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Quantum error correction (QEC) aims to protect logical qubits from noises by using
theredundancy of alarge Hilbert space, which allows errors to be detected and
corrected inreal time'. Inmost QEC codes?®, alogical qubitis encoded in some

discrete variables, for example photon numbers, so that the encoded quantum
information can be unambiguously extracted after processing. Over the past decade,
repetitive QEC has been demonstrated with various discrete-variable-encoded
scenarios’ . However, extending the lifetimes of thus-encoded logical qubits beyond
the best available physical qubit still remains elusive, which represents a break-even
point for judging the practical usefulness of QEC. Here we demonstrate a QEC
procedure in a circuit quantum electrodynamics architecture'®, where the logical
qubitis binomially encoded in photon-number states of a microwave cavity®,
dispersively coupled to an auxiliary superconducting qubit. By applying a pulse
featuring a tailored frequency comb to the auxiliary qubit, we can repetitively extract
the error syndrome with high fidelity and perform error correction with feedback
control accordingly, thereby exceeding the break-even point by about 16% lifetime
enhancement. Our work illustrates the potential of hardware-efficient discrete-
variable encodings for fault-tolerant quantum computation®.

One of the main obstacles for building aquantum computer is environ-
mentallyinduced decoherence, which destroys the quantuminforma-
tion stored in the qubits. The errors caused by decoherence can be
corrected by repetitive application of a quantum error correction (QEC)
procedure, whereby the logical qubitis encoded ina high-dimensional
Hilbert space, such that differenterrors project the systeminto differ-
ent orthogonal subspaces and thus can be unambiguously identified
and corrected without disturbing the stored quantum information.
In conventional QEC schemes'?, the code words of a logical qubit are
formed by two highly symmetric entangled states of several physical
qubits encoded with some discrete variables. The past two decades
have witnessed remarkable advancesin experimental demonstrations
of thiskind of QEC code in different systems, including nuclear spins®®,
nitrogen-vacancy centresin diamond'®%, trappedions”* %, photonic
qubits?, silicon spin qubits® and superconducting circuits'> 6267,
However, in these experiments, the lifetime of the logical qubit still
needs to be greatly extended to reach that of the best available physi-
cal component, whichis regarded as the break-even point for judging
whether or not a QEC code can benefit quantum information storage
and processing.

Analternative QEC encoding scheme is to use the large space of an
oscillator, which can be used to encode either a continuous-variable

oradiscrete-variable qubit?® 2. Both types of code can tolerate errors
due toloss and gain of energy quanta, enabling QEC to be performed
in a hardware-efficient way. Circuit quantum electrodynamics (QED)
systems!® represent an ideal platform for realizing such encoding
schemes: the break-even point has been exceeded in two breakthrough
experiments**?* by distributing the quantum information over an
infinite-dimensional Hilbert space of a continuous-variable-encoded
photonic qubit, but the code words of this photonic qubit are not
strictly orthogonal. This inherent restriction can be overcome with
discrete-variable encoding schemes, whereby the code words of a
logical qubit are encoded with mutually orthogonal Fock states of an
oscillator. This feature, together with their intrinsic compatibility with
error-correctable gates®* and their usefulnessinlogically connecting
modulesinaquantum network®, makes such discrete-variable qubits
promising in fault-tolerant quantum computation. These advantages
canbeturnedinto practical benefitsinreal quantuminformation pro-
cessing only when the lifetime of the encoded logical qubitsis extended
beyond the break-even point, which, however, remains an elusive result,
although enduring efforts have been made towards this goal'*2,
Here, we demonstrate the exceeding of the QEC break-even point by
real-time feedback correction for a discrete-variable photonic qubit
inamicrowave cavity, whose code words remain mutually orthogonal
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Feedback error correction
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Fig.1|Schematic of the QEC procedure with the lowest-order binomially
encoded logical qubit. The auxiliary qubitis firstencoded to the logical qubit
inan oscillator with {|0;) = (|0} + [4))/4/2, |1,) = |2)}. Once a single-photon-jump
erroroccurs, thelogical qubit state falls out of the code space to the error space
withthebasisstates:{|0g) = 3), |1p) = |1)}. After repetitive error detecting and

and canbe unambiguously discriminated. The dominant error, single
photonloss, of the logical qubit is mapped to the state of aJosephson
junction-based nonlinear oscillator that is dispersively coupled to the
cavity and serves as an auxiliary qubit, realized with a continuous pulse
involving an ingeniously tailored comb of frequency components.
As the driving frequencies aim at the error space where a photon loss
eventoccurs, perturbations on the logical qubitare highly suppressed
whenitremainsinthe encodedlogical space. Another intrinsicadvan-
tage of this error syndrome detection is that the continuous driving
protects the system from the auxiliary qubit’s dephasing noise. We
demonstrate this procedure with the lowest-order binomial code and
extend the stored quantum information lifetime 16% longer than the
best physical qubit, encoded inthe two lowest Fock states and referred
to asthe Fock qubit. A more important characteristic associated with
thiserror-detecting procedureis that neither the logical nor the error
space needs to have a definite parity, which allows the implementation
of QEC codes that can tolerate losses of more than one photon.

Thekey stages of a QEC procedure are encoding the quantum infor-
mationto the logical qubit from the auxiliary qubit, the error syndrome
measurement, the real-time error correction of the system depending
onthe measurementoutput and the decoding process toread out the
quantum information stored in the logical qubit. Our logical qubit is
realized in a three-dimensional microwave cavity, and the dominant
decoherence to combat is the excitation loss error. The logical qubit
is encoded with a binomial code®, with the code words:

10 =(l0) +4))/2,
1) =12),

where thenumber in each ket denotes the photon number inthe cavity.
The binomial code is a typical stabilizer QEC code: when the
single-photon-loss error occurs, the quantuminformationis projected
into the error space spanned by {|0g) = |3), |1p) = |1)}, with the photon
number parity acting as the error syndrome to distinguish these two
spaces. A general QEC protection of quantum information stored in
the bosonic system is illustrated in Fig. 1. After correctly measuring
the photon number parity and applying the corresponding correction
operationsinreal time, quantum information stored in the cavity can
berecovered.

The experiments are performed with a circuit QED architecture’®,
where a superconducting transmon qubit® as an auxiliary qubit is
dispersively coupled to a three-dimensional microwave cavity*® .

correcting, thelogical qubitstate is protected against single-photon-jump
errors. Finally, quantum state is decoded back to the auxiliary qubit for a final
state characterization. The cardinal pointstatesin the Bloch spheres of the code
and error spacesare defined as |+Z,g) = [0, ), [+X ) = (10, + IL.¢)/~/2 and
[+Y. e = (100 +1 L gp)/~/2, respectively.

The auxiliary qubit has an energy relaxation time of about 98 ps
and a pure dephasing time of 968 pis, whereas the storage cavity has
a single-photon lifetime of 578 ps (corresponding to a decay rate
k21 =0.28 kHz) and a pure dephasing time of 4.4 ms. The univer-
sal control of the multiple photon states of the cavity can be realized
by using the anharmonicity of the auxiliary qubit, and thus the key
stages of the QEC procedure, as illustrated in Fig. 1, can be achieved
by encoding the logical qubit in the high-dimensional Fock spaces of
the bosonic mode.

Ourroutetowards the break-evenpointsinthe QECis twofold: improv-
ing both the operation fidelity to the logical qubit and the error syn-
drome measurement fidelity. The first goal is achieved by using a
tantalum transmon qubit with high coherence**** and an optimal quan-
tum control technique** with carefully calibrated system parameters
(Methods). We attempt the second goal by an ingenious scheme of
projection measurement of a selected collection of Fock states. The
principle of the schemeisillustrated in Fig. 2a, where a classical micro-
wave pulse containing 2M frequency components is applied on the
auxiliary qubittoread out the Fock states. Because the frequency of the
auxiliary qubit depends onthe photon number n (see Methods for more
details), error syndrome detection is achieved by mapping the even
parity to the auxiliary qubit ground state |g) (and the odd parity to the
excited state |e)) inaquantumnon-demolitionmanner. Thisapproach
holds potential advantages of more flexible choices of error spaces and
less sensitivity to auxiliary qubit damping and dephasing errors because
theauxiliary qubitexcitationis pronounced only when loss error occurs.

To characterize our syndrome measurement, the cavity is encoded to
the six cardinal point states in the Bloch spheres of both the code and
error spaces on the basis of the lowest-order binomial code words. The
measured results of the cavity photon number parities are presented
in Fig. 2b and show an average detection error of 1.1% and 2.5% for the
cavity states in the code and error spaces, respectively. The encoding
of the cavity, one of the most elementary processes of QEC, is further
verified by the Wigner function with a high fidelity of 0.95, as shown
inFig.2c.

Onthebasis of the above techniques, the QEC process of the binomial
code canbeimplemented following the procedure in Fig. 1. However,
practicalimperfections limit the QEC performance: (1) during awaiting
time of ¢,, that is, an idle process, there is a probability of about
2(k(t,)*exp(-2kt,) ofatwo-photon-loss error, whichis undetectable
for thislowest-order binomial code. (2) Owing to the non-commutativity
of the single-photon-loss error and the self-Kerr interaction of the
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cavity, thereisalarge dephasing effect of the logical qubitinduced by
the unpredictable photonloss event, thus destroying the stored quan-
tum information. (3) Quantum recovery operations are imperfect.
Itisworthnoting that there is alogical state distortion evenif no pho-
ton loss is detected®. Strategies to mitigate the above imperfections
are introduced, taking into account the whole system: choose an

a Encode and decode (Fx =0.96) b

Without QEC (F, = 0.73)

4 With one-layer QEC (F7 =0.87) d with two-layer QEC (Fx =0.79)

0 02 04 06 0.8 1.0

Fig.3|Performance of repetitive QEC operations.a-d, Bar charts of thereal
parts of the process matrices for an encode and decode process (a), awaiting
time of about 105 ps without QEC (b), a cycle time of about 90 ps with one-
layer QEC operation (c) and acycle time of about 180 ps with two-layer QEC
operation (d). The numbersin brackets represent the process fidelities
foreachcase. e, Process fidelity decays as a function of time for different
encodings. Error bars correspondto1s.d. of several repeated measurements.
The process fidelities for both the corrected binomial code with one-layer QEC
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Fig.2|Frequency comb control to measure the error syndrome. a, Frequency
comb controlis realized by mapping the photon number parity of the logical
state to the auxiliary qubit state by applying a microwave pulse with multi-
frequency components to the auxiliary qubit. Two components match the
auxiliary qubit frequencies when the logical qubitisin the error space and other
components are chosen symmetrically for the code space to eliminate the
off-resonantdriving effect on the logical states. b, Bar chart of the measured
photon number parities for the six cardinal point states on the Bloch spheres of
thelogical qubitinthe codeand errorspaces with the frequency comb parity
measurement. Solid black frames correspond to the ideal parities + 1for the
logical statesinthe codeand error spaces. The numbers represent the average
parity detection errorsinthese two spaces. ¢, Measured Wigner function of the
cavity state after encoding thelogical qubitinthe |+X, ) state.d,e, Measured
Wigner functions of the same cavity state after awaiting time of about 90 ps
without (d) and with (e) asingle QEC operation. The numbersin these Wigner
functionsrepresent the corresponding state fidelities.

optimal waiting time, use a two-layer QEC procedure” to avoid unnec-
essary operation errorsintroduced by the error corrections and adopt
the photon-number-resolved a.c. Stark shift (PASS) method* during
idle operations to suppress photon-jump-error-induced decoherence
inthe code space (see Supplementary Information for more details).
The measured Wigner functions of the cavity states after asingle QEC
cycle (about 90 ps of waiting) without and with performing the error
correction operationare shownin Fig. 2d,e, with state fidelities of 0.81
and 0.88, respectively.

The performance of the QEC is benchmarked by the process fidelity
F,, which is defined as the trace of XeXigeay Where X, denotes the
experimentally measured process matrix for the QEC process and ¥igea
isthe ideal process matrix for anidentity operation. InFig. 3a, we pre-
sent the measured process matrix for the encoding and decoding pro-
cess only, which indicates a reference fidelity of 0.96. In the absence
of a QEC operation after a waiting time of 105 ps, the process fidelity
isreduced to a value of 0.73 because of the inability to protect the
quantuminformationstoredinthe cavity fromthe single-photon-loss

1.0 i ¢ Uncorrected transmon qubit
\ < Uncorrected binomial code
0.9 \k\ B Uncorrected Fock 0,1 encoding
°<> AN A Corrected binomial code with one-layer QEC
0.8 }\ @ Corrected binomial code with two-layer QEC
Qo ¢
> 0.7
3 § o
“é 0.6 . ®
S ! \QK:Q
< <
T 05 1) \;\ T=805+ 18 us
Vo T
> \ﬁ\ \:755r9us
0.4 00 % " :TL\\;\‘}:
N = -~
% e =694+ 10 s ‘34' F“I
0.3 (N >4
(23 N¢
0.2
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time (ms)

(red triangles) and two-layer QEC (blue circles) exhibit slow decay, compared
withtheuncorrected Fock states{|0), |1)} encoding (black squares), which
defines the break-even pointin this system. The corrected binomial code with
two-layer QEC offers animprovement over the break-even point by a factor of
1.2,and also surpasses the uncorrected binomial code (yellow stars) by afactor
of2.9and theuncorrected transmon qubit (green diamonds) by a factor of 8.8.
Allcurves arefitted using F, = Ae™"+ 0.25to extract the lifetimes T of the
corresponding encodings. Uncertainties on rare obtained from the fittings.



Table 1| Error budget for the one-layer and two-layer QEC
processes. The predicted lifetime calculated from the error
model agrees well with the measured lifetimes

Error source One-layer QEC Two-layer QEC
Intrinsic error® 6.4% 12.4%
Detection error 1.4% 2.8%

Recovery error 2.9% 3.8%

Thermal error 0.8% 11%

Total error 11.5% 20.1%
Predicted lifetime 757 us 824 us
Measured lifetime 755+9us 805+18us

*These errors are estimated from numerical simulations.

error, with the corresponding measured process matrix shown in
Fig.3b. When using the QEC operation, the process fidelity isimproved
because of the protection from the single-photon-loss error, with the
process matrices for the one-layer and two-layer QECs shown in
Fig.3c,d, respectively.

The most important benchmark to characterize the performance
of a QEC procedure is the gain in the lifetime of the protected logical
qubit against that of the constituent element with the longest lifetime.
For the three-dimensional circuit QED device, the best physical qubit
isencoded with the two lowest photon-number states{|0), |1)}, which
is more robust against decoherence effects than any other encoded
photonic qubit without QEC protection. To quantitatively show the
advantage of our QEC scheme, in Fig. 3e we present the measured pro-
cess fidelities of the corrected binomial code as a function of the stor-
age time with the repetitive one-layer (red triangles) and two-layer
(blue circles) QECs, as well asthose for the unprotected binomial code
(yellowstars), the transmon qubit (green diamonds) and the Fock qubit
(black squares) for comparison.

All curves are fitted according to the function F, = Ae™/" + 0.25, with
T corresponding to the lifetime of the specific encoding and A being
afitting parameter. The offset in the fitting function is fixed to 0.25,
implying a complete loss of information at the final time. As aresult,
the lifetime 7 for the corrected binomial code with one-layer QEC is
improved by about 8.3 times compared with the uncorrected transmon
qubitand 2.8 times compared with the uncorrected binomial code. In
particular, risimproved to about 1.1times that of the uncorrected Fock
qubitencoding, thatis, exceeding the break-even point of QEC in this
system. Using the two-layer QEC scheme, the corresponding lifetime
tofthe logical qubit isimproved to about 8.8 times that of the uncor-
rected transmon qubit, 2.9 times that of the uncorrected binomial code
and 1.2 times that of the break-even point. These results demonstrate
that the quantum information stored in the cavity with multiphoton
binomial encoding canindeed be preserved and protected from photon
loss errors by means of repetitive QEC operations.

Table1shows an overall error analysis for the one-layer and two-layer
QEC experiments. The error sources are divided into four parts: the
intrinsic errors for the lowest-order binomial code, the error detection
errors, the recovery operation errors and the auxiliary qubit thermal
excitationerrors duringthe QEC cycle. These errors can be estimated
from either the numerical simulations or the measurement results of
individual calibration experiments (Supplementary Information). The
predicted lifetimes 7 for the QEC experiments, calculated by
7=-T,/In(1-¢€)", with T,, and € being the total duration and the
weighted total error per QEC cycle, are consistent with those in our
QEC experiments.

Inconclusion, we experimentally demonstrate the prolonged coher-
ence time of quantum information encoded with discrete variables
inabosonic mode by repetitive QEC. The break-even point has been

reached by carefully designing the QEC procedure to balance the fidel-
ity losses due toundetectable errors during the idle process, and error
detectionand correction operations. At present, the maininfidelity is
contributed by the two-photon-loss error that is beyond the ability of
our current QEC code, but can be corrected by higher-order binomial
codes®. Our frequency comb method could be used to measure the
generalized photon number parity of such codes, enabling detection
and correction of both single-photon-loss and two-photon-loss errors.
Ourwork thus represents a key step towards scalable quantum comput-
ingand provides a practical guide for system optimization of quantum
control and the design of the QEC procedure for future applications
of logical qubits.
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Methods

Experimental device and set-up

The circuit QED device in our experiment uses a hybrid three-
dimensional-planar architecture*® and consists of a superconducting
transmon qubit®, a coaxial stub cavity and a Purcell-filtered stripline
readout resonator (see Fig. S1in the Supplementary Information).
The high-Q cavity is designed with a cylindrical re-entrant quarter-
wave transmission line resonator*, and machined from high-
purity (99.9995%) aluminium. A horizontal tunnel is used to house a
sapphire chip, on which the antenna pads of the transmon qubit and
thestriplines of the low-Q readout resonator are patterned with athin
tantalum film***3, The single Al-AlO,-Al trilayer Josephson junction of
the transmon qubit is fabricated using a double-angle evaporation
technique.

The fast feedback control isimplemented with Zurich Instruments
UHFQA and HDAWG, which are connected to each other through a
digital input/output (DIO) link cable for real-time feedback control.
The UHFQA generates the readout pulses, acquires the down-converted
transmitted readout signals for demodulation and discrimination
in hardware, and sends the digitized readout results to the HDAWG
through the DIO link cable in real time. The HDAWG plays different
predefined waveforms conditional on the received readout results from
the DIO link cable. The feedback latency, defined as the time interval
betweensending out the last point of the readout pulse from the UHFQA
and sending out the first point of the control pulse from the HDAWG,
isabout 511 nsinour set-up, which also includes the time for the signal
to travel through the experimental circuitry.

Parity mapping

The parity mapping procedure in the QEC experiment isimplemented
by applying a classical microwave pulse containing 2M (M =11in our
experiment) frequency components on the auxiliary qubit, with the
system dynamics governed by the Hamiltonian:

n=1

m
H/h:—)(aTale)(e|+Q{ Y e""s"‘le)(g|+h.c} 1)

inthe interaction picture. Here, |e) denotes the excited state and |g)
denotes the ground state of the auxiliary qubit, a'is the creation oper-
ator and a is the annihilation operator of the photonic field in the
cavity, yis the auxiliary qubit’s frequency shiftinduced per photon as
aresult of its dispersive coupling, 6, is the frequency detuning of the
n-th driving component with a Rabi frequency of Q and h.c. denotes
the Hermitian conjugate. With the choice of the drive frequency detun-
ing8,=(2M-2n - 1)y, the auxiliary qubitis resonantly drivenwhen the
cavity has2m +1photonswithm=0,1, ..M.

For the cavity inthe code space, the auxiliary qubit is off-resonantly
driven by the comb pulse. For the two-photon state in the cavity, the
qubit’s transition |g) © |e) is driven by M pairs of frequency compo-
nents with symmetric detunings, resulting in a qubit state revival ata
time of T= km/y with kbeing an integer. Similarly, for the zero-photon
and four-photon states in the cavity, the qubit is driven by M -1 pairs
of symmetric components and two unpaired components, whose
effects canbeignored under the condition of 2Mx > Q. Therefore, the
auxiliary qubit also makes acyclicevolution at 7= ktt/yand returns to
theinitial ground state when the cavity isin the code space.

For the cavity in the error space with one-photon and three-photon
states, the auxiliary qubit’s transition |g) ¢ |e) isdriven by aresonant
frequency component, M - 1pairs of symmetric frequency components
and an unpaired off-resonant component. Under the same condition
of 2My > Q, we can neglect the off-resonant effect of the unpaired com-
ponents, and the auxiliary qubit will evolve from the initial ground
state to the excited state at T = kmt/y, with k being an integer when

choosingthe driveamplitude Q = 1/2T. In our experiment, Q = x/4,and
T=m/x for an optimized parity mapping time (see section Il in the
Supplementary Information).

Therefore, this frequency comb pulse achieves error syndrome
detection by mapping the even parity of the cavity state to the auxil-
iary qubit |g) state (and the odd parity to the |e) state) in aquantum
non-demolition manner. This parity mapping process can be intui-
tively illustrated by simultaneously applying two conditional Tt rota-
tions to the auxiliary qubit to flip the qubit state to the excited state
associated with the cavity’s one-photon and three-photon states, thus
resulting in a minimum perturbation to the cavity states in the code
space.

Strategies for system optimization

The PASS method® is adopted to mitigate the photon-loss-induced
dephasingeffectofthelogical codewords,duetothe non-commutativity
oftheannihilation operationand the self-Kerr term. In our experiment,
we apply an off-resonant drive pulse with a frequency detuning of
about -3.5yonthe auxiliary qubit during theidle operation, resulting
in different phase accumulation rates f, for Fock state |n) with
n=1,2,3,4relativetothevacuumstate. By choosing an optimal ampli-
tude of the detuned drive, we could achieve the error-transparent
condition® of (f, - f,) - (f, - f,) = O to mitigate the dephasing effect of
the logical qubit (Supplementary Fig. 4).

To balance the operation errors, the no-parity-jump backaction
errors and the photon-loss errors, we use a two-layer QEC procedure”
to improve the QEC performance (see Fig. S6 in the Supplementary
Information). In our QEC experiment, there are two bottom layersina
single QEC cycle: thefirstlayer conserves the photon number parityin
the deformed code space and the second layer recovers the quantum
informationin the code space.

The waiting time of the idle operationineach QEC cycleis selected on
thebasis of atrade-offbetween the uncorrected errors occurring during
this time and the operation errors occurring during the error syndrome
measurements and recovery operations. On the one hand, the longer
the waiting time, the larger the probability of the two-photon-loss
event occurring during this time, which cannot be detected by the
lowest-order binomial code. On the other hand, the more frequent
the error detection, the more likely it is that the photon-loss errors
occur during the detections and corrections. We calculate the QEC
lifetime as a function of the waiting time from numerical simulations
and choose an optimal waiting time of about 90 ps in our QEC experi-
ment (Supplementary Fig. 8).

Dataavailability

Source datafor Figs.2and 3 areavailable with the paper. All other data
relevant to this study are available from the corresponding author
uponreasonable request.

Code availability

The code used for simulations is available from the corresponding
author upon reasonable request.
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