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ABSTRACT Delineating the electrocardiogram (ECG) waveform is an important step with high significance 

in cardiology diagnosis. It refers to extract the ECG morphology in start, peak, end points of waveform. Due 

to various shapes and abnormalities presented in ECG signals, several conventional computer algorithms 

always fail to extract the essential feature of heart information. Thus, it is critical to investigate an automated 

ECG signal delineation with its result accuracy. In this study, we propose the delineation process by using 

bidirectional long short-term memory (BiLSTM) classifier. Such process was conducted as one beat to the 

next (beat-to-beat), that means the ECG waveform classification is start of P-wave1 to start of P-wave2. 

However, such classifier lack of feature extraction process, reducing the classification accuracy result. To 

improve the classifier performance, convolutional layers as facture extraction are stacked with BiLSTM 

named ConvBiLSTM. We conducted the experimental based on seven-class ECG waveform using a publicly 

available QT Database with annotation of the main waveforms to produce high accurate classifier, i.e., Pstart 

– Pend, Pend – QRSstart, QRSstart – Rpeak, Rpeak – QRSend, QRSend – Tstart, Tstart – Tend, and Tend – Pstart. It was found 

that the proposed model showed remarkable results with overall average performances of 99.83% accuracy, 

98.82% sensitivity, 99.90% specificity, 98.86% precision, and 98.84% F1 score. Based on these promising 

results, the efficacy of the proposed stacked ConvBiLSTM model in classifying ECG waveform provides a 

great opportunity to help cardiologists in diagnosis decision-making for faster assessment. 

INDEX TERMS ECG Delineation, Stacked Convolutional Layers, Bidirectional LSTM, Waveform 

Classification 

I. INTRODUCTION 

Medical practitioners acquire information about the electrical 

function of the heart via electrocardiogram (ECG) signals. 

Each heart cycle of one normal beat of ECG contains different 

three main waveforms, i.e., P-wave, QRS complex, and T-

wave. These waveforms have a standard amplitude and time 

duration, indicating various heart conditions [1]. Relevant 

information from the ECG waveform must be extracted from 

the physiological signal to diagnose various heart 

abnormalities [2]. To achieve high diagnostic accuracies, ECG 

analysis requires the knowledge to extract the morphology of 

the ECG waves or/and segments (delineation) [1][3][4]. For 

example, to atrial fibrillation (AF) detection, at least we have 

to know P-wave absence, which it is one of the ECG signal 

important features. This makes P-wave delineation of great 

importance for AF detection. However, to delineate and get 

the knowledge about the location and morphology to detect 

start, peak, and end point of three main ECG waveforms is 

quite troublesome. In addition, to diagnose such conditions, 

ECG signal analysis is time-consuming and requires years of 

training for specialized knowledge acquisition [5]. Moreover, 

it suffers from intraindividual variability, such as 

electrodeposition in common multi-lead ECG, and noise 

influencing the signal waveform [5]. Therefore, the process of 

ECG delineation that related to ECG waveform classification 
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with using approach of beat-to-beat segmentation is still 

needed in clinical practice.   

Advanced computing systems can reduce such limitations 

by permitting the automatic delineation of ECGs. Many 

researchers have proposed various conventional computer 

algorithms for ECG delineation. Pan et al. [6] first introduced 

an automated algorithm to periodically adjust thresholds and 

parameters to adapt QRS morphology and heart rate. Their 

algorithm successfully detects 99.3% of QRS complexes. 

Laguna et al. [7] presented an automated algorithm for 

locating the waveform (the start and ends of the P-wave, QRS 

complex, and T-wave) in multi-lead ECG signals. Li et al. [8] 

improved and proposed an algorithm based on wavelet 

transform (WT) to detect ECG characteristic points with the 

detection rate of QRS complexes above 99.8%. Lin et al. [9] 

proposed a discrete wavelet transform (DWT) for ECG 

waveform classification. They reconstructed eight-level 

decompositions of DWT, i.e., P-wave (levels 5 and 6), QRS 

complex (levels 2 to 4), and T-wave (levels 4 and 5). Although 

these conventional ECG waveform technique as managed to 

achieve accuracy above 99.8%, their approaches rely heavily 

on the accuracy of ECG segmentation and its feature analysis. 

There can be a high degree of uncertainty and variability due 

to the subjective aspect of the measurements in the 

segmentation and measurement phases.  

Machine learning (ML) with intelligent processing 

approaches has been implemented for ECG waveform 

classification and also obtained promising results, such as 

Bayesian [10], k-means algorithm [11], hidden Markov model 

[12], neural network [13], adaptive thresholding [14], and 

particle swarm optimization [15]. Unfortunately, in a 

conventional ML, the features are always extracted 

heuristically and hand-crafted. Deep learning (DL) can 

automatically extract a hierarchical representation of the data 

and then utilize the rest of the stacked layers to learn complex 

features from simpler ones [16][17]. In contrast to 

conventional ML, DL may not require extensive human 

interaction and knowledge for feature design [16][18]. One of 

the outstanding DL approaches is long short-term memory 

(LSTM). LSTM is a variant of recurrent networks used to 

overcome the gradient problem of recurrent neural networks 

(RNNs) by multiplicative gates that enforce constant error 

flow through the internal states of memory cells [19]. LSTM 

has successfully learned long-term correlations in a sequence 

of ECG [5][20]. 

Due to the superiority of LSTM architecture in prediction 

capability for both past and future inputs [21], this study 

proposing a bidirectional phase of LSTM, named bidirectional 

LSTM (BiLSTM). Such a method is appropriate for sequential 

data processing based on forward and backward time steps 

[19][22]. BiLSTM architecture was concerned for classifying 

the start and end of beat-to-beat ECG waveform in seven-class  

i.e., Pstart – Pend, Pend – QRSstart, QRSstart – Rpeak, Rpeak – QRSend, 

QRSend – Tstart, Tstart – Tend, and Tend – Pstart. The ECG waveform 

is dynamically changed every time depending on the 

frequency setting and the signal length. However, the 

BiLSTM technique lacks of feature extraction to recognize the 

dynamic ECG waveform [23]. Due to this problem, the aim of 

this study to improve the BiLSTM architecture stacked with a 

convolutional neural networks (CNNs) architecture as feature 

extraction to increase the classifier performance. CNNs can 

generate local features of the ECG signal sequence to 

recognize regional patterns in the convolution window 

[24][25]. The convolution layer of CNNs helps to extract and 

learn by weight-sharing and modify the low-level hierarchical 

and invariant features from the raw data [26]. Previous studies 

about an automated delineation with DL with accurate and 

precise results are still limited. Besides, stacking of two DL 

architectures, i.e., convolutional layer and BiLSTM 

(ConvBiLSTM), has not been explored in depth. Hence, it is 

imperative to investigate the DL model improvement to 

increase the delineation waveform ECG result.  

To best our knowledge, some previous studies that used DL 

implementation only limited to three main ECG waveform 

delineation. Therefore, in this study, we give the contributions 

and novelty are as follows: 

• Developing stacked ConvBiLSTM architecture as 

feature extraction and classifier models; 

• Proposing accurate BiLSTM classifier based on seven-

class of ECG waveform;  

• Implementing the proposed model for ECG waveform 

classification that conducted by using beat-to-beat 

segmentation to simplify the process with a highly 

accurate result; 

• Validating the proposed stacked model with an ECG 

waveform which manually annotated by experts to 

insure its performance. 

The rest of this paper is organized as follows: Section II 

presents the related work of this study. Section III describes 

the theory and background of proposed deep learning 

architecture. Section IV presents material and method 

comprising ECG raw data and the proposed stacked 

ConvBiLSTM architecture, and Section V presents the results 

and discussion. Finally, the conclusions are presented in 

Section VI. 

 
II. RELATED WORKS 

Deep learning (DL) has been successfully used in various 

biomedical signal processing, especially for automated ECG 

waveform classification in several past year. Some intelligent 

processing methods have been proposed for DL algorithms, 

such as autoencoder (encoder-decoder), CNNs, and LSTM 

framework. Londhe et al. [1] conducted a concept of image 

segmentation for ECG wave segmentation, called semantic 

segmentation. They proposed a hybrid model based on 

ConvBiLSTM to attend the semantic segmentation of ECG 

waveforms. The input model was 5,000 x 1 time series for P-

wave, QRS complex, and T-wave classification. In the 

convolution layer, batch normalization and ReLU were 

implemented as activation functions. They proposed two 
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layers of BiLSTM with 250 and 125 units. Overall, they 

achieved an average accuracy of 97.64%. Wang et al. [2] 

introduced domain knowledge to delineate the fiducial points 

of ECG signals (Pon, Poff, QRSoff, QRSon, Ton, and Toff) under 

the encoder-decoder framework. They allowed the encoder-

decoder model to extract ECG features. Sodmann et al. [27] 

implemented CNN for ECG rhythm annotation. They 

generated a model with 9-layered CNNs, comprising 

convolution and pooling layers, batch normalization, 

activation function, and dropout. The ECG segmentation 

comprised 450 samples, or 1,500 milliseconds.  

Malali et al. [28] proposed convolutional LSTM 

(ConvLSTM) to segment the ECG waves. The input model of 

a 700 x 4 was fed into the input and convolution layers. They 

compared each wave segment using the ConvLSTM and 

BiLSTM models. The results of ConvLSTM outperformed the 

BiLSTM model, with higher accuracy, sensitivity, and F1-

score. They used a QT database from PhysioNet, in which the 

sample is divided into rhythm segments each of length 700 

data points (2.8 seconds). They only focused on segmenting 

the P-wave, QRS complex, and T-waves and achieved above 

92.73% accuracy. Peimankar et al. [29] proposed a 

combination of CNNs and LSTM, named the DENS-ECG 

algorithm, to detect onset, peak, and offset of P-wave, QRS 

complex, and T-wave, and most of the incorrect cases in all 

three classes are classified into No-wave. They generated three 

convolution layers of CNN and two layers of BiLSTM. They 

achieved the performance of the proposed DENS-ECG model 

in raw and filtered signals above 76.80% and 96.53% 

sensitivity, respectively. Finally, in our previous work [23], we 

implemented BiLSTM for P-wave, QRS complex, T-wave, 

and isoelectric line classification. The proposed method 

outperformed a unidirectional LSTM with an overall average 

of 99.64% accuracy. Based on the works mentioned above, 

DL has successfully proven its ability for ECG delineation.  

Based on the previous studies, DL has proposed for ECG 

delineation. However, those studies were only limited to three 

ECG waveforms (P-wave, QRS complex, and T-wave) and 

the performance results under 99% accuracy. With such 

approaches, this study improved the ECG delineation by using 

beat-to-beat segmentation into seven-class of ECG waveform 

classification based on stacked ConvBiLSTM structure.  The 

stacked convolutional layers can learn temporal information 

from ECG signals followed by BiLSTM to learn short- and 

long-term dependencies. 

III. THEORY AND BACKGROUND 

The stacked ConvBiLSTM architecture was conducted to 

increase the performance of ECG waveform classification. 

The convolution layers were used only for feature extraction, 

and ECG waveform classification was processed using 

BiLSTM.  

 

 

A. CONVOLUTIONAL LAYERS 

A convolution layer, as a part of CNNs, is an automatic 

extraction of the input model, which can extract deep features 

from ECG signal data points [1]. The convolution process can 

be expressed as follows [30]: 
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where 
m
ija  is the activation of the j th neuron of the i th filter 

for the m th convolutional layer, M is the kernel size,   is 

the neural activation function, 
ib is the shared bias of the i th 

filter, 1 2[ ... ]Ti i i iMw w w w= are the shared weights of the 

i th filter, and 1 1[ ... ]Tj j j j Mx x x x+ + −= are the 

corresponding M inputs.  

2. BIDIRECTIONAL LSTM 

To learn short- and long-term dependencies, BiLSTM is a 

part of RNNs. RNNs in the backward pass often encounter 

gradient problems, i.e., vanishing or exploding gradients. The 

gradient problems are caused by the RNN’s iterative nature, 
whose gradient is essentially equal to the recurrent weight 

matrix raised to high power. These iterated matrix powers 

cause the gradient to grow or shrink exponentially in the 

number of time steps [31]. LSTM tends to overcome this 

problem by multiplicative gates that enforce constant error 

flow through the internal states of memory cells (𝑐𝑡). LSTM 

learns long-term correlations in a sequence and obviates the 

need for a prespecified time window [19]. Feedback loops at 

hidden layers of RNNs are unidirectional. Unidirectional 

means the process from left to right, in which the flow of the 

information is only in the forward direction [32]. Schuster 

presented new concepts of sequence learning in which the 

information flow is in forward and backward feedback [21]. 

The connections in the forward direction help us learn from 

previous representations, and those going backward help us to 

learn from future representations, called “bidirectional RNNs 
(BiRNNs).” BiRNNs can be learned to use all available input 
data for a specific timeframe in the past and future 

[33][34][35]. With the BiRNNs approach, the BiLSTM 

equations are used to calculate two parallel directions; forward

( )tf  and backward (
tb ) passes are given below [36][37]:  
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From (4) and (5), the output of the BiLSTM layer at a time t  

is: 

 1
0

11111 tanh( bMLSTWMLSTWy tohtoht ++=


 ,       (4)          

 

where the output depends on 
tMLST


 and 
tLSTM ; 0h  is 

initialized as a zero vector. 
 
IV. MATERIAL AND METHOD 

A.  DATASET 

The PhysioNet: QT Database (QTDB) comprised 105 fifteen-

minute excerpts of two-channel ECG Holter recordings. The 

database includes various QRS and ST-T morphologies. The 

105 records were chosen primarily from among existing ECG 

databases, including the MIT-BIH Arrhythmia Database, 

MIT-BIH Normal Sinus Rhythm (NSR DB), the European 

Society of Cardiology ST-T Database (courtesy of Prof. Carlo 

Marchesi), and several other ECG databases. However, for 

this study, we are only used ten records of QTDB: MIT-BIH 

Normal Sinus Rhythm as baseline for training and validating 

ECG waveform classification. QTDB has segmented beat by 

beat that consist of three main ECG waveforms (P-wave (p), 

QRS-complex (N), and T-wave (t)) in all records. For all 

experiments conducted in this study, we are only concerned in 

one complete beat. If there is an incomplete beat, (one of the 

waveforms is missing) the record is excluded. 

 QTDB records have record names, e.g. record.dat (contain 

the signal file), record.hea (describe the format of signal file), 

record.atr (include the original annotation), record.ari (contain 

QRS annotation), record.pu0 and .pu1 (contain the automatic 

waveform start and end), and record.man, record.qtn, and 

record.qnc (contain manual annotation). In this study, we are 

only conducted the automatic QRS annotations obtained by 

record.pu0, which contain the automatic waveform onsets and 

end in signals 0 as detected by ecgpuwave. The QTDB 

supplied the input to the waveform-database (WFDB) 

ecgpuwave function. The ecgpuwave provided the exact 

location of all waveforms in the signal. The ecgpuwave output 

was written as a standard WFDB-format annotation file 

related to the specified annotator that utilized as label or 

‘ground truth’ for ECG waveforms.  
 

B. NOISE REMOVAL 
ECG signals become corrupted during acquisition due to 

different types of artifacts and interferences, such as muscle 

contraction, baseline drift, electrode contact noise, power line 

interference, etc. [38][39][40]. Generally, discrete wavelet 

transform (DWT) is used for ECG signal preprocessing (noise 

removal) because of the properties of a good representation 

non-stationary signal and the possibility of dividing the ECG 

signal into different bands of frequency [29][38][39][40]. The 

DWT is realized by passing the signal, where ( )x n  is the 

discrete input signal with length n , through a series of low-

pass ( [ ])g n  and high-pass filters ( [ ])h n [41]. DWT is used 

to analyze signals at various resolution levels; wavelet 

coefficients calculate the number of decomposition levels to 

perform a sequence of signal processing operations [9]. The 

denoising efficiency is measured using the signal-to-noise 

ratio (SNR or S/N). SNR provides information about the 

signal quality. The input SNR ( )
i

SNR is defined as: 
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The output SNR ( )
o

SNR is given by the following equation: 
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where ( )x n  is the original with length n , ( )r n is the added 

noise signal, and dx n is the denoised signal.  

 

In this study, ECG raw data preprocessing was 

implemented for DWT for noise removal. For each of the 

mother functions, such as haar, db4, db6, coif4, bior6.8, sym5, 

sym8, and bior3.5, we calculated SNR values (refer to Table 

1). A ratio exceeding 0 decibel (dB) or above 1:1 means more 

signal than noise. Table 1 shows ten records of QTDB: MIT-

BIH Normal Sinus Rhythm, in which the maximum SNR 

value was reached by bior6.8, with 15.53 dB. Hence, we 

implemented bior6.8 as the mother function for ECG noise 

removal.  

C. STACKED CONVBILSTM 

A total of 370 nodes, which was the beat-to-beat (start of P-

wave1 to start of P-wave2) was used for input. In our 

experiments based on QTDB, the maximum node of Pstart1 – 

Pstart2 is 370. If the beat of Pstart1 – Pstart2 is less than 370 nodes, 

we perform zero padding technique. This technique was done 

by adding the value 0 (zero) until the signal has a length of 370 

nodes. Every one-dimensional CNN filter kernels have size of 

3 with stride 1. The rectified linear unit (ReLU) function was 

adopted with four convolution layers (8, 16, 32, and 64 filters). 

By setting the negative value of the neuron to zero to 

TABLE I  

THE SNR VALUE OF QTDB: MIT-BIH NORMAL SINUS RHYTHM 

DATABASE 

Wavelet Mother Functions An average of SNR (all records) 

haar 14.762 

db4 15.474 

db6 15.502 

coif4 15.513 

bior6.8 15.537 

sym5 15.490 

sym8 15.506 

bior3.5 15.379 
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accelerate the training speed, the ReLU activation function 

eliminates redundancy. The proposed stacked ConvBiLSTM 

architecture can be seen in Fig. 1. In addition, Table 2 lists the 

details of the proposed model, which all the processes can be 

summarized as follow; 

• The ConvBiLSTM architecture consists of two main 

parts; the ECG waveform feature extraction with 

convolutional layers and BiLSTM classifier. 

• The input of ConvBiLSTM is the ECG waveform 

which bounded by a vector label indicating the class of 

each node. The class label is formed in vector with size 

of (370, 1); 

• The input timesteps with dimension (370, 1) are fed 

into the convolutional layer equipped with ReLU 

activation function. This process results feature maps 

with the size of 370, 64; 

• The features output from the last convolutional layer 

was passed into a BiLSTM layer. However, the 

features need to be adjusted so it can feed into the 

BiLSTM classifier. Hence, the features were set into 

370 timesteps and each timestep contains 64 features. 

• The BiLSTM architecture was constructed with 64 

BiLSTM cells and 512 nodes for each forward and 

backward direction (1024 nodes in total).  This 

architecture produces an output size of (370, 8) 

(including zero-padding).  

• This output contains the probability class for each 

node. One class that has the highest probability value 

is selected as the output prediction from the model.  

• At the end of Fig 1, a vector with size of (370, 1) was 

formed as the predicted class of each node, from start 

of P-wave1 to start of P-wave2  

We are also provided the informal language to represent 

pseudocode that can be seen in Algorithm. 1.  

For the experiments, this study generated the stacked 

ConvBiLSTM models for ECG waveform classification in 

two cases: (1) four-class classification comprised P-wave 

(Pstart – Pend), QRS complex (QRSstart – QRSend), T-wave (Tstart 

– Tend) and No-wave classification, and (2) seven-class 

classification. We compared the experiment of the ECG 

delineation in our previous work  [23], which limited to three 

main ECG waveform (P-wave, QRS-complex, T-wave and 

other waveforms belong to No-wave class) to this current 

study. The current study is not only focus to delineate the start 

and end of three main ECG waveforms points, but also the 

ECG segments, e.g., Pend – QRSstart (PR- segment), QRSend – 

Tstart (ST-segment), and Tend – Pstart. For the labeling process of 

four and seven-class cases, we used one-hot label encoding 

(categorical encoding) to represent each class using scikit-

learn Python library. Label encoding is a technique for 

handling categorical variables which assigned a unique 

integer. 

Each fine-tuned hyperparameters of the two cases is listed 

in Table 3. We fine-tuned followed by varying learning rates 

ranging from 10–1 to 10–5 (Models 1–5), and then the hidden 

layers number of LSTM (Models 6–9) for four-class 

classifications. The learning rate is the most vital 

hyperparameter, which controls how quickly the model is 

adapted to the learning problems. The selected learning rate 

based on the result performance is presented in Table 4. As we 

can see in Table 4, model 5 outperformed models 1-4 in 

accuracy, sensitivity, specificity, precision, and F1-score 

measurement.  The selected learning rate was implemented to 

fine-tune the hidden layer from one to five hidden layers. The 

 

FIGURE 1.  The proposed stacked ConvBiLSTM architecture for ECG waveform classification 
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best model of nine models for four-class classification cases 

that used unidirectional LSTM was compared with the 

bidirectional LSTM (Model 10). We also conducted the 

convolution layers and BiLSTM classifier for Model 11. For 

seven-class classification, we generated four models of 

stacked ConvBiLSTM structure. The difference between the 

hyperparameter models lies only in the batch size value (1, 2, 

4, and 8). 

4. PLATFORM 

We conducted an experiment on a workstation with one 

Intel(R) Core (TM) i7-10700K CPU@ 3.80Ghz processor 

with 32 GB RAM, and one NVIDIA GeForce RTX 2070 

Super 8GB GPU. All experiments were run on Windows 10 

Pro 64 Bit. We implemented our Python codes in the Spyder 

4.1.5 deep learning framework and libraries, i.e., tensorflow, 

keras, numpy, pandas, sklearn, matplotlib, and the native 

Python WFDB package. In our experiments, we compared the 

stacked ConvBiLSTM models using some metrics to evaluate 

the experimental performance: accuracy, sensitivity, 

specificity, precision, and F1-score. 

 
V. RESULTS AND DISCUSSION 

The ECG signal was segmented to achieve a fixed window 

size of 370 nodes, starting from Pstart1 to Pstart2 (start of P-wave1 

to start of P-wave2), which contained one heartbeat at a normal 

heart rate. The sample of one normal heartbeat can be 

presented in Fig. 2. A total of 8,572 beats comprised 7,715 

training and 857 validation sets. The model was trained over 

300 epochs, with a learning rate of 0.0001 and categorical 

cross entropy as the loss metric. For classification tasks, we 

TABLE II 

THE DESCRIPTION OF STACKED CONVBILSTM FEATURES 

Layer Input Nodes Filter Number Kernel Size/Pool Size Output Nodes Feature Interpretation 

Input 370,1 -  - ECG waveform for one beat 

Convolution 1 370 x1 8 3x1, stride 1 370 x 8 8 feature maps 

Convolution 2 370 x 8 16   3x1, stride 1 370 x 16 16 feature maps 

Convolution 3 370 x 16 32  

 

3x1, stride 1 370 x 32 32 feature maps 

Convolution 4 370 x 32 64 

 

3x1, stride 1 370 x 64 64 feature maps 

BiLSTM Input 370, 64 - - - Output feature from CNN, 

with 370 timesteps and 64 

features for each step.  

BiLSTM 370 x 64 - - 370 x 1024 Two direction feature data 

(512 nodes for both forward 

and backward directions) 

Fully 

Connected 

- - - 370 x 8 370 nodes containing seven-

class probability of ECG 

waveforms (include zero-

padding) 

Output - - - 370, 1 370 nodes containing the 

maximum probability of 

seven-class ECG waveforms 

(including zero-padding) 

 

ALGORITHM 1 CONVBILSTM 

Parameters: input x (370,1), output 𝑦𝑡 (370,8) 

1: For each epoch do: 

    # CNN Feature Extraction 

2: For each convolutional layer do: 

3:  for each samples in X do: 

4:          Calculate 𝑎𝑖𝑗𝑚 from X by Eq.1 

5:  End for 

 #Dimension of a is (370 – KernelSize + 1, FilterSize) 

6:  If 𝑎𝑖𝑗𝑚 length < 370 do: 

7:   Apply zero-pad to 𝑎𝑖𝑗𝑚 

   #Dimension of a is (370, FilterSize) 

8:  End if 

9: End for 

 # Dimension of a is (370,64)  

 #Bi-LSTM Classifier 

10: For each samples in a do: 

11:  Calculate Forward Pass of a by Eq.2 

12:  Calculate Backward Pass of a by Eq.3 

 # Dimension of the output a is (370,2*NeuronSize) 

13:  Calculate 𝑦𝑡 by Eq.4 

14: End for 

15: End for 

 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3092631, IEEE Access

 

7 
 

have implemented common performance metrics (accuracy, 

sensitivity, specificity, precision, and F1-score) that calculated 

and obtained based on validation (refer Tables 5 and 7) and 

testing dataset (Table 8).  

As stated before, this study generated a two-case model (refer 

to Table 3): four and seven-class of ECG waveform 

classification. Table 4 shows the accuracy, sensitivity, 

specificity, precision, and F1-score for each case. In four-class 

TABLE III 

THE FINE-TUNED HYPERPARAMETERS OF STACKED CONVBILSTM ARCHITECTURE FOR FOUR AND SEVEN-CLASS CLASSIFICATION 

Class Total Model Layers Learning Rate Hidden Layer Batch Size 

Four-class  1 LSTM 10-1 1 8 

 2 LSTM 10-2 1 8 

 3 LSTM 10-3 1 8 

 4 LSTM 10-4 1 8 

 5 LSTM 10-5 1 8 

 6 LSTM 10-5 2 8 

 7 LSTM 10-5 3 8 

 8 LSTM 10-5 4 8 

 9 LSTM 10-5 5 8 

 10 BiLSTM 10-5 1 8 

11 Convolution 8 x 3, 16 x 3, 32 x 3, 64 x 3, 

strides= 1 + ReLU - BiLSTM 
10-5 1 8 

Seven-class 1 Convolution 8 x 3, 16 x 3, 32 x 3, 64 x 3, 

strides= 1 + ReLU - BiLSTM 
10-5 1 1 

2 Convolution 8 x 3, 16 x 3, 32 x 3, 64 x 3, 

strides= 1 + ReLU - BiLSTM 
10-5 1 2 

3 Convolution 8 x 3, 16 x 3, 32 x 3, 64 x 3, 

strides= 1 + ReLU - BiLSTM 
10-5 1 4 

4 Convolution 8 x 3, 16 x 3, 32 x 3, 64 x 3, 

strides= 1 + ReLU - BiLSTM 
10-5

 1 8 

 

 TABLE IV 

THE AVERAGE PERFORMANCE OF FOUR AND SEVEN-CLASS ECG WAVEFORM CLASSIFICATION MODELS 

Class Total Model Average Performance (%) 

Accuracy Sensitivity Specificity Precision F1-score 

Four-class 1 24.78 25 75 1.45 2.75 

2 24.71 25 75 1.46 2.75 

3 99.43 97.96 99.6 98.19 98.08 

4 99.64 98.71 99.75 98.8 98.75 

5 99.35 97.47 99.52 98.77 97.62 

6 99.68 98.84 99.78 98.96 98.9 

7 99.69 98.84 99.78 99.04 98.94 

8 99.67 98.81 99.77 98.92 98.87 

9 99.69 98.93 99.78 98.98 98.96 

10 99.68 98.84 99.78 98.96 98.90 

11 99.69 98.91 99.79 99.01 98.96 

Seven-class 1 99.83 98.79 99.90 98.86 98.83 

2 99.83 98.82 99.90 98.86 98.84 

3 99.83 98.76 99.90 98.83 98.80 

4 99.82 98.75 99.90 98.80 98.78 
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classification, we obtained the worst performance in models 1 

and 2, in which the models used a learning rate 10−1. In order 

to enhance the performance, we tried a smaller learning rate 

from 10−3 to 10−5. Consequently, the performances increased 

in terms of accuracy, sensitivity, specificity, precision, and F1 

score. All performances were achieved above 97.47% 

(Models 2–5). Still, to get a better performance, we also fine-

tuned the models with different hidden layers, from one to five 

layers (Models 6–9). The performances obtained were above 

98.81%. From the results, it can be concluded that the learning 

rate and hidden layers affected the performance of ECG 

waveform classification. Although smaller learning rates 

required more training epochs, but it can give much better 

performance results. It allowed the model to learn a more 

optimal or even globally optimal set of weights.  

A unidirectional LSTM layer was implemented for a four-

class classification model. Among the models, the best model 

was also compared to the BiLSTM and stacked ConvBiLSTM 

models, which were represented in Models 10 and 11, 

respectively. Although the gap results from both models did 

not differ significantly, overall, Model 11 outperformed 

Model 10 in all metrics performance. We employed all fine-

tuned hyperparameters for the seven-class classification 

model using this model. Besides learning rate and hidden 

layers, we also fine-tuned a batch size (1, 2, and 4). From 

Models 1–4, the results’ accuracy and specificity performance 
did not differ considerably, around 99.83% and 99.90%, 

respectively. The delineation result of each model is almost 

the same as the ecgpuwave annotation (refer to Fig. 3). 

However, Model 2 achieved the highest sensitivity and F1-

score: 98.82% and 98.84%. Overall, Model 2 had the best 

performance among other models, with an average of 99.83% 

accuracy, 98.82% sensitivity, 99.90% specificity, 98.85% 

precision, and 98.84% F1-score. Therefore, Model 2 was 

selected as the best model for ECG waveform classification, 

with the average result shown in Table 5. From Model 2, we 

obtained the highest performance of QRS complex. It can be 

stated that the selected models can detect QRS complex more 

accurately and faster. Our model could outperform some 

conventional methods for QRS complex detection, such as 

low-pass differentiator [42], Hilbert transform [43], multiple 

higher order moments [33], Phasor transform [34], etc. 

In the experiment, we generated the BiLSTM model 

without the convolution layers of CNNs for seven-class 

classification. The results were quite decreased in accuracy, 

sensitivity, specificity, precision, and F1-score (see Table 6). 

As we suggested, the convolution layers will improve the 

performance results, showing the locations and strength of a 

 

FIGURE 2.  The sample of ECG beat at normal heart rate from Pstart1 – 
Pstart2.  

  

(a) Model 1 (b) Model 2 

 

 

(c) Model 3 (d) Model 4 

FIGURE 3.  The results comparison ECG waveform of ecgpuwave and stacked ConvBiLSTM models for seven-class case 
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detected function in an input due to the same filter to an input 

results in a map of activations (feature map). Its ability insures 

an automatic learning of many filters in parallel specific to a 

training dataset. In the experiments, the convolution layers 

contained a filter set whose parameters were required to be 

learned. To compute an activation map made of neurons, each 

filter was convoluted with the input volume. 

The proposed stacked ConvBiLSTM was also trained in 

some abnormal databases that contain the several heart 

disorders, such as MIT-BIH Arrhythmia, MIT-BIH long-term, 

MIT-BIH ST change, MIT-BIH supraventricular arrhythmia, 

and European ST-T (refer to Fig. 4). For MIT-BIH arrhythmia, 

the average accuracy, sensitivity, specificity, precision, and 

F1-score exceeded 93%. The database is more successful in 

detecting P-wave (blue bar) than QRS complex and T-wave. 

It can be happened due to the arrhythmia is associated with 

prolongation P-wave was reflected the atrial conduction. 

Thereof, our proposed model could be implemented in some 

arrhythmia cases, such as AF. AF can be related to irregular 

supraventricular tachycardia (SVT) without P-wave and 

irregularly irregular QRS complex [35]. 

The performance results decreased when it was trained on 

MIT-BIH long-term, which the worst case was around 85% 

sensitivity for Qend-Tstart (orange bar) class. The average 

performance exceeded 94.85% for accuracy, sensitivity, 

specificity, precision, and F1-score. The performance results 

of MIT-BIH ST change, MIT-BIH supraventricular 

arrhythmia, and European ST-T databases achieved good 

results and were above 99.62% accuracy. The worst case in 

the MIT-BIH ST change database was Pend-Qstart or PR-

segment (yellow bar) with only 93.81% precision. This also 

applied to MIT-BIH supraventricular arrhythmia and 

European ST-T databases; the precision of the PR segment 

was only 94.67% and 94.30%, respectively. A moderately 

common ECG sign associated with clinically silent pericardial 

effusion was PR-segment depression, and it was an ECG 

predictor of inflammatory pericardial involvement. Changes 

in the PR-segment are relative to the baseline formed by the 

T-P segment. 

As a result of average performance, the selected model was 

well trained on MIT-BIH ST change, with all performances 

exceeding 97.54% (refer to Table 7). Unfortunately, for MIT-

BIH long-term, the sensitivity was only achieved at 94.85%. 

The other performances were below other abnormal databases. 

A too long signal recording could cause a normal T-wave to 

overlap with other T-wave classes: inverted, only upwards, 

only downwards, biphasic negative-positive, or biphasic 

positive-negative. Due to the raw data condition, in which the 

two signals differed, the long-term signal had more noise 

compared to the ST change.  

In order to test the generalization of proposed model, the 

stacked ConvBiLSTM was tested on unseen data that were 

manually annotated by experts. Unseen data is a set of testing 

data that is never seen or tested before. If the model produces 

a good generalization, then it may be able to make a correct 

prediction in unseen data. Although the QT database was 

provided to two experts for manual annotation of the ECG 

waveform classification, only one expert was used as unseen 

data testing in this study, i.e., record (.q1c). When the 

proposed stacked ConvBiLSTM was tested in all records 

(.q1c), the results were decreased and obtained an average of 

88.09% sensitivity, 86.62% precision, and 86.65% F1-score 

(refer to Table 8). Overall, for the QRS complex, we obtained 

a poor performance with the worst class classification of 

69.13% precision for Qend-Tstart (ST-segment). It can be 

affected by the elevation between depolarization and 

TABLE V 

THE PERFORMANCE OF THE SELECTED MODEL FOR SEVEN-CLASS ECG WAVEFORM CLASSIFICATION 

Model Metrics 

Class Performance (%) 

Average Pstart- 

Pend 

Pend-

Qstart 

Qstart-

Rpeak 

Rpeak-

Qend 

Qend-

Tstart 

Tstart- 

Tend 

Tend-

Pstart 

Proposed 

Accuracy 99.89 99.82 99.93 99.97 99.69 99.61 99.90 99.83 

Sensitivity 98.96 98.29 98.50 99.64 97.94 98.58 99.81 98.82 

Specificity 99.94 99.89 99.97 99.98 99.85 99.76 99.93 99.90 

Precision 99.09 97.81 99.10 99.52 98.32 98.37 99.80 98.86 

F1-score 99.03 98.05 98.80 99.58 98.13 98.48 99.80 98.84 

 

TABLE VI 

THE COMPARISON RESULTS OF THE SELECTED MODEL (MODEL 2) WITHOUT THE STACKED CONVOLUTIONAL LAYERS  

Model Performance (%) 

Accuracy Sensitivity Specificity Precision F1-score 

BiLSTM 99.81 98.68 99.90 98.72 98.70 

Stacked ConvBiLSTM 99.83 98.82 99.90 98.86 98.84 
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repolarization of ventricles of ST-segment. Unfortunately, for 

this study, we didn’t concern of a displacement of ST segment.  

Different to ecgpuwave annotation, all the records of the 

manually annotated by experts only provides between 30 and 

100 representative beats, not in all length of records. Only 

normal heart rate beats were annotated. In records with 

significant QRS morphology, around 20 beats of each non-

dominant morphology were also annotated. Therefore, the 

proposed model obtained the poor performance for ST-

segment classification.  

Some previous studies has adopted record .q1c using deep 

learning algorithm [4][44]. Abrishami et al., [4] explored P-

wave detection using fully-connected networks, LeNet-style 

convolutional networks (ConvNet) with dropout, and LeNet-

style ConvNet without dropout. Costandy et al., [44] had also 

proposed a fully convolutional networks with the use of 

segmentation via U-Net architecture. However, they 

experimented the ECG signals that converted to two-

dimensional (2-D) ECG images. Our proposed stacked 

ConvBiLSTM outperformed the performance results of P-

wave detection of previous mention studies with 99.31% 

accuracy (refer Table 8). 

The difference in ECG waveform results annotated by 

experts and the our proposed stacked ConvBiLSTM are 

shown in Fig. 5. A green block color (Qend–Tstart) was 

misclassified as an orange block color (Tstart–Tend). Owing to 

the problem, the selected stacked ConvBiLSTM model had 

poor performance. However, this could happen because the 

record (.q1c) annotations of QT Database were audited to 

correct the inconsistencies detected (e.g., misplaced or missing 

annotations) and changed to the regular annotation symbols. 

The manual annotations were made by experts using a SUN 

workstation with waveform analyzer, viewer, and editor 

(WAVE) tools. The tools still have variance noises, such as 

baseline wander, electrode motion artifact, and muscle noise, 

which can affect the testing performance of experts. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

FIGURE 4.  The results performance of seven-class classification for abnormal database 
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Unfortunately, this study was unconcerned about the 

aforementioned noises. Still, the selected model of stacked 

ConvBiLSTM that used ecgpuwave annotations still has many 

frictions, especially for P- and T-wave classification. 

In this study, we have compared ECG waveform 

classification between our proposed model and other DL 

techniques such as encoder-decoder, CNNs, and LSTM (refer 

to Table 9). The previous research has classified the main ECG 

waveform, from Pstart - Tend. Different to them, we added the 

isoelectric line from Tend – Pstart2. In our previous work [23], 

we conducted a BiLSTM model for P-wave, QRS complex, 

T-wave, and isoelectric lines. We achieved a good 

performance with an average accuracy, sensitivity, and F1-

score of 99.64%, 98.74%, and 98.78%, respectively. 

However, to achieve greater generalization than we stated in 

our previous study [23], we had to add automatic feature 

extraction.  

Although the results look promising, there are some 

limitations to our study: 

• To generate the proposed model, we only used the 

ground truths or label annotated by the ecgpuwave due 

to the limitation of manual annotation by an expert.  

• The preprocessing steps for ECG delineation still need 

adjustment to differ ECG frequency sampling, leads, and 

various noises.  

• The process of ECG delineation, we only concerned to 

determine the start and end of ECG waveform without 

considering the specific heart disorders.  

• The proposed model was only validated by a limited 

expert. We did not validate the proposed model in other 

ECG delineation databases; more datasets could achieve 

greater generalization. 

VI. CONCLUSION 

To provide a heart diagnosis, ECG wave information has 

become a gold standard. Heart wave formation gives some 

fiducial points to represent the abnormality, such as P-wave, 

QRS complex, and T-wave. Automated ECG delineation is a 

crucial yet insufficiently addressed area in automated heart 

diagnostics. This study explored automated delineation 

without using the fiducial point, but it directly segmented beat-

to-beat from ECG waveform signal recording. We proposed 

the stacked DL method by synergizing CNNs for spatial 

feature extraction and BiLSTM to classify each sample of the 

ECG waveform into one of the seven-class ECG waveform 

classification. Utilizing such feature extractors addresses the 

TABLE VII 

THE RESULTS PERFORMANCE OF THE ABNORMAL DATABASE FROM MODEL 2 WITH STACKED CONVBILSTM ARCHITECTURE 

Database Average Performance (%) 

Accuracy Sensitivity Specificity Precision F1-score 

MIT-BIH Arrhythmia 99.63 96.94 99.80 97.07 97.00 

MIT-BIH Long-Term 99.09 94.85 99.47 95.22 95.03 

MIT-BIH ST Change 99.74 97.56 99.86 97.54 97.55 

MIT-BIH Supraventricular 

Arrhythmia 
99.62 97.17 99.79 97.21 97.19 

European ST-T 99.65 97.14 99.81 97.21 97.17 

 

TABLE VIII 

THE PERFORMANCE EVALUATION OF UNSEEN DATA TESTING (EXPERT/.Q1C) 

Metrics 

Performance 

(%) 

Class performance (%) Average 

Pstart- Pend Pend-Qstart 
Qstart-

Rpeak 

Rpeak-

Qend 

Qend-

Tstart 
Tstart- Tend Tend-Pstart 

Accuracy 99.31 98.67 98.47 98.67 96.51 96.44 99.46 98.22 

Sensitivity 90.87 89.02 73.89 86.18 98.40 78.93 99.38 88.09 

Specificity 99.95 99.23 99.44 99.01 96.35 99.72 99.50 99.03 

Precision 99.28 86.91 83.68 70.25 69.13 98.14 98.91 86.62 

F1-score 94.89 87.95 78.48 77.40 81.21 87.49 99.15 86.65 

 

 

FIGURE 5.  The sample results of manually annotated by expert and 
proposed stacked ConvBiLSTM model 
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various heart wave formations that can be easily recognized 

for an accurate diagnosis. Feature vectors generated by the 

CNNs are the input timesteps to the sequence learner 

architecture through a time distributed layer in the BiLSTM 

architecture. BiLSTM captured the temporal attributes of ECG 

signals and classified them to produce an accurate result. Our 

proposed stacked model showed outstanding results, with all 

average performances ranging of 99.83% accuracy, 98.82% 

sensitivity, 99.90% specificity, 98.86% precision, and 98.84% 

F1 score. Our study demonstrated that the stacked 

ConvBiLSTM model is a powerful network able to capture the 

temporal attribute of the ECG signal using beat-to-beat as 

local features to yield ambitious results. The ability to 

segment, identify, and classify heart waveforms augments the 

possibility of impacting future research in cardiology.  
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