain only 38.2 points on av-

erage, which is 3.7% of the 2D bounding box. This makes

segmenting small cars very difficult. As expected, the num-

ber of points increases with scale. However, for the largest

scale (the last bin), we find that there is one car with very

few points due to its metallic paint. This biases the statistics

as there are not that many examples of this size.

KITTI was collected with sensors (i.e., cameras and LI-

DAR) mounted on top of a driving car. As a consequence,

most of the cars in the images are oriented with 0, 45 and

180 degrees (driving towards or away from the ego-car).

Fig. 4 (right) shows the distribution of car orientations (at

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

0 50 100 150 200 250 300 350
0

200

400

600

800

1000

1200

1400

1600

1800

2000

38
76

163

0 45 90 135 180 225 270 315
0

50

100

150

200

250

300

350

(BBox size) (LIDAR point clouds) (Orientation histogram)

Figure 4: Dataset statistics: (Left) Histogram of car scales in terms of bounding box size, defined as the square root of the

bounding box area. (Center) Average number of LIDAR points for different scales. (Right) Histogram of car orientations.

0◦ the car is facing south, and west at 90◦). To further an-

alyze the point clouds, we overlay their projection with our

ground-truth segmentations and average them for 8 different

azimuth angles, after resizing to a common scale to com-

pensate for the size difference among examples. As shown

in the bottom row of Fig. 2, most of the mistakes (green

and red) are along the car boundaries due to registration er-

rors and the fact that objects and the ego-car are moving.

Besides, the noise introduced when labeling 3D bounding

boxes causes mistakes on the car and near the ground plane.

To benchmark and compare crowd-sourcing annotations,

we collected segmentations via MTurk in three batches. For

the first two batches our quality requirements were lower,

requiring MTurkers to have at least 75% approval rate. We

paid 1 cent per car. For the third batch we required 95%

approval rate and 500 approved tasks, and paid them 5 cents

per car. We asked the MTurkers to draw the outer boundary

of the car within the marked box as accurately as possible.

For images with low contrast we asked them to make an

educated guess. If a car was occluded (by e.g., a tree), they

were asked to draw a boundary also around each occluding

region. If the car was occluded by another car, they were

asked to mark the other car as an occluder. We showed

three examples of good annotations, a fully visible car, a

low contrast example, and a partially occluded car.

Comparison to state-of-the-art: Table 1 compares our

approach to a set of GrabCuts based baselines, which, like

our approach, do not use a user in the loop. The first base-

line (A) projects the 3D bounding box onto the image, and

uses the pixels inside as the foreground seeds and a band

outside as background seeds. The second baseline (B) uti-

lizes only pixels inside 1/4 of the box around the center as

seeds. The last baseline (C), which is an instance of our

model, employs the projected LIDAR points as seeds for

foreground or background, depending on whether they are

inside or outside the 3D bounding box. Our approach out-

performs the baselines by more than 20% in terms of IOU

when employing LIDAR and/or stereo. Moreover, utilizing

the point clouds as seeds outperforms the other heuristics.

Size matters: As shown in Fig. 6 (left) segmenting big

cars is easier than smaller ones.

Baselines Our Model

Method [24] A [24] B [24] C Stereo LIDAR Hybrid

IOU (%) 52.9 59.1 62.1 84.4 85.6 85.9

Table 1: Comparison to GrabCuts: Baseline A uses

all pixels inside the 2D bounding box as foreground seeds,

Baseline B uses pixels inside 1/4 of the 2D box as fore-

ground seeds and baseline C uses projected LIDAR points

as seeds. By hybrid we mean an approach that uses dense

depth from stereo and depth seeds from LIDAR.

Importance of the features: As shown in Table 2, each

potential increases performance. The CAD model is the po-

tential that contributes the most.

Stereo vs LIDAR: As shown in Tables 1 and 2, we can

reach almost the same performance with stereo or LIDAR.

This is great news for autonomous driving as cameras are

much cheaper sensors. The highest accuracy can be ob-

tained when we use a hybrid approach, which takes advan-

tage of both stereo and LIDAR. Fig. 6 (center) shows that

LIDAR is particularly beneficial wrt. stereo for small cars.

Time: Fig. 5 shows the training and average inference

time as a function of size. Learning converges within 2

minutes. The parallel cutting plane algorithm of [27] makes

the training time 3.3 times faster than the original algorithm

(when using four threads). The average inference time is

proportional to the car scale. Inference for the full test set

takes 44 seconds using a single core.

Automatic vs MTurk: As shown in Table 3, our approach

performs as well as MTurker, while being fully automatic.

We can also de-noise MTurk annotations by using their seg-

mentations as an additional potential in the model. The po-

tential that we use is similar to the one for the CAD models,

where instead of the CAD mask we use the MTurk segmen-

tation. This pushes the performance even higher. Such a

setting can for example be used to reduce the number of

annotators per image. “Oracle” here means a scenario in

which we can choose the best annotation within the three

batches. Note that, even in this setting, we can de-noise the

results using our model.

Training Set Size: We next investigate performance of

our full model as a function of the number of training im-

0 50 100 150 200 250 300 350
70

72

74

76

78

80

82

84

86

88

90

92
IO

U
 (

%
)

0 50 100 150 200 250 300 350
−2

−1

0

1

2

3

4

5

in
c
re

m
e
n
t
IO

U
 (

%
)

0 50 100 150 200
80

81

82

83

84

85

86

IO
U

 (
%

)

(LIDAR) (Improvement LIDAR wrt. stereo) (Training set size)

Figure 6: (Left) IOU as a function of bounding box size when using LIDAR. (Center) IOU difference when employing our

full model with LIDAR vs Stereo as a function of size. (Right) IOU as a function of number of training examples. With only

10-20 train-val images, our model can reach performance similar to MTurk. Results are averaged across 5 partitions.

MTurk accuracy Ours with MTurk pot.

Batch 1 85.3 87.1

Batch 2 85.9 88.3

Batch 3 86.7 87.6

Batch 1,2,3 – 88.9

Oracle 90.2 90.6

Table 3: Denoising MTurk: At 85.9% our model’s accu-

racy is comparable to MTurkers’. Our model is also able to

de-noise MTurk annotations, further boosting performance.

ages. As shown in Fig. 6 (right), results similar to MTurk

can be obtained when training with as little as 10-20 images.

Gaussian vs Laplacian MRF: Fig. 7 (left) shows per-

formance of the basic model (appearance + smoothness)

when enriching it with continuous depth as a function of

the smoothness term in the dense reconstruction. Note that

p = 1 (i.e., Laplacian MRF) is more robust to outliers, and

a wide range of weights result in good performance.

Number of Stars: As shown in Fig. 7 (right) using a sin-

gle star yields the best performance for a model containing

appearance, smoothness and topology. This is expected as

cars are a single connected component, with the exception

of occlusion (e.g., car behind a pole).

Average shape: An alternative shape prior to CAD mod-

els is to cluster the data by orientation, and average the train-

ing segmentations for each bin (see Fig. 2). Adding this

to the base model with appearance and smoothness results

in 67.6% IOU, while using it in the full model results in

80.3%, i.e., 5% worse than when using CAD.

Depth as a segmentation algorithm: We also look into

whether the dense reconstructions alone can be used to per-

form segmentation. Towards this goal, we classify a point

as car if it is inside the 3D bounding box, and background

otherwise. Laplacian MRF performs best, with 76.2% IOU.

The performance of the Gaussian MRF is 4% lower since it

is less robust. The performance when using stereo is 69.8%,

which is 15% worse than our full model. This shows that

depth alone is not sufficient and that we greatly benefit from

using multiple diverse cues.

0.005 0.01 0.05 0.1 1 5 10
60

62

64

66

68

70

72

74

IO
U

 (
%

)

Gaussian

Laplacian

1 2 3 4 5 7 10 15
62

62.5

63

63.5

64

64.5

65

65.5

66

IO
U

 (
%

)

(Smoothness weight λ) (Number of stars)

Figure 7: Importance of parameters: (Left) smoothness

weight for the continuous MRF, and (Right) the number of

stars for the topology potential. Result are on validation set.

Qualitative results: Fig. 8 depicts segmentation results

when using our full model with stereo and LIDAR (4th and

6th columns respectively). Our model is robust to low-

resolution imagery, saturation, noise, sparse point clouds,

depth estimation errors and can successfully segment out

occluders. The last three rows show failure modes. Our ap-

proach has difficulty with very small cars that are heavily

occluded, and point clouds with a large number of outliers.

5. Conclusions

We have presented an approach that can generate seg-

mentations of the same quality as human labelers (i.e.,

MTurkers) using only weak supervision in the form of 3D

bounding boxes. Towards this goal, we have exploited ap-

pearance models, stereo and/or noisy point clouds, a repos-

itory of 3D CAD models as well as topological constraints.

In the future we plan to exploit video information in order

to automatically label moving objects over time.

Acknowledgements The first author was partly supported by

ARO 62250-CS and ONR N000014-10-1-0933. The authors thank

Kaustav Kundu, Wenjie Luo, Chen Kong, Zhou Ren, Jia Xu, Meng

Ye, and Edgar Simo-Serra for helping us with annotation.

References

[1] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal

boundary & region segmentation of objects in nd images. In

ICCV, 2001. 2, 3

Model Appearance Smooth Depth seeds Dense depth Topo CAD Stereo IOU (%) LIDAR IOU (%)

Basic (no ising) X X 60.1 61.1

Basic X X 61.6 62.1

Topology X X X 64.4 64.2

Dense depth X X X 68.4 71.3

Discrete depth X X X – 74.2

All depth X X X X – 76.2

CAD X X X 82.9 83.5

Full Model w/o CAD X X X X X 70.2 77.6

Full Model w/o Dense depth X X X X X 83.4 84.1

Full Model w/o Depth Seeds X X X X X – 85.4

Full Model w/o Topology X X X X X 84.2 85.5

Full Model X X X X X X 84.4 85.6

Table 2: Importance of Features: Every feature helps, and the CAD model potential helps the most. Notably, performance

with stereo is similar to LIDAR. Note that when using stereo, we do not use Depth seeds.

[2] Y. Boykov and V. Kolmogorov. An experimental comparison

of min-cut/max-flow algorithms for energy minimization in

vision. PAMI, 26(9):1124–1137, 2004. 2, 4

[3] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Seg-

mentation and recognition using structure from motion point

clouds. In ECCV, 2008. 2

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR, 2009. 1

[5] J. Diebel and S. Thrun. An application of markov random

fields to range sensing. In NIPS, 2006. 2

[6] M. Everingham, L. V. Gool, C. K. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. IJCV, 88(2):303–338, 2010. 1

[7] P. F. Felzenszwalb and D. P. Huttenlocher. Distance trans-

forms of sampled functions. Theory of Computing, 2012. 4

[8] S. Fidler, S. Dickinson, and R. Urtasun. 3d object detec-

tion and viewpoint estimation with a deformable 3d cuboid

model. In NIPS, December 2012. 3, 4

[9] S. Fidler, R. Mottaghi, A. Yuille, and R. Urtasun. Bottom-up

segmentation for top-down detection. In CVPR, 2013. 1

[10] D. Freedman and T. Zhang. Interactive graph cut based seg-

mentation with shape priors. In CVPR, 2005. 2

[11] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In

CVPR, 2012. 1, 2, 4

[12] A. Golovinskiy and T. Funkhouser. Min-cut based segmen-

tation of point clouds. In ICCV Workshops, 2009. 2

[13] V. Gulshan, C. Rother, A. Criminisi, A. Blake, and A. Zis-

serman. Geodesic star convexity for interactive image seg-

mentation. In CVPR, 2010. 2, 3

[14] R. Huang, V. Pavlovic, and D. N. Metaxas. A graphical

model framework for coupling mrfs and deformable models.

In CVPR, 2004. 2

[15] B. Kim, S. Xu, and S. Savarese. Accurate localization of 3D

objects from RGB-D data using segmentation hypotheses. In

CVPR, 2013. 1, 2

[16] P. Kohli, J. Rihan, M. Bray, and P. Torr. Simultaneous seg-

mentation and pose estimation of humans using dynamic

graph cuts. IJCV, 79(3):285–298, 2008. 2

[17] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena. Se-

mantic labeling of 3d point clouds for indoor scenes. In

NIPS, 2011. 2

[18] D. Kuettel, M. Guillaumin, and V. Ferrari. Segmentation

propagation in imagenet. In ECCV, 2012. 2

[19] M. Kumar, P. Torr, and A. Zisserman. Objcut: Efficient

segmentation using top-down and bottom-up cues. PAMI,

32(3):530–545, 2010. 2

[20] V. Lempitsky, P. Kohli, C. Rother, and T. Sharp. Image seg-

mentation with a bounding box prior. In ICCV, 2009. 2

[21] J. Liebelt and C. Schmid. Multi-view object class detection

with a 3d geometric model. In CVPR, 2010. 2

[22] J. Lim, H. Pirsiavash, and A. Torralba. Parsing ikea objects:

Fine pose estimation. In ICCV, 2013. 2

[23] D. Lin, S. Fidler, and R. Urtasun. Holistic scene understand-

ing for 3d object detection with rgbd cameras. In ICCV,

2013. 2

[24] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Inter-

active foreground extraction using iterated graph cuts. In

SIGGRAPH, 2004. 2, 3, 5

[25] S. Satkin, J. Lin, and M. Hebert. Data-driven scene under-

standing from 3D models. In BMVC, 2012. 2

[26] A. Saxena, S. Chung, and A. Ng. 3-d depth reconstruction

from a single still image. IJCV, 2007. 2

[27] A. Schwing, S. Fidler, M. Pollefeys, and R. Urtasun. Box

in the box: Joint 3d layout and object reasoning from single

images. In ICCV, 2013. 4, 5

[28] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov

networks. In NIPS, 2004. 4

[29] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.

Large margin methods for structured and interdependent out-

put variables. JMLR, 6:1453–1484, September 2005. 4

[30] O. Veksler. Star shape prior for graph-cut image segmenta-

tion. In ECCV, 2008. 2, 3

[31] S. Vicente, V. Kolmogorov, and C. Rother. Graph cut based

image segmentation with connectivity priors. In CVPR,

2008. 2

[32] J. Xiao, A. Owens, and A. Torralba. Sun3d: A database

of big spaces reconstructed using sfm and object labels. In

ICCV, 2013. 2

[33] J. Xiao and L. Quan. Multiple view semantic segmentation

for street view images. In ICCV, 2009. 2

[34] X. Xiong and D. Huber. Using context to create semantic 3d

models of indoor environments. In BMVC, 2010. 2

[35] J. Xu, A. Schwing, and R. Urtasun. Tell me what you see

and i will show you where it is. In CVPR, 2014. 2

(image) (LIDAR) (stereo) (stereo–full) (LIDAR) (LIDAR–full)

Figure 8: Segmentation results: Each row shows the image, LIDAR points (White: car, Black: bckgr.), stereo depth, results

of our full model with stereo (White: True Positive, Black: True Negative, Red: False Positive, Green: False Negative), depth

images reconstructed by Laplacian MRF, and results of our full model with LIDAR. Last three rows show our failure modes.

[36] K. Yamaguchi, D. McAllester, and R. Urtasun. Robust

monocular epipolar flow estimation. In CVPR, 2013. 2

[37] J. Yao, S. Fidler, and R. Urtasun. Describing the scene as

a whole: Joint object detection, scene classification and se-

mantic segmentation. In CVPR, 2012. 1, 2

[38] B. Zheng, Y. Zhao, J. C. Yu, K. Ikeuchi, and S.-C. Zhu. Be-

yond point clouds: Scene understanding by reasoning geom-

etry and physics. In CVPR, 2013. 2

[39] Z. Zia, M. Stark, B. Schiele, and K. Schindler. Detailed 3d

representations for object recognition and modeling. PAMI,

2013. 2

