
 Open access  Proceedings Article  DOI:10.1109/SP.2016.57

Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser
Fingerprints — Source link 

Pierre Laperdrix, Walter Rudametkin, Benoit Baudry

Institutions: Lille University of Science and Technology

Published on: 23 May 2016 - IEEE Symposium on Security and Privacy

Topics: Web API, Client-side scripting, Comet (programming), Web navigation and Rich Internet application

Related papers:

 How unique is your web browser

 Online Tracking: A 1-million-site Measurement and Analysis

 Cookieless Monster: Exploring the Ecosystem of Web-Based Device Fingerprinting

 The Web Never Forgets: Persistent Tracking Mechanisms in the Wild

 FPDetective: dusting the web for fingerprinters

Share this paper:    

View more about this paper here: https://typeset.io/papers/beauty-and-the-beast-diverting-modern-web-browsers-to-build-
11o42fyvc6

https://typeset.io/
https://www.doi.org/10.1109/SP.2016.57
https://typeset.io/papers/beauty-and-the-beast-diverting-modern-web-browsers-to-build-11o42fyvc6
https://typeset.io/authors/pierre-laperdrix-5b1kihi9y6
https://typeset.io/authors/walter-rudametkin-16kpdobl6j
https://typeset.io/authors/benoit-baudry-1kffyph4gj
https://typeset.io/institutions/lille-university-of-science-and-technology-3a96arhi
https://typeset.io/conferences/ieee-symposium-on-security-and-privacy-tlo3eqjw
https://typeset.io/topics/web-api-29qcu5l2
https://typeset.io/topics/client-side-scripting-29hfer3s
https://typeset.io/topics/comet-programming-c88o4qfv
https://typeset.io/topics/web-navigation-vjhikm6m
https://typeset.io/topics/rich-internet-application-15n2ggdd
https://typeset.io/papers/how-unique-is-your-web-browser-1xn7buol0n
https://typeset.io/papers/online-tracking-a-1-million-site-measurement-and-analysis-42cncn7l62
https://typeset.io/papers/cookieless-monster-exploring-the-ecosystem-of-web-based-1szghm13xx
https://typeset.io/papers/the-web-never-forgets-persistent-tracking-mechanisms-in-the-3clgbulx9j
https://typeset.io/papers/fpdetective-dusting-the-web-for-fingerprinters-3hc6us13yy
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/beauty-and-the-beast-diverting-modern-web-browsers-to-build-11o42fyvc6
https://twitter.com/intent/tweet?text=Beauty%20and%20the%20Beast:%20Diverting%20Modern%20Web%20Browsers%20to%20Build%20Unique%20Browser%20Fingerprints&url=https://typeset.io/papers/beauty-and-the-beast-diverting-modern-web-browsers-to-build-11o42fyvc6
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/beauty-and-the-beast-diverting-modern-web-browsers-to-build-11o42fyvc6
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/beauty-and-the-beast-diverting-modern-web-browsers-to-build-11o42fyvc6
https://typeset.io/papers/beauty-and-the-beast-diverting-modern-web-browsers-to-build-11o42fyvc6


HAL Id: hal-01285470
https://hal.inria.fr/hal-01285470v2

Submitted on 14 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Beauty and the Beast: Diverting modern web browsers
to build unique browser fingerprints

Pierre Laperdrix, Walter Rudametkin, Benoit Baudry

To cite this version:
Pierre Laperdrix, Walter Rudametkin, Benoit Baudry. Beauty and the Beast: Diverting modern web
browsers to build unique browser fingerprints. 37th IEEE Symposium on Security and Privacy (S&P
2016), May 2016, San Jose, United States. hal-01285470v2

https://hal.inria.fr/hal-01285470v2
https://hal.archives-ouvertes.fr


Beauty and the Beast: Diverting modern web

browsers to build unique browser fingerprints

Pierre Laperdrix

INSA-Rennes & INRIA

Rennes, France

pierre.laperdrix@insa-rennes.fr

Walter Rudametkin

University of Lille & INRIA

Lille, France

walter.rudametkin@univ-lille1.fr

Benoit Baudry

INRIA

Rennes, France

benoit.baudry@inria.fr

Abstract—Worldwide, the number of people and the time spent
browsing the web keeps increasing. Accordingly, the technologies
to enrich the user experience are evolving at an amazing pace.
Many of these evolutions provide for a more interactive web (e.g.,
boom of JavaScript libraries, weekly innovations in HTML5), a
more available web (e.g., explosion of mobile devices), a more
secure web (e.g., Flash is disappearing, NPAPI plugins are being
deprecated), and a more private web (e.g., increased legislation
against cookies, huge success of extensions such as Ghostery and
AdBlock).

Nevertheless, modern browser technologies, which provide the
beauty and power of the web, also provide a darker side, a rich
ecosystem of exploitable data that can be used to build unique
browser fingerprints.

Our work explores the validity of browser fingerprinting in
today’s environment. Over the past year, we have collected
118,934 fingerprints composed of 17 attributes gathered thanks
to the most recent web technologies. We show that innovations
in HTML5 provide access to highly discriminating attributes,
notably with the use of the Canvas API which relies on multiple
layers of the user’s system. In addition, we show that browser
fingerprinting is as effective on mobile devices as it is on desktops
and laptops, albeit for radically different reasons due to their
more constrained hardware and software environments. We also
evaluate how browser fingerprinting could stop being a threat
to user privacy if some technological evolutions continue (e.g.,
disappearance of plugins) or are embraced by browser vendors
(e.g., standard HTTP headers).

Index Terms—browser fingerprinting; privacy; software diver-
sity

I. INTRODUCTION

The world wide web has revolutionized communication in

just a few decades. The number of users and the time spent on

the web is constantly growing. Accordingly, the technologies

to enrich the user experience are evolving at an amazing

pace. Each technology has its purpose. Modern Javascript

libraries allow creating ever more dynamic and interactive web

applications. Users are bringing the web with them, wherever

they go, by means of mobile devices such as cellphones and

tablets. Browser and protocol specifications, such as HTML5,

are redefining the limits of what web applications can do. The

browsers themselves are rapidly changing and have become

competitive testing grounds for numerous new technologies.

Surprisingly, what were once ubiquitous technologies, such

as the Flash, Silverlight, QuickTime, and Java plugins, are

quickly becoming relics of the past. At the same time,

concerned web user’s are becoming more aware of certain

practices that jeopardize their privacy and comfort, as can be

seen by the immense popularity of browser extensions like

AdBlock, Ghostery, Disconnect and many others.

Browsers are our gateway to the web. And to provide rich,

satisfying and beautiful services, websites require knowledge

about the browser and its environment. Through the differ-

ent APIs and technologies that have been created, modern

browsers freely provide websites with detailed information

regarding the hardware and software configuration, allowing

websites to better exploit the user’s resources. Well behaving

websites only ask for what is needed to provide their beautiful

services, but the beast is hiding in the bushes, small differences

between users’ systems can be exploited by attackers by asking

for as much information as possible.

Browser fingerprinting consists in collecting data regarding

the configuration of a user’s browser and system when this user

visits a website. This process can reveal a surprising amount of

information about a user’s software and hardware environment,

and can ultimately be used to construct a unique identifier,

called a browser fingerprint. The privacy implications are

important because these fingerprints can then be used to

track users. This threat to privacy is extremely serious as

assessed by the recent studies of Nikiforakis et al. [1] or

of Acar et al. [2] that show the wide adoption of browser

fingerprinting. Meanwhile, large companies such as Google

implicitly announce its adoption (e.g., Google’s privacy policy

update of June 2015 indicates that they use “technologies to

identify your browser or device” [3], which can be interpreted

as the inclusion of browser fingerprinting in their identification

technologies).

Our work provides an in-depth analysis of the extent to

which today’s web provides an effective means to uniquely

identify users through browser fingerprinting. This analysis

relies on more than 118,000 fingerprints, which we collected

through the AmIUnique.org website. The fingerprints are rich

and include the values of 17 attributes. We access some of

these attributes thanks to the most recent web technologies,

such as, the HTML5 canvas element (as initially suggested

by Mowery and colleagues [4]), as well as through the

WebGL API. These fingerprints reveal detailed information

about a browser and its software and hardware environment.

We show that innovations in HTML5 provide access to highly
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discriminating data. In addition, we provide the first extensive

study about browser fingerprinting on mobile devices, which

are quickly becoming the main platform for browsing the

web [5]. Through empirical evidence, we show that browser

fingerprinting is effective on mobile devices despite having

software environments that are much more constrained than

on desktops and laptops. In fact, the discriminating attributes

for mobile devices differ greatly from their desktop and laptop

counterparts.

Our empirical observations indicate that, while recent web

technologies enrich the user experience, they also provide

access to a wide range of information that are easily combined

into a fingerprint that is most likely unique. The tension

between the comfort of web browsing and the will to remain

anonymous is currently clearly in favor of comfort, to the detri-

ment of privacy. Yet, the disappearance of severely discrim-

inating attributes on desktops (e.g. obtained through Flash),

and the absence of such attributes on mobile devices, allows

us to believe it is possible to improve privacy and anonymity

on the web while still retaining a modern and comfortable web

experience. We speculate on possible technological evolutions

in web browsers and we calculate their impact on browser

fingerprinting. Our scenarios range from the definitive death

of Flash (49% of the visitors on AmIUnique.org had Flash

disabled), to the premature disappearance of JavaScript .

We show that minor changes in web technologies would

have a major effect on the identification capacity of browser

fingerprinting.

Our key contributions are:

• We provide a 17-attribute fingerprinting script that uses

modern web technologies.

• We perform the first large-scale study of Canvas finger-

printing by following a test reported by Acar et al. [6]

along with other JavaScript attributes. We show that

canvas fingerprinting is one of the most discriminating

attributes.

• We demonstrate the effectiveness of mobile device finger-

printing with 81% of unique mobile fingerprints in our

dataset despite the lack of plugins and fonts. We show

that the wealth of mobile models (different vendors with

different firmware versions) result in very rich user-agents

and very revealing canvas usage.

• We explore scenarios of possible technological evolutions

to improve privacy, and we simulate their impact on

browser fingerprinting using our dataset. Notably, we

find out that removing plugins and having generic HTTP

headers could reduce desktop fingerprint’s uniqueness by

a very strong 36%.

The paper is organized as follows. Section II describes our

script and provides descriptive statistics about our dataset.

Section III investigates the impact of the most recent tech-

nology on fingerprint diversity and section IV details the

analysis of mobile fingerprint diversity. Section V evaluates

the impact of possible future scenarios on fingerprint-based

identification, section VI discusses the related work while

section VII concludes this paper.

II. DATASET

We launched the AmIUnique.org website in November 2014

to collect browser fingerprints with the aim of performing an

in-depth analysis of their diversity. The first part of this section

presents the set of attributes that we collect in our browser

fingerprinting script and the technique we use to collect them.

Then, we give a few general descriptive statistics about the

118,934 fingerprints that serve as our dataset. We finish this

section with a series of tests to compare our dataset with the

only other available set of fingerprint statistics, provided by

Eckersley in 2010 [7].

A. AmIUnique.org

1) Fingerprinting script: We implemented a browser fin-

gerprinting script that exploits state-of-the-art techniques [4],

[6] as well as some new browser APIs. The complete list of

attributes is given in the ‘Attribute’ column of Table I. The

‘Source’ column indicates the origin of each attribute (HTTP,

JavaScript or Flash). The ‘Distinct values’ and ‘Unique values’

columns give a global overview of the most discriminating

attributes in a fingerprint. Finally, the last column displays

a complete example of a browser fingerprint. The top 10

attributes have been presented by Eckersley. Most of the 7

attributes at the bottom of the table have been discussed in

other works. Yet, we are the first to collect them on a large

scale basis and to combine them as part of a fingerprint. We

detail these 7 attributes below

• List of HTTP headers: When connecting to a server,

browsers send the user-agent, the desired language for a

webpage, the type of encoding supported by the browser,

among other headers. Some software and browser exten-

sions modify or add headers, giving extra details about

the device’s configuration. Being defined in the HTTP

protocol, these headers can always be acquired by the

server and do not depend on JavaScript.

• Platform: The value in the “navigator.platform" property

provides information about the user’s operating system.

While this information is already in the user-agent, we

collect the ‘platform’ value to detect modified or incon-

sistent fingerprints, e.g., in case the returned value is

different from the one in the user-agent.

• Do Not Track/Use of an ad blocker: These two attributes

are directly related to privacy and the values can help us

differentiate privacy-conscious users from others.

• WebGL Vendor and Renderer: Described by Mowery et

al. [4], these two attributes were added with the HTML

WebGL API to give information on the underlying GPU

of the device. We provide extensive details about the

contents of these attributes in section III.

• Canvas: Introduced by Acar et al. [6] and fully explained

in section III-A, the HTML5 Canvas element gives us

the ability to perform tests on both the hardware and

the operating system by asking the browser to render a

picture following a fixed set of instructions.

https://amiunique.org/


TABLE I
BROWSER MEASUREMENTS OF AMIUNIQUE FINGERPRINTS WITH AN EXAMPLE

Attribute Source
Distinct

values

Unique

values
Example

User agent HTTP header 11,237 6,559
Mozilla/5.0 (X11; Linux x86_64) AppleWe-
bKit/537.36 (KHTML, like Gecko) Chrome/
41.0.2272.118 Safari/537.36

Accept HTTP header 131 62 text/html,application/xhtml+xml,application/xml;q=
0.9,image/webp,*/*;q=0.8

Content encoding HTTP header 42 11 gzip, deflate, sdch

Content language HTTP header 4,694 2,887 en-us,en;q=0.5

List of plugins JavaScript 47,057 39,797
Plugin 1: Chrome PDF Viewer. Plugin 2: Chrome
Remote Desktop Viewer. Plugin 3: Native Client.
Plugin 4: Shockwave Flash...

Cookies enabled JavaScript 2 0 yes

Use of local/session stor-
age

JavaScript 2 0 yes

Timezone JavaScript 55 6 -60 (UTC+1)

Screen resolution and
color depth

JavaScript 2,689 1,666 1920x1200x24

List of fonts Flash plugin 36,202 31,007 Abyssinica SIL,Aharoni CLM,AR PL UMing
CN,AR PL UMing HK,AR PL UMing TW...

List of HTTP headers HTTP headers 1,182 525 Referer X-Forwarded-For Connection Accept Cookie
Accept-Language Accept-Encoding User-Agent Host

Platform JavaScript 187 99 Linux x86_64

Do Not Track JavaScript 7 0 yes

Canvas JavaScript 8,375 5,533

WebGL Vendor JavaScript 26 2 NVIDIA Corporation

WebGL Renderer JavaScript 1,732 649 GeForce GTX 650 Ti/PCIe/SSE2

Use of an ad blocker JavaScript 2 0 no

It should be noted that the WebGL Vendor and WebGL

Renderer attributes were added after our site was launched. We

isolated the results obtained from these two attributes (values

collected after fingerprint number 45,474).

We tested other attributes for inclusion in the fingerprints,

but the results were inconclusive and we decided to discard

them. We designed a test that renders 3D volumes through the

WebGL API, as first tested by Mowery et al. [4]. However,

after an early analysis of more than 40,000 fingerprints, the

test proved to be too brittle and unreliable since a simple

page reload with a different window size on a single device

could change the value of this test. Appendix B goes into

more details on this WebGL test. We also tested the collection

of information based on the device’s hardware performance,

like the Octane JavaScript benchmark, but they proved to be

too long and too intensive to execute. Finally, we included

other Flash attributes that proved to be useful to detect

inconsistencies, but did not increase fingerprint uniqueness.

More details can be found in Appendix C.

2) Data collection: AmIUnique.org is a website dedicated

to browser fingerprinting, aimed both at collecting data about

device diversity and at informing users about the privacy

implications of fingerprinting. All visitors are informed of our

goal with links to both our privacy policy and FAQ sections,

and they have to explicitly click on a button to trigger the

collection of their device’s fingerprint.

When the user initiates the connection to the page that

contains our fingerprinting script, the server immediately col-

lects the HTTP headers. Then, if the user has not blocked

JavaScript, the browser runs the script that collects the bulk

of the fingerprint data. If Flash is present, we go one step

further and collect additional data. Our script takes a few

hundred milliseconds to create a fingerprint. The contents of

each fingerprint is dependent on the browser, its configuration,

and the hardware and software environment it is running in.

We distinguish three main categories of fingerprints in our

dataset: those with JavaScript and Flash activated (43% of

the fingerprints), those with JavaScript activated but not Flash

(41%), and those with no JavaScript, and hence, no Flash

(16%). Given that our work focuses on fingerprinting modern

browsers and at analyzing the importance of the attributes in

Table I, we do not consider fingerprints with no JavaScript.

Fingerprints without JavaScript only include values for the

HTTP headers (i.e., 5 attributes), which drastically removes

most of the functionality we are studying.

To prevent collecting multiple copies of the same fingerprint

from the same user, we store a cookie on the user’s device with

a unique ID, and we also keep a hashed version of the IP



address. These two pieces of information allow us to identify

returning devices, which represent a negligible part of our

dataset.

We communicated our website on Slashdot, Framasoft,

Clubic, social media channels like Facebook and Twitter, and

newspapers like Le Monde. As of February 15th, 2015, we

collected 142,023 fingerprints, which were then reduced to

118,934 once we removed the fingerprints without JavaScript

for this study. However, because our website focuses on a very

specific subject, our visitors are likely saavy Internet users who

are aware of potential online privacy issues. Hence, our data is

biased towards users who care about privacy and their digital

footprint, and their devices might have fingerprints different

than those we could collect from a more general audience.

B. Descriptive statistics

Tables I and II summarize the essential descriptive statistics

of the AmIUnique dataset. Table II presents the distribution

of plugins, fonts and headers in our dataset. To obtain these

numbers, we decomposed each list of values into single

elements and we studied how common they are by looking at

the number of fingerprints in which each element is present.

We divided the results from the plugins, fonts and headers

into three categories: the ones that belong to less than 1%

of collected fingerprints, the ones present in less than 0,1%

of fingerprints, and the ones that appear in only one or two

fingerprints.

Unique and distinct values: The ‘Distinct values’ column

in Table I provides the number of different values that we

observed for each attribute, while the ‘Unique values’ column

provides the number of values that occurred a single time in

our dataset. For example, attributes like the use of cookies or

session storage have no unique values since they are limited to

“yes” and “no”. Other attributes can virtually take an infinite

number of values. For example, we observed 6,559 unique

values for the user-agent attribute. This is due to the many

possible combinations between the browser, its version and

the operating system of the device. It is extremely likely that

visitors who use an exotic OS with a custom browser, such as

Pale Moon on Arch Linux, will present a very rare user-agent,

thus increasing the likelihood of being identified with just the

user-agent.

These numbers show that some attributes are more discrim-

inating than others, but they all contribute to building a unique

and coherent fingerprint.

Plugins: We observed 2,458 distinct plugins, assembled in

47,057 different lists of plugins. They cover an extremely wide

range of activities, as for example, reading an uncommon file

format in the browser (e.g. FLAC files with the VLC Browser

plugin), communicating with an antivirus or a download client,

launching a video game directly in the browser, site-specific

plugins for added functionality, etc. Some plugins are so

specific that they leak information beyond the computer, like

the company the user works for or the brand of smartphone,

camera or printer he or she uses. 97% of plugins appear in

less than 1% of collected fingerprints and 89% in less then

TABLE II
SUMMARY OF STATISTICS

Attr. Total <1% FP <0,1% FP < 3 FP

Plugin 2,458 2,383 (97%) 2,195 (89%) 950 (39%)

Font 223,498 221,804 (99%) 217,568 (97%) 135,468 (61%)

Header 222 205 (92%) 182 (82%) 92 (41%)

0,1%. A lot of plugins are created for precise and narrow uses

allowing their users to be easily identified.

Fonts: We observed 221,804 different fonts, assembled

in 36,202 different lists of fonts. This really high number

shows the incredible wealth that exists: fonts for support

of an additional alphabet, fonts for web designers, fonts for

drawing shapes and forms, fonts for different languages, etc.

On average, a Windows or Mac user has two to three times the

amount of fonts of a Linux user. Also, 97% of fonts appear

in less than 0,1% of fingerprints and a little less than 2/3 of

them are only in one or two fingerprints. These percentages

show how efficient a list of fonts can be for fingerprinting and

transitively how critical it can be for users who want to protect

their privacy. However, this list is provided through the Flash

plugin, which is progressively disappearing from the web. We

will see in section V that removing access to the list of fonts

has a small impact on identification.

HTTP headers: We observed 222 different HTTP headers,

assembled in 1,182 different lists of headers. New headers are

added to the standardized ones for different reasons and from

different sources. Some examples include the following:

• The browser. For example, the Opera browser on smart-

phones adds a X-OperaMin-Phone-UA header, and the

Puffin browser adds a X-Puffin-UA header.

• A browser extension. For example, the FirePHP extension

for Firefox adds the x-FirePHP and the x-FirePHP-

Version headers to each HTTP request.

• The network on which you are connected. Some headers

show the use of proxies or protection systems.

As indicated in Table II, 182 headers out of 222 appear in

less than 0,1% of the collected fingerprints, and 92 of them

come from only one or two fingerprints. These statistics mean

that some HTTP headers are highly discriminating and their

presence greatly affects the uniqueness of one’s fingerprint.

C. Statistical validity of the dataset

This section presents a series of tests to compare our dataset

with the fingerprinting statistics provided by Eckersley in

2010.

1) Mathematical treatment:

Entropy: We use entropy to quantify the level of identifying

information in a fingerprint. The higher the entropy is, the

more unique and identifiable a fingerprint will be.

Let H be the entropy, X a discrete random variable with

possible values {x1, ..., xn} and P (X) a probability mass

function. The entropy follows this formula:

H(X) = −
∑

i

P (xi) logb P (xi)



TABLE III
NORMALIZED ENTROPY FOR SIX ATTRIBUTES COLLECTED BOTH BY

PANOPTICLICK AND AMIUNIQUE

Attribute AmIUnique Panopticlick

User agent 0.570 0.531

List of plugins 0.578 0.817

List of fonts 0.446 0.738

Screen resolution 0.277 0.256

Timezone 0.201 0.161

Cookies enabled 0.042 0.019

We use the entropy of Shannon where b = 2 and the result is

in bits. One bit of entropy reduces by half the probability of

an event occurring.

Normalized Shannon’s entropy: To compare both the AmI-

Unique and Panopticlick datasets, which are of different sizes,

we use a normalized version of Shannon’s entropy:

H(X)

HM

HM represents the worst case scenario where the entropy is

maximum and all values of an attribute are unique (HM =
log

2
(N) with N being the number of fingerprints in our

dataset).

The advantage of this measure is that it does not depend

on the size of the anonymity set but on the distribution of

probabilities. We are quantifying the quality of our dataset

with respect to an attribute’s uniqueness independently from

the number of fingerprints in our database. This way, we can

qualitatively compare the two datasets despite their different

sizes.

2) Comparison with Panopticlick:

Entropy: Table III lists the normalized Shannon’s entropy

for six different attributes for both the AmIUnique and the

Panopticlick datasets. For fairness of comparison, we used

our dataset in its entirety by keeping fingerprints without

JavaScript. We observe that the entropy values for both

datasets are similar for all attributes except for the list of

plugins and the list of fonts.

For the list of plugins, it is still the most discriminating

attribute but a difference of 0.24 is present. It can be explained

by the absence of plugins on mobile devices which are

increasingly used to browse the web and by the lack of support

for the old NPAPI plugin architecture on Chrome since April

2015 (more details in section V).

For the list of fonts, a noticeable drop of 0.29 occurs

because half of the fingerprints in the AmIUnique dataset

were collected on browsers that do not have the Flash plugin

installed or activated. Since our fingerprinting script collects

the list of fonts through the Flash API, this means half of

our fingerprints do not contain a list of fonts, reducing its

entropy. The absence of Flash can be explained (i) by the lack

of Flash on mobile devices; (ii) by the fact that the visitors

of AmIUnique are privacy conscious and tend to deactivate

Flash. Yet, we notice that the entropy of the list of fonts is

still high.

The small value of entropy for the timezone shows that

our dataset is biased towards visitors living in the same

geographical areas. A higher level of entropy would have

meant a more spread distribution of fingerprints across the

globe.

Distribution of fingerprints: We compared frequency dis-

tributions w.r.t. anonymity set sizes from both datasets and

observed very similar trends. We also studied each attribute

separately and observed that the most discriminating attributes

are still the ones found by Eckersley with the addition of new

efficient techniques like canvas fingerprinting. More details on

the distributions can be found in Appendix D.

III. FINGERPRINTING WITH THE MOST RECENT WEB

TECHNOLOGIES

AmIUnique collects 17 attributes to form a browser finger-

print. Out of the 118,934 fingerprints that we study, 89.4% are

unique. In this section, we analyze how the attributes collected

with the most recent technologies (7 attributes at the bottom

of Table I) contribute to the uniqueness of fingerprints.

A. Canvas fingerprinting

The canvas element in HTML5 [8] allows for scriptable

rendering of 2D shapes and texts. This way any website

can draw and animate scenes to offer visitors dynamic and

interactive content. As discovered by Mowery and al. [4] and

investigated by Acar and al. [6], canvas fingerprinting can be

used to differentiate devices with pixel precision by rendering

a specific picture following a fixed set of instructions. This

technique is gaining popularity in tracking scripts due to the

fact that the rendered picture depends on several layers of

the system (at least the browser, OS, graphics drivers and

hardware).

1) Our test: The fingerprinting script used by AmIUnique

includes a test based on the canvas element. With this image,

we collect information about three different attributes of the

host device, as discussed below.

Figure 1 displays the image that we use, as it is rendered

by a Firefox browser running on Fedora 21 with an Intel i7-

4600U processor. Our test replicates the test performed by

AddThis and described in details by Acar et al [6]: print a

pangram twice with different fonts and colors, the U+1F603

unicode character and rectangle with a specific color. The only

adaptation is to change the position of the second string so that

it is not intertwined with the first one. More details about this

test are discussed below.

Fig. 1. Example of a rendered picture following the canvas fingerprinting test
instructions



(a) Windows 7 (b) Windows 10 (c) Linux (d) iOS

(e) Firefox OS (f) Android 4.3 and
before

(g) Android 4.4 (h) Android 5.0

(i) Android on
an LG device

(j) Android on a
Samsung device

(k) Android on
an HTC device

(l) Emoji not
supported

Fig. 2. Comparison of the “Smiling face with open mouth" emoji on different
devices and operating systems

Font probing: This test captures OS diversity. The script

tells the browser to render the same pangram (a string with

all the letters of the alphabet) twice. For the first line we force

the browser to use one of its fallback fonts by asking for a font

with a fake name. Depending on the OS and fonts installed

on the device, the fallback font differs. For the second line

the browser is asked to use the Arial font that is common in

many operating systems and is used for the hardware and OS

fingerprinting described next.

Device and OS fingerprinting: The last character of our

string may be the most important one. This character should

not be confused with an emoticon, which is a succession

of letters, numbers and punctuation marks like “:)" or “<3"

to describe an emotion. The character is an emoji [9].

Officially introduced in the Unicode standard 6.0 in 2010,

emojis are ideograms that represent emotions or activities.

The difference with emoticons is that emojis have their own

Unicode character and font developers must provide their

own implementation for a given emoji w.r.t. its description.

Consequently, emojis can be used for fingerprinting because

their actual representation differs between systems.

Figure 2 shows representations of the “Smiling face with

open mouth" emoji on different operating systems and mobile

devices. A square means that the browser has not found a

single font on the device that supports that emoji. The use

of emojis can be a powerful technique to uncover informa-

tion, especially on mobile devices where phone manufacturers

provide their own sets of emojis.

Hardware and OS fingerprinting: As demonstrated by

Mowery et al. [4], small pixel-level differences can be detected

between browsers when rendering images, even on the same

OS and browser. The second line of text of the canvas test uses

the Arial font. Although this font has the same dimensions

across operating systems, there are visible variations of pixels

in the final image due to differences in the rendering process.

The process to render an image is complex and depends

on both hardware and software (e.g. GPU, rendering engine,

graphic drivers, anti-aliasing, OS), and this test is affected by

variations in any of these layers. Interestingly, the test is also

relatively stable over time because users do not often change

the configuration of layers in the rendering process.

2) Influence of canvas fingerprinting for identification:

The strength of canvas fingerprinting comes from the fact

that it combines the three tests listed before. Alone, as a

simple rendered picture, the normalized entropy is at 0.491,

putting it in the top 5 of the most discriminating attributes.

However, because emojis reveal information about both the

OS and the device, it is possible to use canvas fingerprinting

to detect inconsistent fingerprints. For example, by checking

if the operating system in the user-agent matches the one

indicated by the emoji, we can verify inconsistencies in the

fingerprint to detect visitors who spoof their fingerprintable

attributes. Thus, the added value of canvas fingerprinting is

to strengthen the identity of a fingerprint. Moreover, one of

the advantages of canvas fingerprinting is that it is stable. You

can run it many times on the same computer and you will

have the same result every time, with little variance over time

(some variations can be observed if the user decides to update

drivers for example). In the end, canvas fingerprinting is an

important addition to browser fingerprinting.

B. WebGL fingerprinting

WebGL [10] uses the Canvas element described before to

render interactive 3D objects natively in the browser, without

the use of plugins. With the final specifications in 2011,

WebGL 1.0 is now supported in all major browsers.

1) Our test: The WebGL API, through the

WEBGL_debug_renderer_info interface (as the name indi-

cates, it is designed for debugging purposes), gives access to

two attributes that take their values directly from the device’s

underlying graphics driver. AmIUnique’s fingerprinting script

collects these two properties, namely:

• the WebGL vendor: name of the vendor of the GPU.

• the WebGL renderer: name of the model of the GPU.

These attributes provide very precise information about the

device. For example, we collected exact GPU names like

“NVIDIA GeForce GTX 660 Ti" or “Intel HD Graphics

3000". These two attributes also indirectly leak information

on your OS and its environment. For example, Chrome uses

the ANGLE backend [11] on Windows to translate OpenGL

API calls to DirectX API calls. Consequently, the following

WebGL renderer string indicates that the browser runs on a

Windows machine: “ANGLE (NVIDIA GeForce GTX 760

Direct3D11 vs_5_0 ps_5_0)". Same type of leak with the

presence of the “OpenGL engine" substring on Mac systems.

2) Influence of WebGL fingerprinting on identification: The

WebGL vendor and renderer had the potential to become a

highly discriminating attribute, but two factors greatly hamper



its utility. First, not all browsers give the unmasked version of

the vendor and renderer. Chrome provides this information

by default but Firefox has this information locked behind

a browser flag (“webgl.enable-privileged-extensions") and re-

turns a simple “Not supported" with our script. Second, a

non-negligible number of devices share the same hardware.

For example, a lot of laptops do not have a dedicated GPU

and they use the embedded Intel GPU inside their processor.

This reduces the uniqueness of some of the values that we

can observe. In the end, the WebGL API opens the door to

discriminating information but it is not accessible from every

browser.

C. Additional attributes

We collected the following attributes to study their utility to

discriminate browsers, to strengthen a fingerprint by verifying

values, and to detect inconsistencies.
Platform: Even though the platform attribute does not add

new information, it can be used to detect inconsistencies. For

example, on an unmodified device, if the browser indicates

in its user-agent that it is running on a Linux system, you

expect to see “Linux" as the value of the “platform" property.

Due to the nature of our website that incites users to modify

their browser, we flagged 5,426 fingerprints in our dataset as

being inconsistent. Some browsers gave completely random

values that had no meaning. Others used extensions to mask

the platform value. For example, one fingerprint had the value

"masking-agent", indicating that the Masking Agent extension

for Firefox [12] was installed. Finally, other browsers modified

their user-agent to mimic one from another operating system.

The problem was that the platform property was not modified

and the script was able to identify the true operating system

that the user was trying to hide.

Even with its low entropy, the platform property can prove

useful in cases where it is badly modified because it can make

some devices more prone to identification than others with

unique or unusual values.
Do Not Track & Ad blocker: These two attributes have

a very low-level of entropy, their values are either ‘Yes",

“No" or “Not communicated" (for the DNT preference).

Without the Do Not Track attribute, the percentage of unique

fingerprints drops by 0.07% which is negligible. The Ad

Blocker attribute is slightly better, with a drop of 0.5%,

but still insignificant compared to other attributes like the

user-agent or the list of plugins.

To conclude this section, the additional attributes collected

by AmIUnique are game changers: they strengthen finger-

prints, allow identification through inconsistency detection.

They also allow identification even when the list of fonts is

inaccessible because of the absence of Flash, and they provide

essential information about browsers on mobile devices as it

will be detailed in the next section.

IV. MOBILE FINGERPRINT DIVERSITY

Given the growth of mobile devices to browse the web, it is

essential to analyze how browser fingerprinting behaves in this
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Fig. 3. Comparison of anonymity set sizes on the list of plugins between
desktop and mobile devices

context. Our analysis of mobile device fingerprinting is based

on 13,105 mobile fingerprints. We select these fingerprints

from our dataset by analyzing the user-agents. If the user-

agent contains a substring that is present in a predefined set

(’Mobile’, ’Android’, ’iPhone’ or ’iPad’), the fingerprint is

selected as a mobile fingerprint, otherwise, it belongs to the

desktop/laptop category.

In this section, we first compare desktop/laptop fingerprints

with mobile ones. Then, we perform a detailed analysis of

mobile fingerprints, looking at differences between browsers

and between mobile operating systems.

A. Mobile and Desktop fingerprint comparison

Using the attributes from Table I, we succeeded in uniquely

identifying 90% of desktop fingerprints. This number is lower

for mobile fingerprints at 81%, yet still quite effective. At first

sight, the overall results are close. However, as we discuss in

this section, the discriminating attributes for mobile finger-

prints are very different from those for desktop fingerprints.

One factor is the lack of plugins in general, and Flash in

particular, for mobile devices. We also discuss the importance

of the new attributes collected through the HTML5 canvas and

WebGL elements on mobile device fingerprinting.

If we take a look at Figure 3, we can clearly notice an

important difference. For desktops, more than 37% of the

collected fingerprints have a unique list of plugins, while it is

at 1% for mobile devices. This is due to the fact that mobiles

were designed to take full advantage of HTML5 functionalities

and do not rely on plugins. For example, Adobe removed the

Flash player from the Google Play store in August 2012 as

part of a change of focus for the company [13]. Plugins are

considered to be unsuitable for the modern web and Google

states in their move to deprecate NPAPI support for their

Chrome browser that these plugins are a source of “ hangs,

crashes, security incidents, and code complexity" [14]. This

choice helps mobile device users gain some privacy with

regards to fingerprint uniqueness. The level of entropy of the

plugin attribute is close to zero (some iOS systems have the

QuickTime plugin and some Android systems reported having

Flash, possibly from legacy installations). The lack of plugins

also reduces information leaks that could come from them. In
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Fig. 4. Comparison of anonymity set sizes on the user-agent between desktop
and mobile devices

particular, mobile phones and tablets do not have the Flash

plugin, thus all the fingerprint attributes leaked through the

Flash API are unavailable.

Despite the unavailability of the two most discriminating

attributes from desktop fingerprints (list of fonts and plugins),

mobile fingerprints are still very much recognizable. This is

due to two main factors: very rich and revealing user agents

and very discriminating emojis.

Figure 4 shows that user-agents found on mobiles are

five times more unique than the ones found on desktops. In

our dataset, about 1 smartphone out of 4 is instantaneously

recognizable with just the user-agent. This is due to two

factors:

• Phone manufacturers include the model of their phone

and even the version of the Android firmware directly in

the user-agent.

Example:

Mozilla/5.0 (Linux; Android 5.0.1;

Nexus 5 Build/LRX22C) AppleWebKit

/537.36 (KHTML, like Gecko) Chrome

/40.0.2214.109 Mobile Safari/537.36

• On a smartphone, applications are slowly replacing the

default browser and they have access to a wide range

of personal information after the user has explicitly

granted specific permissions. The problem is any of these

information can be exposed for the world to see by

the application. We noticed in our dataset that a lot of

user-agents collected on mobile devices were sent by an

application and not by the native browser.

Example with the Facebook app where the phone car-

rier (Vodafone UK) and the exact model of the phone

(“iPhone7" = iPhone 6 Plus) is included in the user-agent:

Mozilla/5.0 (iPhone; CPU iPhone OS 8

_1_1 like Mac OS X) AppleWebKit

/600.1.4 (KHTML, like Gecko) Mobile

/12B436 [FBAN/FBIOS;FBAV

/20.1.0.15.10;FBBV/5758778;FBDV/

iPhone7,2;FBMD/iPhone;FBSN/iPhone

OS;FBSV/8.1.1;FBSS/2; FBCR/
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Fig. 5. Comparison of anonymity set sizes on the user-agent between Android
and iOS devices

vodafoneUK;FBID/phone;FBLC/en_GB;

FBOP/5]

Sometimes, even the model of the phone can give

away your phone carrier. One fingerprint reported “SM-

G900P". It is a Samsung Galaxy S5 and the “P" is unique

to the Sprint phone carrier.

The second highest source of entropy for mobile devices

comes from canvas fingerprinting. Mobiles have unique hard-

ware impacting the final rendered picture as explained in

section III-A and emojis can also be really discriminating

between two devices. As seen in Figure 2, some manufacturers

have their own set of emojis and even between different

versions of Android, the emojis have evolved, splitting the

Android user base into recognizable groups.

In the end, desktop and mobile fingerprints are somehow

equally unique in the eyes of browser fingerprinting even

though the discriminating information does not come from

the same attributes.

The complete details of attributes’ entropy between desktop

and mobile devices can be found in Table A of the Appendix.

B. Comparison Mobile OS and browsers

More than 97% of mobile fingerprints collected on AmIU-

nique are either running Android or iOS: 7,416 run on Android

and 5,335 on iOS. How diverse is the set of fingerprints

coming from both of these operating systems?

Figure 5 shows the size of anonymity sets for user-agents on

both Android and iOS devices. We can see that user agents

on Android devices expose more diversity with three times

as many users being in an anonymity set of size 1 (9% for

iOS devices and 35% for Android devices). This is due to the

wealth of Android models available on the market. Moreover,

our dataset may not be representative enough of the global

diversity of Android devices so these percentages may be

even higher in reality. For iOS devices, the diversity is still

high but much less pronounced since users share devices with

identical configurations. We can notice a trend where half of

the collected iOS fingerprints are in really large anonymity

sets. The fact that Apple is the only manufacturer of iOS

devices shows in this graph.
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Fig. 6. Comparison of anonymity set sizes on the user-agent between Chrome
and Firefox on mobile devices

We saw in the previous section that user-agents can give

really discriminating information on the user’s device. Some

smarpthones running Android give the exact model and

firmware version of their phone. Looking at Figure 6, user

agents from the Chrome mobile browser are ten times more

unique than user agents from the Firefox browser (40% against

less than 4%). This can be explained by the fact that the

Chrome browser is the default browser on Android and it

is automatically installed on every devices. When a phone

manufacturer builds its tailored firmware to be delivered to its

clients, the embedded Chrome browser has a user-agent with

information on the corresponding phone model and Android

version. On the other side, Firefox which can be downloaded

from the Google Play Store does not contain this type of

information because the store only offers a generic version

for every Android mobile and it does not change its user-

agent during its installation. Firefox indirectly provides a much

better protection against fingerprint tracking by not disclosing

device-related information.

You can find below two fingerprints collected from the same

device but with a different browser: the first with Chrome, the

second with Firefox.

Mozilla/5.0 (Linux; Android 4.4.4; D5803

Build/23.0.1.A.5.77) AppleWebKit

/537.36 (KHTML, like Gecko) Chrome

/39.0.2171.93 Mobile Safari/537.36

Mozilla/5.0 (Android; Mobile; rv:34.0)

Gecko/34.0 Firefox/34.0

V. ASSESSING THE ROBUSTNESS OF FINGERPRINTING

AGAINST POSSIBLE TECHNICAL EVOLUTIONS

Web technologies evolve very fast, and we have seen in

previous sections that some recent evolutions limit fingerprint-

based identification (e.g., no Flash on mobile devices), while

others open the door to increased identification (e.g., WebGL

reveals fine grained information about the GPU).

In this section, we explore 6 potential evolutions that web

technology providers (browsers and app developers, standard-

ization organizations) could set up. We demonstrate that they
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Fig. 7. Comparison of anonymity set sizes between devices with and without
Flash

would limit the effectiveness of browser fingerprinting by

simulating their impact on our dataset. The first two scenarios

are based on current trends in web technologies, while the

others are more speculative and based on the observations

made in previous sections. It should be noted that we do not

estimate the impact of scenarios no4 and 5 since we can hardly

predict which attributes would be affected and how. We also

treat scenario no6 separately, due to its extreme nature.

Scenario no1 - The definitive disappearance of Flash

The Flash plugin is progressively disappearing. It has been

deprecated on all smartphones, tablets and mobile devices used

to browse the web. On laptop and desktop browsers, Flash’s

security flaws have progressively created mistrust in its users.

Click-to-play is becoming standard on most browsers. In the

meantime, the number of web applications that replace Flash

with JavaScript and HTML5 is also growing. These phenom-

ena let us plausibly foresee the definitive disappearance of

Flash.

Interestingly, Flash is still present in 80% of our Desktop

fingerprints. Among these cases, 71.7% have it activated,

26.3% are using click-to-play protections, and 2.0% block

Flash, likely by a browser extension.

Impact of scenario no1: Figure 7 shows the impact of the

Flash plugin on fingerprint uniqueness. The “No Flash” bar

shows statistics over our complete dataset (for the 60,617

fingerprints that have Flash, we simulate its absence by re-

moving the attributes obtained through Flash). The “Flash”

bar is computed with the subset of fingerprints that have Flash,

since it is not possible to simulate the presence of Flash on

fingerprints that don’t have it. We uniquely identify 95% of

the browsers that have Flash, while this is reduced to 88%

for those without Flash. The sizes of the anonymity sets are

notably small, with less than 0.6% of the fingerprints in a

set of size 50 or greater. These numbers confirm that browser

fingerprinting in a Flash-less future is certainly possible, and

that the wealth of fingerprintable attributes compensates for

the lack of access to Flash specific attributes.

Scenario no2 - The end of browser plugins

In 2013, Google decided to stop supporting NPAPI plugins

in Chrome and to rely exclusively on the technology embedded
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Fig. 8. Evolution of the normalized entropy of plugins for different browsers
on desktop computers

in modern browsers and the functionalities offered by HTML5

and JavaScript to let developers extend the browser [14].

This has forced developers to migrate old plugins to newer

alternatives [15] or to drop their support. Nevertheless, since

its enforcement, it has the advantage of drastically reducing

the entropy of the list of plugins. In 2015, version 42 of

Chrome deprecated the support of NPAPI plugins by default

and version 45 permanently removed their support.

This radical evolution, and the absence of plugins on mobile

platforms, lets us foresee a more global evolution where

browsers no longer provide a plugin-based architecture. Yet,

this is challenging because plugins currently still provide a

large number of features (as discussed in section II-B, we

observed 2,458 different plugins in our dataset). Mozilla had

plans to hide unpopular plugins with a whitelist [16] but they

did not find a satisfying working solution that would not break

websites or functionality. In October 2015, they announced the

removal of NPAPI support by the end of 2016 [17].

Impact of scenario no2: To estimate the impact of this

scenario, we look at the entropy of plugins for Chrome since

Google decided to deprecate the support of NPAPI plugins.

Figure 8 shows the evolution of the normalized entropy of

plugins for the stable releases of Chrome since the launch

of the AmIUnique website. The last 4 stable versions of

Firefox were added for comparison. Up to version 42, the

normalized entropy of the list of plugins was above 0.8. Since

the release of version 42, the entropy of the list of plugins

has dropped below 0.5. This improvement is significant and

the effects are getting bigger with the release of version 45

where the NPAPI support is permanently dropped (the entropy

is not at zero since there are small differences in the plugin

list between operating systems). Removing plugin support

definitely impacts desktop fingerprints and it seems that their

use in browser fingerprinting is becoming limited.

Scenario no3 - Adherence to the standard HTTP headers

A major source of information for browser fingerprinting

comes from application and system developers that add ar-

bitrary information in headers by either modifying existing

headers (e.g., the user-agent) or by adding new ones. Yet,

the Internet Engineering Task Force (IETF) has standardized

a list of fields for HTTP headers. The current diversity in

the contents of the user-agent field results from a very long

history of the ‘browser wars’, but could be standardized today.

This scenario explores the possibility that technology providers

converge on a standard set of HTTP header fields, and that they

follow the standard.

Impact of scenario no3: To estimate the impact of adherence

to standard HTTP headers, we simulate the fact that they are

all the same in our dataset. On desktops, the improvement is

moderate with a decrease of exactly 8% from 90% to 82%

in overall uniqueness. However, on mobile fingerprints, we

can observe a drop of 21% from 81% to 60%. This illustrates

the importance of headers, and especially the user-agent, for

mobile fingerprinting and the fact that generic user-agents are

essential for privacy.

Combining scenarios no1-2-3: The biggest surprise of this

analysis comes from combining the 3 scenarios. For mobile

devices the results are significant but not overwhelming, the

number of unique fingerprints drops by 22%. However for

desktop devices, the percentage drops by a staggering 36%,

from 90% to 54%. This means that if plugins disappear and

if user-agents become generic, only one fingerprint out of two

would be uniquely identifiable using our collected attributes,

which is a very significant improvement to privacy over the

current state of browser fingerprinting.

Scenario no4 - Reduce the surface of HTML APIs

The potential disappearance of Flash and plugins will oc-

cur only if developers find suitable replacements with rich

HTML and JavaScript features. Consequently, HTML APIs

keep growing, providing access to an increasing number of

information about the browser and its environment. As we

saw in section III, the WebGL and canvas elements provide

important information for identification. There are potentially

many more APIs that leak identifying information.

Setting the best trade-off between rich features and privacy

is a critical and difficult choice when setting up new APIs.

Developers debate extensively on this kind of trade-off [18].

Yet, it is possible to foresee that future API developments,

combined with informed studies about privacy such as the

recent work by Olejnik and colleagues [19], will lead to

reduced APIs that still provide rich features.

Scenario no5 - Increase common default content

This scenario explores the possibility that browser or plat-

form developers increase the amount of default elements,
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which would be the only ones exposed publicly. For example,

we could envision a whitelist of fonts that are authorized to be

disclosed by the browser, as suggested by Fifield and Egelman

[20]. Such a list would contain the default fonts provided by

an operating system. This whitelist of fonts would also include

a default encoding for emojis that is common to all versions

of the operating system, or even common to all platforms.

This evolution would aim at reducing the amount of infor-

mation disclosed to external servers. Yet, it should not prevent

the users from adding new fonts or new emoji renderings.

These customization decisions should be allowed without

increasing the risks for privacy.

Scenario no6 - The end of JavaScript

This last scenario explores the eventuality of coming back

to a more static web, without JavaScript. This is the most

unlikely today, as it would drastically reduce the dynamicity

and comfort of browsing. Yet, there are currently millions of

users who have installed the NoScript extension, which gives

control to users on which websites JavaScript is allowed to run.

We believe that it makes sense to explore the impact of such an

evolution on identification through fingerprinting. Currently by

disabling JavaScript, some sites do not render at all or render

improperly, while most popular sites lose functionality even if

properly rendered.

Figure 9 shows the impact of the unlikely return to a

more static web. The presence of JavaScript in today’s web

helps make 89.4% of browsers uniquely identifiable, while

removing JavaScript reduces the rate down to 29% on our

dataset. This percentage could be even lower if user-agents

become generic, as stated in scenario no3. In that case, only

7% of fingerprints would be unique. The privacy benefits are

undoubtedly significant but the cost to developers and to the

users’ comfort would be very high.

Conclusion

Here we have quantified the impact of possible technology

evolution scenarii. While some of them could become reality

in the not-so-distant future, others are less plausible. Yet, we

demonstrate that they can benefit privacy with a limited impact

on the beauty of current web browsing.

It is important to notice that tools already exist that can

mitigate browser fingerprinting in similar ways as the scenarii

discussed in this section. Ad and script blockers, like Ghostery

[21] or Privacy Badger [22], prevent known fingerprinting

scripts from being executed in the browser. The NoScript [23]

extension blocks the execution of unwanted JavaScript scripts,

which is a direct reflection of scenario no6. The Tor browser

team has modified Firefox to create a large range of defenses

against browser fingerprinting [24]: from the complete removal

of plugins to canvas image extraction blocking, their most

recent addition being a defense against font enumeration by

bundling a set of default fonts with the browser [25]. This

protection illustrates scenario no5 where the set of exposed

fonts is greatly reduced.

VI. RELATED WORK

We distinguish three main areas of the literature on browser

fingerprinting: analysis of client-side diversity, analysis of

fingerprinting adoption on the web and server-side scripts,

and advanced solutions to collect additional fingerprintable

attributes. While our work is mostly related to the first

category of work, we discuss the other two since they have

inspired some of the fingerprinting techniques included in

AmIUnique.org.

Client-side diversity: The work by Peter Eckersley is

closely related to our study. In 2010 he launched the Panop-

ticlick website, aimed at collecting device-specific information

via a script that runs in the browser [7]. The script created

browser fingerprints by collecting 10 different attributes that

characterized the browser and its execution platform. He

observed that 83% of visitors had instantaneously recognizable

fingerprints, and this number rose to 94% for browsers that

had the Flash or Java plugins enabled. He showed that the

list of fonts (collected through the Flash API) and the list of

plugins (collected through the JavaScript API) were the most

distinguishable attributes.

The key novelties of our work with respect to Eckersley’s

study are as follow: the fingerprints we collect are richer and

exploit some of the most recent web technologies (section

III shows the essential role of canvas fingerprinting); Eck-

ersley did not analyze mobile fingerprints separately from

the others, while we perform a detailed analysis of how

fingerprinting behaves for browsers on mobile devices; we

assess the effectiveness of browser fingerprinting against dif-

ferent technological evolution scenarios. It should also be

noted that the technological changes to the web since 2010

(e.g., the deprecation of the Netscape Plugin API, the steady

disappearance of Flash, the arrival of HTML5) have strongly

impacted browser fingerprinting, changing the importance of

various fingerprintable attributes.

Very few other works have investigated the behavior of

fingerprinting algorithms on client browsers. Yen et al. ana-

lyzed month-long datasets from Hotmail and Bing [26]. They

combined the user-agent with the IP address, and succeeded

in tracing back to a single host with 80% precision. While

this work is also about fingerprinting, it has a much narrower

https://amiunique.org/


focus than ours (they consider only the user agent) and they

do not consider the robustness of their approach, e.g., against

agent spoofers. Spooren et al. recently analyzed 59 mobile

device fingerprints [27] and concluded that “the fingerprints

taken from mobile devices are far from unique". Our findings

on mobile diversity are quite different (cf. section IV): 81%

of our 13,105 mobile fingerprints are unique. We see two

possibles reasons for the different conclusions: the scale effect

(our dataset is two orders of magnitude larger that Spooren’s);

Spooren et al. do not consider canvas fingerprinting, while

we demonstrate that the canvas test is essential to distinguish

mobile fingerprints. Finally, Boda et al. [28] showed that cross-

browser fingerprinting was feasible if enough data on the

underlying operating system was collected. With our study,

we did not explore this possibility since we do not know with

certainty when two different fingerprints are from the same

device but different browsers.

Adoption of fingerprinting on the web and server-side

scripts: Some radically different works investigate the extent

to which browser fingerprinting is adopted by web sites in the

wild. Although these works investigate the same phenomenon

as we do, the perspective is completely different, as are the

conclusions and lessons learnt.

Nikiforakis et al. [1] analyzed the fingerprinting scripts of

three popular commercial companies. They concluded that

user-privacy was on “the losing side" and that commercial

scripts used intrusive techniques to get the most data out of

every browser.

FPDetective [2] was the first study about the adoption of

browser fingerprinting on the web. Crawling the million most

popular websites, they demonstrated the wide adoption of

fingerprinting, and that fingerprinters completely disregard the

user’s Do Not Track preference. The same authors showed that

5.5% of the top 100,000 sites actively ran canvas fingerprinting

scripts on their home pages [6].

New techniques for richer fingerprints: Several works have

defined different ways to fingerprint devices or browsers in

order to better differentiate them. Mowery and Schacham

worked on the HTML canvas and WebGL elements [4], Mow-

ery et al. on benchmarking the performance of core JavaScript

operations [29], Mulazzani et al. checked the conformance

of the browsers’ JavaScript engines to the ECMAScript stan-

dard [30], Fifield et al. measured the onscreen dimensions of

font glyphs [20], and Olejnik et al. used the HTML5 Battery

Status API for fingerprinting purposes [19].

We kept only the work of Mowery and Schacha [4] in our

script because canvas and WebGL tests are light and can be

run in a matter of milliseconds. The other approaches take

either too much time (e.g. more than 3 minutes to test the

performance of JavaScript operations [29]), were too fragile

(e.g., the battery API elements [19]), or did not add any valu-

able information to the pool of attributes that we already had

(e.g. [20], [30]). We note that in general, new fingerprinting

techniques are complementary to our work because they can

be used as new distinguishing attributes in the fingerprinting

algorithm, allowing for better precision in uniquely identifying

browsers.

VII. CONCLUSION

In this work we analyzed 118,934 browser fingerprints col-

lected through the AmIUnique.org web site. Our work focuses

on the impact evolutions in modern web technology have had

on the ability to uniquely identify devices through browser

fingerprinting. We argue that modern web technologies provide

a much improved user experience, albeit to the detriment of

privacy.

The key insights from our study are as follows. First, our

observations confirm the results of previous studies on the ease

of fingerprinting in today’s ecosystem [6], [31]. Second, we

provide novel insights about the impact of the most recent

browser APIs, including the first large-scale analysis of the

HTML5 canvas on fingerprinting, as well as the influence of

recent trends, such as the decreasing presence of Flash and

other plugins on the web.

We also provide the first extensive analysis of fingerprints

collected from mobile devices: 81% of the mobile fingerprints

in our dataset are unique. We show that HTTP headers and

HTML5 canvas fingerprinting play an essential role in identi-

fying browsers on these devices. Furthermore, in the absence

of the Flash plugin to provide the list of fonts, there is no

longer any major discriminating attributes, thus identification

is based on the collection of many lesser attributes that appear

harmless by themselves, but when aggregated lead to unique

fingerprints.

Our dataset, and the associated observations, allow us to

evaluate the impact of possible evolutions in web technologies

on browser fingerprinting. We show that certain scenarios

would limit the detriment these technologies have on privacy,

while preserving the current trend towards an ever more

dynamic and rich web. Having generic HTTP headers and

removing browser plugins could reduce fingerprint uniqueness

in desktops by a strong 36%.
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APPENDIX A

NORMALIZED SHANNON’S ENTROPY FOR ALL

AMIUNIQUE’S ATTRIBUTES

Attribute All Desktop Mobile

User agent 0.580 0.550 0.741

List of plugins 0.656 0.718 0.081

List of fonts (Flash) 0.497 0.548 0.033

Screen resolution (JS) 0.290 0.263 0.366

Timezone 0.198 0.200 0.245

Cookies enabled 0.015 0.016 0.011

Accept 0.082 0.082 0.105

Content encoding 0.091 0.089 0.122

Content language 0.351 0.344 0.424

List of HTTP headers 0.249 0.247 0.312

Platform (JS) 0.137 0.110 0.162

Do Not Track 0.056 0.057 0.058

Use of local storage 0.024 0.023 0.036

Use of session storage 0.024 0.023 0.036

Canvas 0.491 0.475 0.512

Vendor WebGL 0.127 0.125 0.131

Renderer WebGL 0.202 0.205 0.165

AdBlock 0.059 0.060 0.029

APPENDIX B

OUR ATTEMPT AT A WEBGL TEST

As reported by Mowery et al. [4], the WebGL API can be

used to render 3D forms in the browser. With the help of the

three.js JavaScript library [32], we aimed to have a test that

renders three different forms:

• a sphere

• a cube

• a Torus knot

However, after analyzing more than 40,000 fingerprints, we

concluded that the test was too brittle and unreliable to draw

any conclusions from it. Indeed, if the user were to change the

size of its browser window or open the browser console, the

actual dimensions of the rendering context would be updated

inside the library and the rendering would differ with just a

simple page reload. Figure 10 shows three renderings of the

same test with three different window sizes on the same device.

APPENDIX C

ADDITIONAL FLASH ATTRIBUTES

For Flash, we also collected the following four attributes:

• Capabilities.language

• Capabilities.os

• Capabilties.screenResolutionX

• Capabilties.screenResolutionY

The language obtained through Flash is the devices main

language, but it is not as precise as the content language header

collected through HTTP. For the screen resolution, it can be

more interesting than the JavaScript value because Flash will

return the full resolution of a multi-screen setup and not the

resolution of a single screen. Finally, when analyzing the data

from the string collected from the OS property, it confirmed

what has been observed by Nikiforakis et al. [1] in 2013.

Depending on the OS and the browser, the information is often

generic, returning “Windows" or “Linux", but in some cases
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(a) 1920x1200 window

(b) 960x1200 window

(c) 1080x600 window

Fig. 10. Different renderings of the WebGL test on the same device

it returns the type of the OS with the exact version of the

kernel (for example, “Mac OS 10.8.2" or “Linux 3.18.4-1-

ARCH"). This level of detail could be used to forge an attack

against a vulnerable system, and it is surprising that little has

changed since it was originally reported. In the end, we did not

keep this information for our study because it did not increase

the number of unique fingerprints and would mainly serve to

detect inconsistencies (e.g., caused by User-Agent spoofers).

TABLE IV
STATISTICS OF ADDITIONAL FLASH ATTRIBUTES

Flash attribute
Distinct

values

Unique

values

Screen resolution XxY 584 329

Language 44 10

Platform 968 483

APPENDIX D

COMPARISON TO THE PANOPTICLICK STUDY

To complement section 2.3.2 of our paper that compares

our dataset with the one from Panopticlick [7], we recreated

the same graphs to show the impact of 5 years of browser

development on browser fingerprinting.

A. Distribution of fingerprints

If we compare both frequency distributions in Figure 11

w.r.t. anonymity set sizes, we can observe that the overall trend

is similar in both graphs with set sizes quickly dropping to

1. While Panopticlick has 83.6% of its fingerprints located

on the tail on the right of Graph 11a, AmIUnique presents a

slightly lower number on Graph 11b with 79.4% of fingerprints

that are unique in the database (fingerprints with and without

JavaScript).

B. Distribution of browsers

Figure 12 shows the distribution of surprisal for different

categories of browsers. We can see that the overall trend is

similar in both graphs. The main noticeable difference is the

number of browsers in each category. While the Panopticlick

dataset was constituted of mainly Firefox browsers followed

by Chrome and Internet Explorer, our dataset put Chrome and

Firefox at the same level with all the other browsers behind.

This shows the rapid growth of the Chrome userbase over the

last 5 years and the decline of Internet Explorer.

C. Anonymity set sizes

Figure 13 shows the size of anonymity sets for all attributes

if we consider them independently from each other. In our

case, the bigger an anonymity set is, the better it is for

privacy. If a value is in an anonymity set of size 1, it

means that the observed value is unique and is not shared by

another fingerprint. With all the attributes that we collected on

AmIUnique, we could not add all of them in Figure 13b for

readability reasons so we focused on attributes with the highest

level of entropy. If we look at the upper left part of both

Figure 13a and Figure 13b, we observe very similar results

and the most discriminating attributes on AmIUnique are still

the same as the ones observed by Eckersley (mainly fonts and

plugins) but with the addition of new efficient techniques like

canvas fingerprinting (see section III-A of the paper for more

information).
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(a) Panopticlick distribution (Fig. 3 of [7])
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Fig. 13. Number of users in anonymity sets of different sizes, considering each variable separately




