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Abstract: Despite the clear success of forecast combination in many economic environments,
several important issues remain incompletely resolved. The issues relate to selection of
the set of forecasts to combine, and whether some form of additional regularization (e.g.,
shrinkage) is desirable. Against this background, and also considering the frequently-found
superiority of simple-average combinations, we propose LASSO-based procedures that select
and shrink toward equal combining weights. We then provide an empirical assessment of
the performance of our “egalitarian LASSO” procedures. The results indicate that simple
averages are highly competitive, and that although out-of-sample RMSE improvements on
simple averages are possible in principle using our methods, they are hard to achieve in real
time, due to the intrinsic difficulty of small-sample real-time cross validation of the LASSO
tuning parameter. We therefore propose alternative direct combination procedures, most
notably “best average” combination, motivated by the structure of egalitarian LASSO and
the lessons learned, which do not require choice of a tuning parameter yet outperform simple
averages.

Acknowledgments: For comments we are grateful to Denis Chetverikov, Laura Liu, Dongho
Song, Zhentao Shi, and Boyuan Zhang. The usual disclaimer applies.

Key words: Forecast combination, forecast surveys, shrinkage, model selection, LASSO,
regularization

JEL codes: C53

Contact: fdiebold@upenn.edu



Contents

1 Introduction 1

2 On The Good Performance of Equal Combining Weights 1

3 Synthesis: Shrinkage and Selection with Variants of Egalitarian LASSO 3

3.1 Penalized Estimation for Selection and Shrinkage . . . . . . . . . . . . . . . 5

3.2 Shrinkage Toward Equal Weights: Egalitarian Ridge . . . . . . . . . . . . . . 5

3.3 Selection and Shrinkage Toward Zero Weights: Standard LASSO . . . . . . . 6

3.4 Selection and Shrinkage Toward Equal Weights:

Egalitarian LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.5 Selection Toward Zero and Shrinkage Toward Equality:

2-step Egalitarian LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Related Literature 9

5 Combined Forecast Performance with Ex Post Optimal Tuning 11

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.2 Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3 The Nature and Evolution of the Set of Selected Forecasters . . . . . . . . . 14

5.4 On the Importance of λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Ex Ante Combined Forecast Comparison 17

6.1 Ex Ante Optimal Tuning by Overlapping Cross Validation . . . . . . . . . . 17

6.2 Combined Forecast Performance with Ex Ante Optimal Tuning . . . . . . . 19

6.3 Alternative Approaches to Ex Ante LASSO Tuning . . . . . . . . . . . . . . 19

6.3.1 “Average Best” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.3.2 “Best Average” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.3.3 Empirical Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Conclusions and Directions for Future Research 22

References 24



1 Introduction

Forecast combination has a long and successful history in economics.1 Important issues

remain incompletely resolved, however, related to determining the best set of forecasts to

combine (“selection”, e.g., via an information criterion), how to combine those selected (e.g.,

via a linear weighted average), and whether some form of regularization (e.g., via shrinkage)

is desirable given that the historical forecast record is often small relative to the number of

candidate forecasters. Against this background, and also considering the frequently-found

good performance of simple average combinations, we propose a LASSO-based procedure

that addresses all considerations.

We proceed as follows. In section 2, we highlight aspects of the “equal-weights puzzle”,

that is, the frequently-found superiority of simple-average combinations, as relevant for our

eventual concerns. In section 3 we describe our “egalitarian LASSO” procedures, which

shrink and select toward simple averages. In section 4 we place our methods in the context

of the broader literature. In section 5 we provide ex post empirical assessment of our proce-

dures’ performance in comparison to others, and in section 6 we provide ex ante (real-time)

assessment. We conclude in section 7.

2 On The Good Performance of Equal CombiningWeights

Although it seems natural to average forecasts (i.e., to to use equal-weight combinations),

simple averages are generally suboptimal, and potentially highly so. To see the theoret-

ical sub-optimality of equal combining weights, consider K competing unbiased forecasts

f 1
t , ..., f

K
t of a series yt made at time t− 1, t = 1, ..., T . We form a combined forecast as

Ct = ω1f
1
t + ω2f

2
t + ...+

(
1−

K−1∑
k=1

ωi

)
fKt .

The corresponding forecast errors (eC and e1, ..., eK , with variances σ2
C and σ2

1, ..., σ
K
1 ,

respectively) satisfy the same equality, from which it follows that the variance of the combined

forecast error is minimized using weight vector

ω∗ =
(
Σ−1i

) / (
i′Σ−1i

)
, (1)

1For a recent overview, see Elliott and Timmermann (2016).



Figure 1: σ2
C/σ

2
1 vs. ω, for ω ∈ [0, 1]

Notes: We assume φ = 1 and uncorrelated errors. See
text for details.

where Σ is the variance-covariance matrix of 1-step-ahead forecast errors and i is a con-

formable column vector of ones (Bates and Granger (1969)). Note in particular that the

optimal weights (1) are generally not 1/K. As an example, consider two forecasts with

uncorrelated errors.2 Then (1) reduces to

ω∗ =
σ2
2

σ2
1 + σ2

2

=
1

1 + φ2
,

where ω∗ is the weight placed on forecast 1 and φ = σ1/σ2. Hence the simple average obtains

if and only if φ = 1. This is entirely natural – we want to give more weight to the forecast

with lower-variance errors, so we take a simple average only in the equal-variance case.

Despite the theoretical sub-optimality of equal weights, a large literature finds generally

good performance of simple averages under quadratic loss. Indeed the forecast combination

“equal weights puzzle” (referring to equal weights of 1/K in combining i = 1, ..., K forecasts)

refers to the frequently-found good performance of simple averages. The equal-weights puzzle

2For simplicity and maximum transparency we work with uncorrelated errors throughout this section,
but the qualitative results hold even with correlation. See Aruoba et al. (2012).
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was noted long ago (e.g., Clemen (1989)), but it has not been fully resolved and continues to

be the subject of much research (e.g., Timmermann (2006), Smith and Wallis (2009), Elliott

(2011)).3

It turns out that the equal weights puzzle is ultimately not so puzzling. Two crucial

observations, in particular, favor equal weights. First, even if simple averages are not fully

optimal, they are likely to be much better than any individual forecast. To build intuition let

us stay with the case of two forecasts with uncorrelated errors. It is instructive to compare

the error variance of the optimally-combined forecast, σ2
C , to the error variance of one of the

primary forecasts (with no loss of generality, let us compare to σ2
1), for a range of ω values

(including ω = ω∗, ω = 0, and ω = 1). Simple calculations reveal that:

σ2
C

σ2
1

= ω2 +
(1− ω)2

φ2
.

In Figure 1 we graph σ2
C/σ

2
1 for ω ∈ [0, 1] with φ = 1. Obviously the maximum variance

reduction is obtained using ω∗ = 0.5, but even for nonoptimal ω we achieve substantial

variance reduction relative to using f1 alone. That is a key result: for all ω (except those

very close to 0 or 1, of course) we achieve substantial variance reduction.

Second, even if simple averages are not fully optimal, they are likely to be nearly optimal.

In Figure 2 we graph ω∗ as a function of φ, for φ ∈ [.75, 1.25]. ω∗ is of course decreasing

in φ, but interestingly, it is only mildly sensitive to φ. Indeed, for our range of φ values,

the optimal combining weight remains close to 0.5. Under a wide range of conditions it is

optimal to put significant weight on both f1 and f2, with the optimal weights not differing

radically from equality.

3 Synthesis: Shrinkage and Selection with Variants of

Egalitarian LASSO

It is well known (Granger and Ramanathan (1984)) that the population Bates-Granger opti-

mal combining weights (1) introduced above may be trivially obtained from the population

regression (linear projection) yt → f 1
t , ..., f

K
t , subject to the constraint that the coefficients

3Note well that the theoretical suboptimality of simple averages, and hence the equal weights puzzle,
refers to combination under quadratic loss. Under other loss functions, equal weights may in fact be optimal.
Aruoba et al. (2012), for example, have recently shown that equal weights are optimal under minimax loss.
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Figure 2: ω∗ vs. φ, for φ ∈ [.75, 1.25]

Notes: We construct ω∗ assuming uncorrelated errors,
and we include a horizontal line for visual reference at
ω∗ = .5. See text for details.

add to one.4 So the theoretical optimal linear forecast combination problem is just a popu-

lation linear regression (projection) problem, and combining weight estimation involves just

a finite-sample linear regression.

The discussion of section 2 strongly suggests, moreover, that simple averages (equal

weights) are a natural shrinkage direction for such combining regressions. With shrinkage,

we don’t force simple averages; rather, we coax things in that direction, blending data

(likelihood) information with prior information. This amounts to a Bayesian approach with

the prior centered on simple averages.

An important issue remains, however. Particularly when combining large numbers of

forecasts, some forecasts may be largely redundant, or not worth including in the combination

for a variety of other reasons. So we potentially want to set some combining weights to

zero (“select to zero”) and shrink the remaining weights toward equality (“shrink toward

equality”). LASSO-based methods almost do the trick – they both select and shrink (

(Tibshirani, 1996; Hastie et al., 2009)) – but unfortunately they select to zero and shrink

4Moreover, there is no real need to impose the “sum-to-one” constraint, and it is now rarely imposed.)
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to zero. In the remainder of this section we start with standard LASSO and modify it until

we arrive at our “2-step egalitarian LASSO”, which selects to zero and shrinks to equality.

Interestingly, each of the estimators introduced en route to the 2-step egalitarian LASSO

will prove useful in its implementation.

3.1 Penalized Estimation for Selection and Shrinkage

Consider a penalized forecast combining regression, with “parameter budget” c,

β̂ = arg min
β

T∑
t=1

(
yt −

K∑
i=1

βifit

)2

s.t.
K∑
i=1

|βi|q ≤ c. (2)

Equivalently, in Lagrange-multiplier form we can write

β̂ = arg min
β

 T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ
K∑
i=1

|βi|q
 ,

where λ depends on c. Taking λ = 0 produces Bates-Granger OLS combining:

β̂ = arg min
β

(
T∑
t=1

(
yt −

K∑
i=1

βifit

)2

.

Many estimators that select and/or shrink, both of which are important for our purposes,

fit in the penalized estimation framework.

3.2 Shrinkage Toward Equal Weights: Egalitarian Ridge

Smooth convex penalties in (2) produce pure shrinkage. In particular, q = 2 produces ridge

regression, which shrinks coefficients toward 0:

β̂ = arg min
β

 T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ
K∑
i=1

βi
2

 .
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Taking q = 2 and centering the constraint around 1/K produces a modified ridge regression

that shrinks coefficients toward equality (“egalitarian ridge”):

β̂ = arg min
β

 T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ
K∑
i=1

(
βi −

1

K

)2
 .

Egalitarian ridge is closely related to the Bayesian shrinkage combining weight estimation

of Diebold and Pauly (1990), who take an empirical Bayes approach using the g-prior of

Zellner (1986), but it is much simpler to implement.

Note that, although egalitarian ridge will feature later in this paper, which is why we

introduced it, it is inadequate for our ultimate purpose – it shrinks in the right direction but

does not select.

3.3 Selection and Shrinkage Toward ZeroWeights: Standard LASSO

As we have seen, q = 2 produces pure shrinkage (ridge). Conversely, q → 0 produces pure

selection. The intermediate case q = 1 produces shrinkage and selection and is known as a

LASSO estimator:5

β̂Lasso = arg min
β

 T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ
K∑
i=1

|βi|

 .

There are several variants of LASSO:

(1) Adaptive LASSO weights the terms in the constraint to encourage setting

small first-round coefficient estimates to zero,

β̂ALasso = arg min
β

 T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ

K∑
i=1

wi|βi|

 ,

where wi = 1/β̂νi , β̂i is OLS or ridge, and ν > 0.

5In addition, q = 1 is the smallest q for which the penalized estimation minimization problem is (conve-
niently) convex.

6



(2) Elastic net blends the LASSO penalty (q = 1) and the ridge penalty (q = 2),

β̂ENet = arg min
β

 T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ
K∑
i=1

(
α|βi|+ (1− α)β2

i

) .

(3) Adaptive elastic net blends everything,

β̂AENet = arg min
β

 T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ
K∑
i=1

wi
(
α|βi|+ (1− α)β2

i

) .

Under conditions, the adaptive LASSO variants have the oracle property. The elastic net

variants have good properties in handling highly-correlated predictors. Adaptive elastic net

has both. Note that standard LASSO and its variants, although improving on ridge insofar

as they shrink and select, remain inadequate for our purposes – they select in the right

direction but shrink in the wrong direction.

3.4 Selection and Shrinkage Toward Equal Weights:

Egalitarian LASSO

All of the standard LASSO variants in section 3.3 select and shrink combining weights

toward zero, but that is not what we want. Instead, as discussed in section 2, both theory

and experience point clearly to shrinkage toward simple averages. We therefore change the

LASSO penalized estimation problem to

β̂EgalLASSO = arg min
β

 T∑
t=1

(
yt −

∑
i

βifit

)2

+ λ
K∑
i=1

∣∣∣βi − 1

K

∣∣∣
 .

That is, instead of shrinking the weights toward zero, we shrink the deviations from equal

weights toward zero.

We can continue to use standard LASSO software to do the modified minimization.6

6See, for example, the R package glmnet, written by J. Friedman, T. Hastie, N. Simon, and R. Tibshirani,
at https://cran.r-project.org/web/packages/glmnet/index.html.
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Simply note that

T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ
K∑
i=1

∣∣∣βi − 1

K

∣∣∣ =
T∑
t=1

(
yt − f̄t + f̄t −

K∑
i=1

βifit

)2

+ λ
K∑
i=1

∣∣∣βi − 1

K

∣∣∣
=

T∑
t=1

(
(yt − f̄t) +

K∑
i=1

(
1

K
− βi

)
fit

)2

+ λ
K∑
i=1

∣∣∣βi − 1

K

∣∣∣
=

T∑
t=1

(
(yt − f̄t) +

K∑
i=1

δifit

)2

+ λ
K∑
i=1

|δi|,

where

δi = βi −
1

K
and f̄t =

1

K

K∑
i=1

fit.

Hence we obtain the egalitarian LASSO regression,

yt →EgalLASSO f1t, ..., fKt,

by simply running the standard LASSO regression,

(yt − f̄t) →LASSO f1t, ..., fKt. (3)

Note that although egalitarian LASSO shrinks in the right direction, it is still unap-

pealing, for reasons opposite those of standard LASSO. Like standard LASSO, egalitarian

LASSO shrinks and selects, but whereas LASSO shrinks in the wrong direction, egalitar-

ian LASSO selects in the wrong direction! We nevertheless introduced ridge, LASSO, and

egalitarian LASSO because the procedure to which we now turn – which shrinks and selects

in the right direction – is closely related, and because each will feature importantly in our

subsequent empirical work.

3.5 Selection Toward Zero and Shrinkage Toward Equality:

2-step Egalitarian LASSO

Egalitarian LASSO does not tend to discard forecasters, because it selects and shrinks toward

equal weights, not toward zero weights. In particular, the selection to equality, rather than

zero, may be problematic, as it presumes that all forecasters “belong” in the set to be

8



combined. One can easily modify the egalitarian LASSO, however, such that some forecasters

are potentially discarded. Consider, for example, the following 2-step egalitarian LASSO

procedure:

2-Step Egalitarian LASSO

Step 1 (Selection to Zero): Using standard methods, select k forecasts from among the

full set of K forecasts.

Step 2 (Shrinkage Toward Equality): Using standard methods, shrink the combining

weights on the k forecasts that survive step 1 toward 1/k.

Obvious methods for step 1 include information criteria like SIC or AIC, potentially in

conjunction with forward or backward stepwise methods in high-dimensional cases. Per-

haps preferably, one could also use standard LASSO, which requires only one estimation

and moreover can handle situations with K > T , which are not uncommon in forecast

combination.7

An obvious method for step 2 is egalitarian ridge.8 One could go even farther and use

egalitarian LASSO for step 2, in which case the complete procedure would first select some

weights to 0, and then select some of the surviving weights to 1/k and shrink the rest toward

1/k.

In the empirical work of sections 5 and 6 below, we emphasize 2-step egalitarian LASSO

and compare it to several competitors. But first, now that we have described our approach,

we situate it in the literature.

4 Related Literature

Several authors have considered pure Bayesian shrinkage of combining weights, often toward

equal weights.9 As is well known, under standard conditions the Bayes rule under quadratic

loss is

β1 = β0 + δ
(
β̂OLS − β0

)
,

7In our subsequent empirical work in sections 5 and 6, for example, the combining regressions involve 25
forecasters but only 20 observations.

8Note that egalitarian ridge can be trivially implemented via a standard ridge regression with a trans-
formed left-hand-side variable, (yt − f̄t) →Ridge f1t, ..., fkt, in parallel with the with egalitarian LASSO
regression (3).

9Some authors, including Conflitti et al. (2015) and Fuentes et al. (2014), have introduced selection as well
by using standard LASSO regression to estimate combining weights. As we have argued, however, standard
LASSO shrinks in an undesirable direction for purposes of forecast combination.
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where β1 is the posterior mean combining weight vector, β0 is the prior mean vector, and

δ ∈ [0, 1] is inversely related to prior precision. Other things equal, a small value of δ

implies high prior precision and hence substantial shrinkage toward β0. The larger is δ, the

less shrinkage occurs. Different authors invoke different shrinkage directions (that is, prior

means) and different ways of choosing δ. Relevant literature includes Diebold and Pauly

(1990), Chan et al. (1999), Stock and Watson (2004), Aiolfi and Timmermann (2006), and

Genre et al. (2013).

In an interesting development, Capistrán and Timmermann (2009) take a reverse ap-

proach. Whereas Bayesian shrinkage adjusts least-squares combining weights toward a sim-

ple average, Capistrán and Timmermann (2009) start with a simple average and adjust away

from it via a Mincer-Zarnowitz regression, yt →OLS c, f̄t. Genre et al. (2013) go even far-

ther and segment the forecasters into n groups, projecting onto each of the group averages,

yt →OLS c, f̄
1
t , ..., f̄

n
t .

The reverse approach has an interesting connection to the so-called “OSCAR LASSO”

proposed by Bondell and Reich (2008), which is also closely related to our methods. The

OSCAR estimator is:

β̂OSCAR = arg min
β

T∑
t=1

(
yt −

∑
i

βixit

)2

s.t. (1− γ)
K∑
i=1

|βi|+ γ
∑
j<k

max {|βj|, |βk|} ≤ c. (4)

The first part of the constraint involves the L1 norm; it is just the standard LASSO con-

straint, producing selection and shrinkage toward zero. The second part of the constraint

involves the pairwise L∞ norm, which selects and shrinks toward equal coefficients. Overall,

then, OSCAR regression encourages parsimony not only in standard LASSO fashion, but

also by encouraging a small number of unique nonzero coefficients.

Suppose that the OSCAR solution is “all coefficients are the same”. This can occur

because of the second part of the OSCAR constraint. Then the combined forecast is

Ĉt = β̂
K∑
i

fi,t

= α̂

(
1

K

K∑
i=1

fi,t

)
,

10



which is the forecast we get by projecting the realized outcome on equal-weight forecasts, as

in Capistrán and Timmermann (2009). The OSCAR solution may also have more than one

unique coefficient. In particular, it may have multiple groups, as for example with

Ĉt = β̂1
∑
i∈G1

fi,t + β̂2
∑
i∈G2

fi,t

= α̂1

(
1

N1

∑
i∈G1

fi,t

)
+ α̂2

(
1

N2

∑
i∈G2

fi,t

)
,

where Gk = {i : β̂i = β̂k} and Nk = #Gk. Genre et al. (2013)) is obviously in the same

spirit.

5 Combined Forecast Performance with Ex Post Op-

timal Tuning

In this section we begin our empirical work, providing a comparative assessment of our

methods using the European Central Bank’s well-known quarterly Survey of Professional

Forecasters.10 For those procedures that require selection of a tuning parameter λ, we

examine out-of-sample RMSE based on the ex-post optimal λ (i.e., the λ that optimizes

out-of-sample RMSE, which we can determine ex post).

5.1 Background

Again, we focus on the European Central Bank’s well-known quarterly Survey of Professional

Forecasters. Of course the comparative performance of our methods, whether good or bad,

using a particular dataset and a particular implementation (choice of sample period, choice

of tuning parameters, etc.) cannot establish anything conclusively, but that is not our intent.

Rather, we simply seek to illustrate our methods in a realistic and important environment,

and to provide some preliminary yet suggestive evidence regarding their performance.

We consider 1-year-ahead forecasts for the Euro-area real GDP growth rate. We are

faced with an unbalanced panel, because forecasters enter and exit the pool in real time,

and moreover, those in the pool at any time do not necessarily respond to the survey. Hence

for ease of analysis we select the 25 forecasters who responded most frequently during our

10See http://www.ecb.europa.eu/stats/prices/indic/forecast/html/index.en.html.
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evaluation sample (2000Q3–2014Q1) and impute missing observations using a linear filter as

in Genre et al. (2013).

We roll through the evaluation sample, estimating combining weights using a 5-year

(20-quarter) window and producing a 1-year-ahead out-of-sample forecast. We focus on

combining methods that involve regularization estimators, which is essential in our context as

K > T . Our main comparison involves combined forecasts based on standard ridge, standard

LASSO, egalitarian ridge, egalitarian LASSO, and three versions of 2-step egalitarian LASSO

(the first step is always LASSO, and the second step is either simple average, egalitarian

ridge, or egalitarian LASSO).11 Throughout, we compare the combined forecasts to simple

average combinations.

Each combining method except simple averages requires choosing a tuning parameter, λ,

which governs regularization strength. We examine combined forecast accuracy for many λ’s,

ranging from very light penalization (small λ; all forecasters included in the combination) to

very heavy penalization (large λ; no forecasters included in the combination). Specifically,

we compute forecasts on a grid of 200 λ’s. We start with an equally-spaced grid on [-15,

15], which we then exponentiate, producing a grid on (0, 3269017], with grid coarseness

increasing with λ. This grid turns out to be adequate for all LASSO-based combinations

that we consider. Throughout we calculate forecast errors using “realizations” from the

summer 2014 data vintage.

5.2 Basic Results

We present out-of-sample Combined Forecast RMSE’s in Table 1. Several observations are

in order:

1. Granger-Ramanathan OLS combination is infeasible, because K > T , so we cannot

include it in the table.

2. No method performs better than the best individual forecaster. (It can happen that a

combined forecast is better than any individual forecast, but it doesn’t happen here.)

3. All methods perform better than the worst individual forecaster.

11Unlike much of the LASSO literature, we do not standardize our data. Standardization is desirable
when the regressors are measured in different units, but that is not the case in our forecast combination
application.
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Table 1: RMSE’s Based on Ex-Post Optimal λ’s

Regularization Group: RMSE λ∗ #

Ridge 1.629 3.098 ALL
LASSO 1.596 0.507 2.9

Egalitarian Ridge 1.612 max ALL
Egalitarian LASSO 1.612 3.602 ALL

2-Step Egal LASSO (LASSO, Average) 1.482 0.239 3.3
2-Step Egal LASSO (LASSO, Egal Ridge) 1.482 (0.239, max) 3.3
2-Step Egal LASSO (LASSO, Egal LASSO) 1.482 (0.239, 3.098) 3.3

Comparison Group: RMSE λ∗ #

Best Individual 1.480 N/A 1
Median Individual 1.643 N/A 1
Worst Individual 1.850 N/A 1
Simple Average 1.612 N/A ALL

Notes: # denotes the average number of forecasters selected.

4. The simple average improves significantly over the worst individual, but it is still

noticeably worse than the best individual. Its RMSE is approximately midway between

those of the worst and best individuals.

5. All procedures involving selection to zero select a small number of forecasters on average

(approximately three).

6. Standard ridge and LASSO perform about as well as the simple average, despite their

shrinking toward zero weights rather than equal weights.

7. Egalitarian ridge and egalitarian LASSO perform exactly as well as the simple average.

This is because the optimal regularization (toward the average) turns out to be very

strong, in which case both egalitarian ridge and egalitarian LASSO produce a simple

average.

8. All 2-step methods perform identically. The reason is as follows. They regularize

identically in the first step, by construction. Then, in the second step, the “step 2

simple average” method averages by construction, and the remaining 2-step methods

effectively average as well in the second step, because heavy step-2 regularization turns

13



Figure 3: Selected Forecasters

Notes: The x-axis denotes time, and the y-axis denotes forecaster ranking, where a smaller y-axis location
refers to a forecaster with smaller overall RMSE. A “+” symbol at location (x, y) indicates that forecaster
y was selected at time x.

out to be optimal.

9. The 2-step methods reduce out-of-sample RMSE relative to the simple average by

almost ten percent.

10. The 2-step methods have out-of-sample RMSE as good as that of the best forecaster.

5.3 The Nature and Evolution of the Set of Selected Forecasters

One might wonder which forecasters are selected by our 2-step procedures. The selected

forecasters are identical across the procedures, period-by-period, because the first step is

always the same (LASSO). We show them in Figure 3, as we roll through the sample. The

x-axis denotes time, and the y-axis denotes forecaster ranking, where a smaller y-axis location

refers to a forecaster with smaller overall RMSE. A “+” symbol at location (x, y) indicates

that forecaster y was selected at time x.

A number of results emerge:

1. The optimal pool is usually small, with three or four forecasters, as also mentioned

earlier in conjunction with Table 1.
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2. The optimal pool is not dominated by any one forecaster, or a small set of forecasters.

Many different forecasters move in and out of the optimal pool as we roll through the

sample.

3. The optimal pool is usually “democratic” in the sense that it is composed of some

forecasters from the best performing group, some from the middle group, and some

from the worst.

4. The best individual (ID 1) is not always included in the optimal pool. Indeed the best

individual is included in the optimal pool only 11 times.

5. Conversely, the worst forecaster (ID 25) is sometimes included in the optimal pool,

mostly toward the end of the sample following the Great Recession. Interestingly, the

worst individual is actually included in the optimal pool more often than the best.

5.4 On the Importance of λ

The results in Table 1 depend on knowledge of the ex post optimal λ. To get a feel for

the sensitivity to λ, we show RMSE as function of λ in Figure 4. In each sub-figure, the

lighter gray line is the RMSE for simple averaging. Consider first the top row of Figure 4, in

which we show standard ridge and standard LASSO. They perform similarly in terms of the

optimized value based on the ex post best λ; at that point they are basically indistinguishable

from each other and from a simple average. In the limit as penalization increases, however,

their performance deteriorates as all forecasters are eventually excluded and the “combined

forecasts” therefore approach 0.

Next consider the second row of Figure 4, in which we show egalitarian ridge and egalitar-

ian LASSO. They too perform similarly in terms of the optimized value based on the ex post

best λ; at that point they are basically indistinguishable from each other and from a simple

average. But their penalization limit is very different. In the limit as penalization increases,

egalitarian ridge, egalitarian LASSO, and simple averaging must be (and are) identical.

Now consider the third row of Figure 4, in which we show 2-step egalitarian LASSO,

in each case with step 1 done by standard lasso. In the left panel we implement step 2 by

simply averaging the step-1 selected forecasters, so there is only one penalty parameter to

choose. At the ex post optimum penalty, this 2-step egalitarian LASSO outperforms other

methods, including simple averaging of all forecasters.

15



Figure 4: RMSE as a Function of λ,
Various Forecast Combination Methods

Standard Ridge Standard LASSO

Egalitarian Ridge Egalitarian LASSO

2-Step Egalitarian LASSO 2-Step Egalitarian LASSO
(Standard LASSO in Step 1) (Optimized Standard LASSO in Step 1)
(Simple Average in Step 2) (Egalitarian LASSO in Step 2)

Notes: In the lower-right panel we implement step 2 by egalitarian LASSO regression on the step-1 selected

forecasters, so there is an additional penalty parameter. We show RMSE as a function of the step-2 penalty,

with the step-1 penalty fixed at its optimal value.
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In the right panel of Figure 4 we implement step 2 by egalitarian LASSO regression on

the forecasters selected in step 1, so there is a second penalty parameter to choose. Call the

step-1 and step-2 penalty parameters λ1 and λ2, respectively, and denote the ex post optimal

pair by (λ∗1, λ
∗
2). We show RMSE as a function of λ2, with λ1 fixed at λ∗1. It turns out that

once we select forecasters, it is ex post optimal to shrink those selected strongly toward a

simple average; that is, heavy step-2 penalization (large λ2) is optimal.

6 Ex Ante Combined Forecast Comparison

All told, it is clear that the superior results for the 2-step procedures are crucially dependent

on choosing the “right” λ. It remains to be seen whether we can choose λ successfully in

real time. Hence we now provide results for real-time λ selection by cross validation, which

is natural and appropriate in our forecasting context.

Before proceeding, however, we note an interesting subtlety. If it is true, as mentioned

earlier, that the ex-post results endow the 2-step combinations with some knowledge of

the future, which potentially artificially enhances their performance, it is also true that

the ex-post results enforce constancy of λ, which potentially degrades performance relative

to alternative procedures that allow for time-variation, as with real-time cross validation.

Hence, perhaps surprisingly, the cross-validated real-time results need not be inferior to the

ex-post results.

6.1 Ex Ante Optimal Tuning by Overlapping Cross Validation

Standard “S-fold” cross validation for a sample t = 1, ..., T proceeds as follows. Let T =

{1, ..., T}, and partition T into S approximately equally-sized blocks, T = T1∪ ...∪TS. Then

for any given λ, we approximate mean squared error by

M̂SE(λ) =
1

T

T∑
t=1

(yt − ŷct (λ))2

where

ŷct (λ) =
K∑
i=1

δ̂i,t(λ)fi,t (5)

and δ̂t(λ) is a regularized estimator (recall that we consider several variants) based on obser-

vations excluding those in the partition block that includes t. We select the λ that minimizes
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Table 2: RMSE’s Based on Real-Time Cross-Validated λ’s

Regularization Group: B = 1 B = 2

RMSE # RMSE #

Ridge 1.518 ALL 1.635 ALL
LASSO 2.090 12.5 2.074 11.1

Egalitarian Ridge 1.801 ALL 1.763 ALL
Egalitarian LASSO 2.075 ALL 1.856 ALL

2-Step Egal LASSO (LASSO, Average) 1.562 2.7 1.599 4.8
2-Step Egal LASSO (LASSO, Egal Ridge) 2.065 13.1 2.115 11.4
2-Step Egal LASSO (LASSO, Egal LASSO) 2.011 14.6 2.066 14.5

Comparison Group: RMSE #

Best Individual 1.480 1
Median Individual 1.643 1
Worst Individual 1.850 1
Simple Average 1.612 ALL

Notes: # denotes average number of forecasters selected.

M̂SE(λ); that is, λ∗ = arg minλ M̂SE(λ).

Our “overlapping” cross-validation approach is similar except that we use a different δ̂t(λ)

in (5). Rather than sequentially dropping non-overlapping contiguous blocks T1, ..., TS, we

follow Stock and Watson (2012) and sequentially drop overlapping blocks. In particular, for

each t we obtain δ̂t(λ) from a sample that omits observation t and those from a symmetric

neighborhood around it,

{
(ys, f1,s, ..., fK,s) : s ∈ {1, ..., t−B, t+B, ..., T}

}
. (6)

B = 1 corresponds to standard leave-one-out cross validation (non-overlapping “blocks”),

and B ≥ 2 corresponds to overlapping blocks. In our subsequent empirical work we explore

B = 1 and B = 2. We take λ∗ = arg minλ M̂SE(λ).
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6.2 Combined Forecast Performance with Ex Ante Optimal Tun-

ing

As in the earlier ex-post exercise, we roll through the evaluation sample, sequentially es-

timating (using a 20-quarter rolling window) and forecasting (four quarters ahead). The

difference is that we now cross validate λ in real time as part of the rolling estimation,

instead of endowing the forecaster with knowledge of the ex post optimal λ.

It is interesting to note the differences between this ex ante rolling cross validation analysis

and the ex-post analysis of section 5. The ex ante rolling cross validation analysis both (1)

constrains to real-time the information set on which forecasts are based, and (2) allows for

adaptive (time-varying) λ∗. In particular, it is possible in principle for the ex-ante approach

to perform better than the ex-post approach, despite (1), because of (2).

In Table 2 we collect RMSEs and the number of included forecasters (#) under B = 1

and B = 2 cross validation.

1. We lose the predictive gains that we obtained when using ex post optimal λ.

2. There are only three cases that outperform the simple average (ridge for B = 1, and

2-Step egalitarian LASSO (second step average) for B = 1 and B = 2).

3. Ridge with B = 1 cross-validation actually performs better than that based on the ex

post optimal λ. The gain comes from the fact that under cross validation we allow for

time-varying λ.

4. All told, the results suggest that it is hard to beat the simple average.

Perhaps, however, there is remaining cause for some optimism, to which we now turn.

6.3 Alternative Approaches to Ex Ante LASSO Tuning

6.3.1 “Average Best”

Here we select a subset of forecasts and average those selected.

“Average Best (Individual-Based) N”

Note that the RMSE performances of the 2-step egalitarian methods in the third row

of Figure 4 are almost identical at the optimum, but that there is a point optimum in the

bottom left (LASSO in step 1, simple averaging in step 2 ) and a broad plateau optimum
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Table 3: N -Forecast RMSE’s
“Average Best” and “Best Average”

RMSE avg λ∗ avg N

Average Best N
Average of (Individual-Based) Best 1 1.537 N/A 1
Average of (Individual-Based) Best 2 1.496 N/A 2
Average of (Individual-Based) Best 3 1.500 N/A 3
Average of (Individual-Based) Best 4 1.509 N/A 4
Average of (Individual-Based) Best 5 1.517 N/A 5
Average of (Individual-Based) Best 6 1.530 N/A 6

Average Best N
Average of (LASSO-Based) Best 1 1.787 5.13 1
Average of (LASSO-Based) Best 2 1.730 2.33 2
Average of (LASSO-Based) Best 3 1.562 1.25 3
Average of (LASSO-Based) Best 4 1.542 0.50 4
Average of (LASSO-Based) Best 5 1.575 0.21 5
Average of (LASSO-Based) Best 6 1.582 0.11 6

Best Average N
Best Average 1 1.537 N/A 1
Best Average 2 1.510 N/A 2
Best Average 3 1.501 N/A 3
Best Average 4 1.510 N/A 4
Best Average 5 1.150 N/A 5
Best Average 6 1.524 N/A 6

Best Average ≤ N
Best Average ≤1 1.537 N/A 1
Best Average ≤2 1.514 N/A 1.52
Best Average ≤3 1.509 N/A 1.87
Best Average ≤4 1.510 N/A 2.00
Best Average ≤5 1.510 N/A 2.00
Best Average ≤6 1.510 N/A 2.00

Comparison Group: RMSE λ∗ N

Best Individual 1.480 N/A 1
Median Individual 1.643 N/A 1
Worst Individual 1.850 N/A 1
Simple Average 1.612 N/A N
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in the bottom right (optimized LASSO in step 1, egalitarian LASSO in step 2). At the

optimum, the bottom-right procedure effectively selects a few forecasts and averages them.

This suggests a strategy of abandoning cross validation and instead simply averaging the

best N individual forecasts in each 20-quarter window. We refer to this as “averaging the

best (individual-based) N”.

“Average Best (LASSO-Based) N”

There is a subtlety, however, when averaging the best individual performers. In general

the best forecast combination does not simply use the best individual forecasts, as we stressed

earlier in section 5.3 when discussing the members and evolution of the set of selected

forecasts. This suggests a related but different strategy: In each 20-quarter window, find the

LASSO λ that keeps N forecasts, and average those forecasts. We refer to this as “averaging

the best (LASSO-based) N”.

6.3.2 “Best Average”

In the “average best” approach above, at each time we select some best forecasts and average

them, moving through 20-quarter windows. Here we flip to a more brute-force “best average”

approach, instead selecting directly over averages.

Best Average N

At each time we use a 20-quarter window and determine the best-performing N -forecast

average and use it. Note that this method rapidly becomes costly as the number of forecasters

increases. With 25 forecasters, for example, finding the best 5 requires computing 25C5 (=

53,130) simple averages and then sorting them to determine the minimum.

Best Average ≤N

At each time we use a 20-quarter window and determine the best-performing ≤N -forecast

average and use it. The approach is similar to the “subset averaging” of Elliott (2011), but

Elliott averages subset averages, whereas we obtain and use the best subset average.

The computational burden of ≤N -forecast averaging grows even more quickly with N

than it does with N -forecast averaging, because we now consider all subsets. With 25

forecasters, finding the best ≤ 5 requires computing 25C5 +25C4 + ...+25C1 (= 68405) simple

averages and then sorting them to determine the minimum. Fortunately, the empirical results
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to which we now turn indicate that small N is generally optimal for both the average-best

and best-average methods.

6.3.3 Empirical Performance

We show the performance of all average-best and best-average methods in Table 3 for N =

1, ..., 6. Several remarks are in order:

1. For all variations, the optima are achieved for small N (2, 3, or 4).

2. One might expect best-average methods to perform best, because they directly target

the object of interest. Although they do not out-perform, they also do not underper-

form: they are at least as good as anything else (not worrying about the third decimal

place).

3. Best average N requires choosing N , and the results depend on N . In contrast, best

average ≤N is fully automatic, requiring only choice of a maximal number of fore-

casters, which table 3 as well as our earlier results indicates can be safely set to 6,

say.

4. Best average ≤6 RMSE (1.51) is almost as good as that of the best individual (1.48),

much better than that of the median individual (1.64), and importantly, better than

that of the simple average (1.61).

7 Conclusions and Directions for Future Research

Against a background of frequently-found superiority of simple-average forecast combina-

tions, we have proposed “egalitarian LASSO” procedures that discard some forecasts and

then select and shrink – without forcing – those remaining toward equal weights. We found

that simple averages remain highly competitive. That is, although out-of-sample RMSE

improvements on simple averages are possible in principle using egalitarian LASSO, they are

hard to achieve in small samples in real time, due to difficulty of successfully cross validating

the LASSO tuning parameter. We therefore proposed alternative direct combination proce-

dures, most notably “best average” combinations, which do not require choice of a tuning

parameter, and we showed that they outperform simple averages in forecasting Eurozone

GDP growth.
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A key insight in understanding the above progression is that the structure of the best-

average procedure is entirely motivated by the lessons learned from egalitarian LASSO.

Without the intermediate egalitarian LASSO step, we would likely never have arrived at

best-average. For example, we learn from egalitarian LASSO analysis that:

1. The selection penalty should be quite harsh – only a few forecasts need be combined.

2. The forecasts selected for combination should be allowed to change over time.

3. The forecasts selected for combination should be regularized via shrinkage.

4. The shrinkage direction should be toward a simple average, not toward zero, or anything

else.

5. The shrinkage should be extreme; that is, the selected forecasts should simply be

averaged.

6. Small-sample real-time selection of tuning parameters by cross-validation (or any other

method) is very difficult in the context of forecast combination and should be avoided.

Best average≤6 achieves all of this, and many extensions are possible. It would be of interest,

for example, to explore the performance of “best average” versions of OSCAR LASSO and

the related HORSES procedure of Jang et al. (2013).
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