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It is accepted that only three elements are ferromagnetic at room temperature, the 

transition metals iron, cobalt and nickel. The Stoner criterion explains why, for 

example, iron is ferromagnetic but manganese is not, even though both elements have 

an unfilled 3d shell and are adjacent in the periodic table: the product of the density of 

states with the exchange integral must be greater than unity for spontaneous ordering 

to emerge.
1,2

 Here, we demonstrate that it is possible to alter the electronic states of non-

ferromagnetic materials, such as diamagnetic copper and paramagnetic manganese, in 
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order to drive them ferromagnetic at room temperature. This remarkable effect is 

achieved via interfaces between metallic thin films and C60 molecular layers. The 

emergent ferromagnetic state can exist over several layers of the metal before being 

quenched at large sample thicknesses by the material’s bulk properties. While the 

induced magnetisation is easily measurable by magnetometry, low energy muon spin 

spectroscopy
3
 provides insight into its magnetic distribution by studying the 

depolarisation process of low energy muons implanted in the sample. This technique 

indicates localized spin-ordered states at and close to the metallo-molecular interface. 

Density functional theory simulations suggest a mechanism based on magnetic 

hardening of the metal atoms due to electron transfer.
4,5

 This opens a path for the 

exploitation of molecular coupling to design magnetic metamaterials using abundant, 

non-toxic elements such as organic semiconductors. Charge transfer at molecular 

interfaces can then be used to control spin polarisation or magnetisation, with far 

reaching consequences in the design of devices for electronic, power or computing 

applications.
6,7

  

 

Multifunctional materials with the spin degree of freedom such as multiferroics, magnetic 

semiconductors and molecular magnets have all aroused huge interest as potentially 

transformative components in quantum technologies.8-12 Strategies used to bring magnetic 

ordering to these materials typically rely on the inclusion of magnetic transition metals, heavy 

elements with a large atomic moment or rare earths. In thin film structures, proximity effects 

and coupling at interfaces play an essential role.13,14 This is especially the case for molecular 

spintronics,15,16 where organic thin films grown on copper have demonstrated spin filtering.17 

The organic magnetic coupling can propagate for long distances in systems such as nanoscale 

vortex-like configurations or nanoskyrmion lattices.18  
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We choose C60 as a model molecule due to its structural simplicity and robustness as well 

as its high electron affinity. C60/transition metal complexes exhibit strong interfacial coupling 

between metal 3dz electrons and molecular π-bonded p electrons. The potential created by the 

mismatch of molecular and metal work functions leads to a partial filling of the interface 

states.19-21 Other molecules with close electron affinity and the potential for 3dz/p coupling 

could be used to similar effect. In the case of C60 on metallic substrates such as Cu films, the 

charge transfer from the metal can be of up to 3e- per molecule and leads to a metallisation of 

the interface.22 Magnetic polarisation in fullerenes induced by spin injection or charge 

transfer may extend for long distances owing to low spin orbit coupling and the absence of a 

hyperfine interaction.23,24  

In the metal, it is expected that the charge transfer will be quickly screened by free 

electrons. A priori, there would be no reason to consider that a spin-unpolarized molecule 

would change the magnetic state of a metallic film. However, we find that the charge transfer 

and surface reconstruction at the interface25 can lead to an emergent magnetisation in both the 

metal and the molecule. Magnetometry measurements of C60/Cu and C60/Mn multilayers 

show hysteresis at room temperature. The magnetization disappears when all the transition 

metal-molecular interfaces are decoupled via an Al or Al2O3 spacer layer (Fig. 1).  

Changes in the Density of States (DOS) of the metal may be larger close to the interface, 

but should be screened deeper within the material. If the film is thick enough, the bulk 

properties of the metal are expected to dominate and quench the magnetization. This effect is 

shown in figure 2: the magnetisation of C60/Cu and C60/Mn multilayers decays once the 

metallic film thickness exceeds 2-3 nm. Decreasing coupling between the top and bottom 

interfaces of a metal layer may also play a role. 

The magnetisation of C60/Cu samples is 3-4 times stronger than for C60/Mn, which is 

probably due to the better lattice matching and larger charge transfer between copper and 
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C60.
19 However, bulk manganese is paramagnetic and much closer to complying with the 

Stoner criterion than diamagnetic copper due to the larger exchange interactions and density 

of states at the Fermi level (DOS(EF)).26 This may be correlated with the propagation length 

of the effect, which persists for sample thicknesses five times longer in Mn than in Cu. 

C60/Mn multilayers also show a larger paramagnetic slope of the magnetisation than 

decoupled manganese �see supplementary information (SI), Figs. S.1-S.4. Both systems 

exhibit anisotropy with an easy axis that lies in the plane of the film, and out-of-plane 

saturation fields of ~10-15 kOe at room temperature (inset in Fig. 2b). The Cu and Mn 

samples degrade with time, and the magnetization drops over several days or weeks 

depending on the layer structure and protective cap used (SI, Fig. S.5). 

With a view to explore the dependence of magnetisation on interfacial coupling, we have 

fabricated samples with different number of C60(15 nm)/Cu(2.5 nm) junctions. The magnetic 

moment of these multilayers is proportional to the number of Cu-C60 interfaces, suggesting 

that the magnetism is indeed due to molecular coupling (Fig. 2a  inset). However, the amount 

of Cu and C60 is also increased as we grow more layers. In order to ensure that the 

magnetisation is not simply proportional to the amount of material deposited, we perform a 

related set of measurements where the total sample thickness is kept constant: 9 nm of Cu and  

81 nm of C60, but split into different number of C60/Cu repeats (SI, Fig. S.6). There, the 

magnetism also increases with the number of interfaces; e.g. magnetic moment of [C60(16.2 

nm)/Cu(1.8 nm)]x5 > moment of [C60(27 nm)/Cu(3 nm)]x3. However, trying to split the 

sample into Cu films of ~1.5 nm or thinner results in discontinuous layers and a drop in the 

magnetisation. This thickness and interface dependence of the magnetisation could not arise 

from contaminants, and X-ray spectroscopy did not show the presence of impurities (SI, Figs. 

S.7-S.11). 
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Magnetometry measurements show that the magnetisation is dependent on the thickness of 

the metal but not on that of the molecular film as long as the latter is continuous and smooth 

(~10-20 nm). However, magnetometry by itself cannot determine where the magnetisation is 

located or how much of it corresponds to each material. Conversely, low energy muon spin 

rotation (ȝSR) provides a magnetic profile of the sample27 and has been applied successfully 

to other metallo-molecular systems.3 Here, a beam of almost fully polarised positive muons 

(ȝ+) is moderated to keV energies so that their tunable stopping range is tens to hundreds of 

nm. The local polarisation at the ȝ+ stopping depth is probed through the detection of decay 

positrons, preferentially emitted along the muons� spin direction.  

We use this technique to study two samples: Cu-C60 is a magnetic multilayer with the 

structure (from the bottom): Ta(5)/C60(20)/Cu(2.5)/C60(50)/Au(10) �thickness in brackets in 

nm. Cu-Al2O3-C60 is a decoupled, diamagnetic reference multilayer with Al2O3 layers in 

between the Cu and C60 (Fig. 3a). The uppermost gold film slows injected µ+ and protects the 

inner layers from oxidation. The total sample structure is designed to allow the active layers 

to be probed with a range of accessible µ+ energies and to maximise the stopping profile at 

the regions of interest, i.e. close to the Cu-C60 interface. The Cu thickness is chosen to obtain 

the highest magnetisation (Fig. 2a). Muon stopping profiles and further experimental details 

can be found in the SI, section §S.3 and Figs. S.12-S.13.  

Muons with 4 keV implantation energy probe the identical uppermost C60(50)/Au(10) 

layers of both samples. Nevertheless, the zero field ȝSR measurements at 250 K demonstrate 

a significant difference: for the magnetic Cu-C60 sample a fraction of  ≈10% of the muon spin 

polarization is rapidly lost -indicating that about 10% of the region sampled by the muons is 

affected by the magnetism (Fig. 3b). This points to additional sources of magnetic flux in the 

Cu-C60 sample. In this region, the additional flux most likely arises from stray dipolar fields, 
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since at low temperatures (20 K) we find that 75% of the ȝ+ implanted in the C60 layer form a 

bound electron-muon state called muonium which can only be observed in a non-magnetic 

environment.28,29 This strongly indicates that the C60 layer is for the most part free of 

magnetic moments, and suggests that the magnetism is localized at the Cu-C60 interface. Due 

to the presence of muonium in C60 the data analysis is difficult, but further support for this 

scenario comes from the energy/depth dependence of the ȝSR data at low and high 

temperatures. At 20 K the observable muonium fraction decreases in the magnetic Cu-C60 

sample as one approaches the Cu layer (SI, Fig. S.14). Analogously, at 250 K the difference 

between the spectra of the two samples increases for the 6 keV data and is even greater at 8 

keV, the energy at which the muons most heavily sample the Cu layer (Fig. 3b). If the Cu 

were non-magnetic, one would expect an overall increase of the muon polarization, which is 

obviously not observed.  

Another means of locating the magnetism in the Cu-C60 sample is to study its ȝSR 

response in the zero field remanent state. Both samples contain an oscillation at 0.4 MHz due 

to muonium formed in semiconducting C60. After applying an external field of 300 Oe, this 

signal is shifted to 0.6 MHz, which we attribute to a small residual field of approximately 0.3 

Oe in the apparatus. Nonetheless, the remanent 8 keV ȝSR spectra shown in Fig. 3b are 

clearly different from the virgin spectra for the magnetic Cu-C60 sample, while only subtle 

changes can be observed for the non-magnetic reference sample Cu-Al2O3-C60. The striking 

new feature related to the remanent state of Cu-C60 is an additional oscillation at ≈0.75 MHz 

which is not observed for the non-magnetic Cu-Al2O3-C60 (Fig. 3c). This new frequency can 

be naturally explained by an additional magnetic field of 0.1 Oe at the muonium site in close 

proximity to the Cu layer. The amplitude of this signal follows the fraction of ȝ+ stopped in 

the Cu layer (Fig. 3d), while the non-magnetic signal at 0.6 MHz is anti-correlated to this 
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fraction.  Altogether, the low energy ȝSR data fully support the notion of a magnetic moment 

being localized in the metallic layer and the immediate Cu-C60 interface. 

To search for the origins of the induced magnetisation, we have modelled the Cu-C60 

interface via Density Functional Theory (DFT; SI Section §S.4). The molecular roughness of 

the C60 films has been accounted for via several interface models based on: i. the single 

crystal 7-vacancy Cu(111) reconstruction,20 ii. C60 encapsulation into adsorbed Cu(111) films 

(C60@Cu), and iii. Cu(111) growth into the pits of the C60-film (Cu@C60), see Fig. 4a. 

Regardless of the adopted DFT flavour (SI, Figs. S.15-S.19), we find a non-magnetic ground 

state for all the considered interfaces. With the exception of the thicker C60/slab interfaces 

and C60@Cu models prepared with short (1.5-2 Å) initial Cu-C distances, all the models 

exhibit a convex (positive) curvature of DOS(EF) �see figure 4b. Within the mean-field 

itinerant electron model (SI, Fig. S.20), convex DOS(EF) can lead, for sufficiently high 

external magnetic fields, to a spontaneous first-order para to ferromagnetic metamagnetic 

transition. For the computed DOS(EF) of the Cu-C60 interface models, the critical field (Hc) 

for the metamagnetic transition sharply decreases with increasing values of the Stoner 

exchange (Is) as [1-IsDOS(EF)]3/2.  

Atom-resolved analysis of the Is parameter reveals up to a factor 4 change of the exchange 

strength at the Cu-C60 interfaces (Fig. 4c). Magnetic hardening up to a factor of three has 

been previously reported for magnetic cobalt atoms contacted to ʌ-conjugated molecules.5  

The computed values of Is (from 0.86 eV for bulk Cu to up to >2.5 eV for interfacial Cu-

atoms) suggest viable para to ferro metamagnetic transitions for fields lower than 1 kOe for 

thin Cu layers (Fig. 4d). On this basis, we may attribute the measured ferromagnetism to a 

transition of the Cu-C60 system in magnetic fields of 0.3-5 kOe generated during sample 

deposition and preparation (see Methods). Our DFT calculations predict that 77 to 95% of the 
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magnetisation in the Cu-C60 system will then be distributed in the metal (SI, Table S.8 and 

Figs. S.21-S.26), in good agreement with the muon spectroscopy data.   

 Although the substantial electron transfer from the Cu-layers to C60 (≥1.6 e-/C60 

depending on the model; SI, Table S.7) is effective in altering the curvature of DOS(EF) and 

increasing Is, the calculated DOS(EF)×Is  product remains less than unity (SI, Table S.6), 

leaving the Stoner criterion unfulfilled. However, magnetometry and muon spectroscopy 

provide conclusive evidence for the emergence of magnetism at Cu/C60 interfaces. This is 

probably correlated with a sharp decrease of five orders of magnitude in the ferro-

metamagnetic critical field made possible by C60-induced magnetic hardening of Cu. Similar 

effects due to charge transfer could also take place in other hybrid metallo-organic17 and d0 

magnetic systems.30 In order to maximise the potential of this effect, it should be possible to 

look for molecules with large electron affinity such as polyoxometalates and metals with a 

large exchange integral such as zinc. However, good band and structural matching will be 

needed to obtain significant results. Manipulating the charge transfer by applying electric 

potentials or through energy band matching could lead to applications in molecular memories 

or devices such as spin capacitors. 
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Figure legends 

Figure 1: Effect of molecular interfaces. Schematics and room temperature magnetisation for 

a Ta(5)/[C60(15)/Cu(2)]x5/Al(5) and a Ta(5)/[C60(15)/Al(3)/Cu(2)/Al(3)]x5 samples -film 

thickness is in brackets in nm. The Cu-to-C60 charge transfer and interface reconstruction 

results in significant changes in the DOS of the metallic film and a band splitting that leads to 

magnetic ordering. On the other hand, an Al spacer between both materials screens the charge 

transfer from the 3d transition metal and stops the band splitting.  

Figure 2: Room temperature magnetisation for Cu and Mn films. Dashed lines are 

exponentially modified Gaussian fits. Error bars in thickness constitute the film roughness 

and in magnetisation they are calculated as the error of the mean. a. Dependence of the 

magnetisation with the Cu film thickness for a total of 145 samples with the structure 

Ta(5)/[C60(10-20)/Cu(t)/C60(10-20)]x1-5/Al(5). Films with t 寄 1-1.5 nm are discontinuous.  

Inset: Magnetic moment vs. number of C60(15)/Cu(2.5) interfaces �the moment is roughly 

proportional to the number of interfaces. b. As a. for Mn, with 96 samples measured. The 

magnetisation in Mn films is smaller than for Cu, but propagates for a longer distance. Inset: 

Out-of-plane and in-plane magnetisation measurements of a [C60(15)/Mn(2.5)]x4 sample. 

Figure 3: Muon spin spectroscopy (ȝSR) at 250 K. Error bars are the standard error in ~106 

events. a. Schematic of the experiment and samples measured: Cu-C60: 

[Ta(5)/C60(20)/Cu(2.5)/C60(50)/Au(10)]; and the control Cu-Al2O3-C60: 

[Ta(5)/C60(20)/Al2O3(4)/Cu(2.5)/Al2O3(4)/C60(50)/Au(10)].  Far-right: raw hysteresis loops. 

b. Zero field ȝSR spectra for 4, 6, 8 and 16 keV muon implantation energies. Tables show the 

fraction of muons stopped in each layer/sample. At 8 keV, zero field spectra are shown 

before (closed symbols) and after an applied magnetic field of 300 Oe (remanent state � open 

symbols), evidencing clear differences in the Cu-C60 sample. c. Oscillation frequencies from 

fits to the data plotted in b.  Only in the Cu-C60 sample, a new signal at ~0.75 MHz attributed 
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to the emergent magnetisation is observed in remanence. d. The polarisation amplitude of the 

magnetic remanent signal at 0.75 MHz tracks the fraction of muons stopped in the Cu 

(maximum at 8 keV), whereas the signal associated to muonium at 0.6 MHz is anti-correlated 

to it. 

Figure 4: DFT simulations and metamagnetic modellling. a. Schematic of the molecularly 

rough Cu-C60 interface with: atomically flat C60-Cu contacts (green square), C60 inclusion in 

Cu-film (C60@Cu; red square) and Cu-inclusion in pits of the C60-film (Cu@C60; black 

square). The C60@Cu-1.5(55v) model includes 55 Cu vacancies. The optimised atomic 

structures are reported and labelled in SI, Figs. S.15-S.19. b. Total DOS around the Fermi 

energy (EF) for bulk-Cu and the Cu-C60 interface models. c. Atom-resolved analysis of  the 

Stoner exchange integral for the Cu-atoms as a function of the shortest Cu-C60 distance. d. 

The critical magnetic field (Hc) for spontanous ferromagnet metamagnetic transition as a 

function of Is for the models of computed positive DOS(EF) curvature in (b). The horizontal 

black line marks a typical magnetic field during sample preparation. Shaded area are possible 

values for Is in the different geometries. 
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Methods Magnetic measurements were taken using a superconducting quantum 

interference device operated as a vibrating sample magnetometer (SQUID-VSM or SVSM) 

model MPMS3 from Quantum Design with resolution better than 10-8 emu. The thin films 

were deposited on 0.5 mm thick Si/SiO2 substrates. Metals were deposited by DC magnetron 

sputtering at a pressure of approx. 2.5 mbar (24 sccm of Ar; 10-8 mbar base pressure) with a 

deposition rate of 1-3 Å/s. C60 films were deposited by thermal evaporation from a sublimed, 

99.9% purity source in an alumina boat in the same chamber at ~10-8 mbar and with 

deposition rates of 0.5-1 Å/s. Alumina films were grown via plasma oxidation of Al films: O2 

flow of 76 SCCM, 35 mA current. Oxygen is highly detrimental to the emergent magnetism, 

and samples grown in a poor vacuum (Ptotal ≥ 2×10-8 or PO2 ≥ 5×10-10 mbar) show no 

magnetisation. Ta seed layers are used to improve the sample roughness. Our thermally 

sublimated C60 films are relatively rough when compared to sputtered metallic films (~1 nm 

RMS roughness for C60 vs. <0.5 nm in metals). The metallic films are continuous and there is 

no significant diffusion into the molecular film as seen in low angle X-rays (SI, Fig. S.3). 

Cross-sections of representative samples were analysed by transmission electron microscopy 

and showed the metallic layers to be continuous and the C60 layers to be polycrystalline (Fig. 

S.27). The films experience a magnetic field of ~0.3 kOe during growth due to an in-plane 

magnet and the field from the magnetron gun. They are also subject to fields of ~1-5 kOe 

during loading and centring in the SVSM �needed to position the sample with respect to the 

SQUID sensor.  

Low energy muon spin spectroscopy31 utilizes positive muons to provide a probe of local 

magnetisation. Positive muons (µ+) are implanted into a sample and decay into a detectable 

positron and a neutrino/anti-neutrino pair. Due to charge parity violation, there is a preferred 

direction of emission of the positrons along the muons� spin vector. Determining the direction 

of the positron decay allows the precession of the muon spin to be determined and, therefore, 



13 

 

the local field at the muon implantation site. A polarized high intensity beam of energetic 

(MeV) positive muons32 is obtained from the decay of ʌ+, generated by a proton beam 

impinging on a graphite target. After moderation in a cryogenic solid Ar moderator where the 

beam polarisation is conserved33 the anti-muons are re-accelerated electrostatically to keV 

energies and transported by electrostatic elements to the sample. Positrons emitted from 

muon decay are detected by two plastic scintillator rings and the difference between the flux 

observed at these two detectors is used to determine the instantaneous spin direction of 

implanted positive muons as a function of time. The muon asymmetry data plot is then 

calculated as: A(t) = [NL(t)-NR(t)]/[NL(t)+NR(t)], where NL/R(t) are the background 

corrected decay histograms of the left and right positron detector, respectively. There, the 

error of each bin count n is given by the standard deviation of n. The errors of each bin in 

A(t) are then calculated by standard error propagation. 

Standard, fixed spin-moment34 and non-collinear van der Waals (vdW) corrected Density 

Functional Theory (DFT) simulations were executed via the Projected Augmented Wave 

(PAW) method as implemented in the VASP program.35 We used the PBE exchange-

correlation (XC) functional,36 a 400 eV plane-wave energy cut-off, (0.2 eV, 1st order) 

Methfessel-Paxton electronic smearing,37 and a 10 symmetry irreducible k-point grid for the 

C60/7vac Cu(111)-4x4 models. For C60@Cu(111)-8x8 and Cu(111)-8x8@C60 models only 

one k-point was used. The adopted atomic-force threshold for geometry optimization was 

0.02 eV Å-1. For the 7vac model we relaxed the topmost 5 Cu-layers together with the all the 

C60 atoms. All the atoms of the C60@Cu(111)-8x8 and Cu(111)-8x8@C60 models were 

relaxed.  In all cases, a vacuum separation of at least 12 Å was present between replicated 

images of the interface models. 

31 Bakule, P. & Morenzoni, E. Generation and applications of slow polarized muons. 
Contemporary Physics 45, 203-225 (2004). 
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Review Letters 72, 2793-2796 (1994). 
34 Schwarz, K. & Mohn, P. ITINERANT METAMAGNETISM IN YCO2. Journal of Physics F-Metal 

Physics 14, L129-L134 (1984). 
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using a plane-wave basis set. Physical Review B 54, 11169-11186 (1996). 
36 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. 
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