
This paper is included in the Proceedings of the

26th USENIX Security Symposium

August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the

26th USENIX Security Symposium

is sponsored by USENIX

Beauty and the Burst: Remote Identification of
Encrypted Video Streams

Roei Schuster, Tel Aviv University, Cornell Tech; Vitaly Shmatikov, Cornell Tech;

Eran Tromer, Tel Aviv University, Columbia University

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schuster

Beauty and the Burst:

Remote Identification of Encrypted Video Streams

Roei Schuster

Tel Aviv University, Cornell Tech

rs864@cornell.edu

Vitaly Shmatikov

Cornell Tech

shmat@cs.cornell.edu

Eran Tromer

Tel Aviv University, Columbia University

tromer@cs.tau.ac.il

Abstract

The MPEG-DASH streaming video standard contains an

information leak: even if the stream is encrypted, the

segmentation prescribed by the standard causes content-

dependent packet bursts. We show that many video

streams are uniquely characterized by their burst pat-

terns, and classifiers based on convolutional neural net-

works can accurately identify these patterns given very

coarse network measurements. We demonstrate that this

attack can be performed even by a Web attacker who

does not directly observe the stream, e.g., a JavaScript

ad confined in a Web browser on a nearby machine.

1 Introduction

Everything has a fingerprint, and so do encrypted video

streams. Transport-layer encryption hides the content but

not the network characteristics such as the number of bits

transmitted per second. Video streams are known to be

bursty [2, 32, 42]. If their traffic patterns are correlated

with content, an adversary who can measure them may

be able to identify the video being streamed.

There have been several attempts to use traffic analysis

to identify encrypted streamed content [1, 11, 43, 44, 46].

Existing techniques, however, generate many false posi-

tives, make “closed-world” assumptions (i.e., the adver-

sary must know in advance that the streamed video be-

longs to a small known set), or are not robust to noise in

the network or the adversary’s measurements.

Further, prior work assumes that the adversary can di-

rectly observe the encrypted video stream either at the

network layer (e.g., a malicious Wi-Fi access point) [11]

or physical layer (e.g., a Wi-Fi sniffer) [43, 46], or else

that the adversary’s virtual machine is co-located with

the user’s virtual machine [1]. These threat models do

not include Web and mobile attackers who can remotely

execute some confined code on the user’s machine (e.g.,

a malicious JavaScript ad within the browser) but cannot

directly observe the encrypted stream.

Our contributions. First, we analyze the root cause of

the bursty, on-off patterns exhibited by encrypted video

streams. The MPEG-DASH streaming standard (1) cre-

ates video segments whose size varies due to variable-

rate encoding, and (2) prescribes that clients request con-

tent at segment granularity. We demonstrate that packet

bursts in encrypted streams correspond to segment re-

quests from the client and that burst sizes are highly cor-

related with the sizes of the underlying segments.

Second, we demonstrate that this leak is a fingerprint

for about 20% of YouTube videos because their burst

patterns are highly distinct. The adversary can mea-

sure video fingerprints on his own network and then use

them to recognize videos streamed on the target network.

We also argue that if the streamed video does not be-

long to the set known to the adversary, it will not be

mistaken for one of the known videos. This ensures a

high Bayesian detection rate: if the adversary identifies a

streamed video, then this is likely not a false positive.

Third, we develop a new video identification method-

ology based on convolutional neural networks and evalu-

ate it on video titles streamed by YouTube, Netflix, Ama-

zon, and Vimeo. Our YouTube detector has 0 false pos-

itives with 0.988 recall, while the Netflix detector has a

false positive rate of 0.0005 with 0.93 recall. In concur-

rent independent work, Reed and Kranch achieved com-

parable results for identifying streamed Netflix videos

using direct network observations [44] (see Section 11).

Fourth, we demonstrate that video identification based

on burst patterns does not require direct access to the

stream. Our attack can be performed by a remote at-

tacker who serves JavaScript code (e.g., a malicious Web

ad) running under the confinement of the browser’s same

origin policy, possibly on a different device. For exam-

ple, if the user is watching Netflix on his TV using a

Roku streaming device, his content may be identified by

the JavaScript executing on a PC on the same local net-

work. The attack code saturates a shared network link

carrying the targeted video stream and uses the result-

USENIX Association 26th USENIX Security Symposium 1357

Figure 2.1: Features of a Wireshark capture of Episode

3 of Mad Men. The left-hand figure shows packet sizes

along the time axis (packet sizes may be larger than Eth-

ernet MTU because of TCP offloading [53])—observe

the pattern of buffering followed by the on/off steady

state. The right-hand figure shows the size of bursts; the

first, largest burst is the size of the buffer.

ing contention to obtain coarse estimates of the stream’s

traffic rates and identify the video. This attacker is much

weaker than malicious ISPs and Wi-Fi access points typ-

ically considered in the traffic analysis literature.

In summary, we (1) explain the root causes of burst

patterns in encrypted video streams, (2) show how to ex-

ploit these patterns for video identification in an “open-

world” setting, (3) develop and evaluate a noise-tolerant

identification methodology based on deep learning, and

(4) demonstrate how a remote attacker without direct ob-

servations of the network can identify streamed videos.

2 Information Leak in Video Streams

Video streams are bursty. Video streaming traffic

is characterized by an initial short period of buffering,

followed by the steady state of alternating “On” (short

bursts of packets) and “Off” periods—see Figure 2.1.

This pattern has been observed for a wide variety of ser-

vices, devices, clients, and locations [2, 32, 42].

To avoid creating unnecessary traffic, streaming

clients typically throttle their content downloads: after

the initial buffering, they download at between 1X and

2X the content presentation speed. Clients maintain a

target buffer size proportional to presentation time and

request downloads when the buffer is below this target.

Streamed video content is typically segmented at the

application layer. Even if packets are encrypted at the

transport layer (e.g., using TLS), their sizes and times of

arrival—and, consequently, the sizes of packet bursts and

inter-burst intervals—are visible to anyone watching the

network. This is a repeated theme in the traffic-analysis

literature [8, 12, 46]. If the observable traffic features are

correlated with application-layer segmentation, they can

leak information about the content of the stream.

MPEG-DASH standard. Modern video streaming ser-

vices have broadly adopted [34, 59] the MPEG-DASH

standard [49, 52] for Dynamic Adaptive Streaming over

HTTP (DASH, in short). DASH aims to maximize sev-

eral measures of quality of experience (QoE) while sup-

porting interoperability with popular streaming technolo-

gies. DASH specifies a client-server interface for stream

fetching that is independent of the content’s bitrate and

quality. It does not prescribe any particular fetching dis-

cipline, encoding of content, or its presentation. DASH

uses TLS for content confidentiality. Content may be ad-

ditionally encrypted for DRM purposes, but this does not

change its network characteristics.

Bursty, on/off behavior of video streams predates

DASH, but DASH has effectively standardized it. DASH

divides video content into segments based on presen-

tation time. The content is stored in segment-files on

the server. Each file contains a particular encoding of

one segment. When a streaming session is initiated, the

server sends to the client a manifest referencing the time

segments and the available encodings. To obtain the con-

tent, the client submits requests for individual segments.

The client may request segment-files of any available en-

coding depending on the presentation considerations and

dynamic evaluation of network conditions.

DASH standardizes a leak. Video compression and

encoding algorithms exploit the fact that different video

scenes contain different amounts of perceptually mean-

ingful information. All popular streaming services use

variable-bitrate (VBR) encoding, where the bitrate of

an encoded video varies with its content. Therefore,

DASH segments of roughly the same duration (in video-

presentation seconds) have very different sizes (in bytes).

DASH video is always streamed in segment-sized

chunks. Furthermore, a client requests a new segment

when its buffer is just below the target value, and the en-

tire segment finishes downloading long before the client

requests another one. Therefore, in a steady-state, on/off

stream, burst sizes are correlated with the on-disk seg-

ment sizes. The latter sizes, in turn, leak information

about the encoded content due to variable-rate encod-

ing. We conjecture that a suffix of the vector of segment

sizes, arranged in the order they are fetched from the

server (which corresponds to the order of presentation),

can be estimated from the observable characteristics of

encrypted streaming traffic, up to a small error induced

by the varying overheads of lower network layers.

Example. Action scenes, where a lot happens on the

screen, are typically encoded with a higher bitrate than

slower scenes. Figure 2.2 shows how the bitrate of an

excerpt from the “Iguana vs. Snakes” video [40] in the

“Planet Earth” series changes over time (based on an

MP4 file downloaded from YouTube). The video starts

with an intense chase scene as the iguana is escaping

from snakes. In the last 15 seconds, the iguana reaches

1358 26th USENIX Security Symposium USENIX Association

Figure 2.2: Bitrate of the “Iguana vs. Snakes” video.

higher ground and rests next to another friendly iguana.

To demonstrate this effect more systematically, we

created a 45-second “low action” scene by concatenat-

ing three copies of the 15-second footage of the resting

iguana, and a 45-second “high action” scene by concate-

nating 15-second footage from the height of the chase.

We then repeatedly alternated these scenes to craft an ar-

tificial 30-minute video, which we uploaded to YouTube

(as a private video). We played this video in a Chrome

browser configured with an HTTPS proxy. One of the

first HTTPS responses from the YouTube server is an

XML Media Presentation Description (MPD), which de-

scribes MPEG-DASH segmentation into 5-second seg-

ments. The MPD specifies the audio encoding (135 Kilo-

bits per second) and five video encoding options corre-

sponding to different resolutions: 144, 240, 360, 480,

and 720. Subsequent HTTPS responses contain audio

and 720p video for the requested segments. Audio and

video segment-files corresponding to a given time seg-

ment are fetched at roughly the same time, on two re-

spective HTTPS request-response pairs.

As this video is being streamed, we observe the ini-

tial buffering period of about 50 seconds, during which

segment-files are fetched at a rate higher than their pre-

sentation rate. Then the client reaches a steady state and

is fetching segment-files exactly every 5 seconds.

We used Wireshark to capture the same traffic en-

crypted under TLS. Figure 2.3 shows the buffer and burst

sizes of the “on” periods in the steady state. During

this steady state, when segments are fetched every 5 sec-

onds, burst sizes correspond to the sizes of segment-

files. When the segments with an escaping iguana are

being fetched, burst size increases. When the segments

with a resting iguana are being fetched, it decreases.

Because of the way this video was crafted, “low” and

“high” action—and the correspondingly high and low

burst sizes—alternate every 45 seconds (9 time seg-

Figure 2.3: Burst sizes when streaming a video with al-

ternating high- and low-bitrate periods. The first, largest

burst is the size of the client’s buffer.

ments). In a video stream with different content, the pat-

tern would have been different.

3 Attack Scenarios

3.1 Evaluated attack scenarios

On-path network attacker. If the attacker has passive

on-path access to the victim’s network traffic at the net-

work (IP) or transport (TCP/UDP) layers, he can directly

perform measurements needed for the attack. This in-

cludes malicious Wi-Fi access points, proxies, routers,

enterprise networks, ISPs, tapped network cables, etc.

Cross-site and cross-device attacker. Coarse measure-

ments of the victim’s stream can also be performed with-

out direct access. The attacker (1) saturates a network

link between the victim and the server, and (2) estimates

the fluctuations in the amount of congestion, which indi-

rectly reveal the victim’s traffic patterns. This is a special

case of timing side channels in schedulers [16, 25] that

can be exploited in a variety of attack scenarios.

We focus on remote attackers who can execute

JavaScript in the victim’s Web browser: rogue websites,

advertisers, analytics services, content distribution net-

works, etc. Their JavaScript is confined by the same ori-

gin policy [51], but it does not prevent the code from

using the above timing side channel to measure bursts in

a concurrent video stream as long as the stream and the

attacker’s own traffic share a network link. The client

receiving the stream may be running in a different tab

or browser instance on the same machine (a cross-site at-

tack) or on a different machine on the same local network

(a cross-device attack). For example, a smart TV may be

streaming a movie while the attacker’s JavaScript is run-

ning in a browser on a laptop on the same home network.

3.2 Other attack scenarios

There are several other scenarios where the attacker can

indirectly estimate the bitrate and other coarse features

of the victim’s video stream.

Wi-Fi sniffer. An attacker who is physically close to the

victim’s Wi-Fi network but not connected to it can set the

NIC of his PC or (rooted) smartphone to the promiscu-

USENIX Association 26th USENIX Security Symposium 1359

ous mode and estimate traffic rates by sniffing physical-

layer WLAN packets [3, 66]. If the connection is pro-

tected by 802.11, the attacker obtains frames in which

all data on top of the media access control (MAC) layer

(the lower sublayer of the link layer) is encrypted. This

attacker learns the direction of the frames (upstream or

downstream) and their sizes. He can also discard MAC-

layer management frames as identified by their headers.

Unlike an on-path attacker, a Wi-Fi sniffer cannot dis-

tinguish (1) session-layer packet retransmissions and the

original transmissions, nor (2) multiple TCP/IP flows on

the same link. Both factors introduce some noise into the

attacker’s observations. Under reasonable network con-

ditions, however, there will be few link-layer retransmis-

sions. We show that our JavaScript attack works even

with a noisy, flow-insensitive estimate of the burst size

(total number of bytes on the wire)—see Section 9.1. The

Wi-Fi sniffing attack should perform at least as well.

Fully remote attacker. A remote attacker who has no

foothold in the victim’s network can use the same net-

work congestion side channel as our JavaScript attack for

coarse-grained traffic measurement [15, 17, 23].

Shared-machine attacker. Our off-path attack is active:

it requires saturating the victim’s link in order to estimate

his traffic. If the attacker can execute code on the same

machine where the victim is streaming video (e.g., run

an app on the same smartphone or execute JavaScript in

a browser on the same PC), he may be able to estimate

traffic via other side channels, such as shared cache or

Linux virtual filesystems (sysfs and procfs) [41, 67].

4 Overview of the Attack

Create detectors. For every video file that the attacker

wants to identify, he constructs a detector algorithm that

determines, given measurements of a stream, whether the

stream is carrying this video file or not.

In this paper, we use machine-learning models as de-

tectors. To generate labeled training data, the attacker

streams the video of interest to his own computer and

captures the resulting traffic; he also streams other videos

as negative examples. This is repeated multiple times

(we used up to 100 samples of each video in our exper-

iments). The required capture length depends on the at-

tacker’s vantage point: we used 60 seconds per sample

for the Netflix on-path attacker, 5-6 minutes per sample

for the JavaScript attacker. In our experiments, we tar-

geted the first minutes of the stream, but this approach

works for any sufficiently long section of the video.

Critically, our detectors are network-agnostic, be-

cause the same segment-files streamed over different net-

works exhibit the same burst patterns. Therefore, the at-

tacker can train detectors using the data collected on his

own network, then use them to identify video streams on

another, target network (see Section 7.4).

Since our detectors identify a particular segmented file

and not the underlying content, the attacker needs a sepa-

rate detector for each segmented video he wants to iden-

tify. The same content served by different streaming ser-

vices or different CDN nodes of the same service could

have different encodings and segment-files. Moreover,

to maximize QoE under varying network conditions, the

same content usually has several encodings on the same

server (e.g., at different resolutions). YouTube and Net-

flix support a few dozen encodings [35, 65] but typically

no more than 10 per title and device type. The segment-

files streamed to the attacker when he is collecting train-

ing data must be identical to those streamed to the vic-

tim. In practice, we found that Netflix videos streamed

on Wi-Fi networks from different ISPs in the same city

have identical segmentation (see Section 7.4).

If the attacker’s client and network support the

highest-quality encoding, he can also get the service to

stream lower-quality encodings by downgrading through

the interface of the streaming application, or by imposing

traffic-shaping and policy limitations on his network.

Apply detectors. In the online phase of the attack, the

attacker measures the victim’s network traffic using one

of the methods from Section 3. Because video traffic

is very distinct and can be accurately recognized from

coarse-grained features [66], we assume that the attacker

can tell approximately when video playback begins.

He then applies his detectors to the collected measure-

ments to identify the streamed video or determine that it

is not one of the videos for which he has detectors.

5 Experimental Setup

5.1 Targets and attackers

As the streaming client, we used a Chrome browser run-

ning in an Ubuntu 14.04 VM on a Windows host with

an Intel i7-3720QM CPU. We also experimented with a

Roku Premiere streaming device (see Section 9.3).

The clients were connected to a university campus net-

work with over 105 Mbps upload and download band-

width (measured using [54]). We refer to it as the “train-

ing network.” For the cross-network experiments in

Section 7.4, we also used a campus Wi-Fi network (10

Mbps) and a home Wi-Fi network from a cable ISP (82

Mbps). We refer to them as “test networks.”

To evaluate on-path attacks, we assume that the at-

tacker directly observes the target stream as described in

Section 5.2. To evaluate off-path attacks, we assume that

the attacker executes his JavaScript client code either in

the same browser that is receiving the target stream (the

cross-site attack), or on a machine on the same local net-

work as the device that is receiving the target stream (the

cross-device attack). In both cases, the attacker’s client

1360 26th USENIX Security Symposium USENIX Association

is communicating with a colluding attack server.

In both the cross-site and cross-device scenarios, (1)

the attacker’s client and the recipient of the target stream

are behind a congested home router, while (2) the attack

server and the streaming server are outside this router,

in different Internet locations. Consequently, the target

stream and the attacker’s client-server communications

share a congested network link. In Section 9, we de-

scribed our setup for these experiments in more detail.

5.2 Data collection

We focused on four popular streaming services: Net-

flix, YouTube, Amazon, and Vimeo. For our proof-of-

concept experiments, we manually chose a few titles

from each service: 11 popular TV series, with up to 10

episodes per series, for a total of 100 titles from Netflix;

20 titles from YouTube; and 10 titles each from Amazon

and Vimeo. See Appendix C for the list of titles.

Additionally, we crawled YouTube starting from the

main page and the front pages of topical channels (e.g.,

sports and movies) and recursively following recommen-

dation links. The links on the channel front pages are

very popular, with over 100k views each. Our crawler

thus emulates user behavior: it starts with popular videos

and follows YouTube’s recommendations. This crawl

yielded links to 3,558 videos, to be used in Section 6.

Automated capture. For each title, we spawned a

Chrome browser instance and used a service-specific

“rewind” procedure so that playback commenced at the

beginning of the content. For videos with an initial title

sequence, this (non-unique) sequence is downloaded as

part of the initial buffering; the bursts in the on-off phase

correspond to the segments of unique content.

We captured the network traffic of each streaming ses-

sion for a certain duration (see below) using Wireshark’s

tshark [60]. For Amazon, Netflix, and Vimeo, the

application-layer protocol is TLS; for YouTube, it is ei-

ther QUIC, or TLS. We will refer to the collected data as

captures or captured sessions.

Occasionally, playback failed because of a Chrome

failure or network glitch. The resulting captures con-

tained very few bytes and we discarded them.

Feature extraction. From each capture, we kept only

the TCP flow with the greatest amount of bits and ex-

tracted the time series of the following flow attributes:

down/up/all bytes per second (BPS), down/up/all packet

per second (PPS), and down/up/all average packet length

(PLEN). To create uniformly sized vectors, we aggre-

gated the series into 0.25-second chunks by averaging

over 0.25-second intervals.

A burst is a sequence of points in a time series (ti,yi)
such that ti−ti−1 < I for some I (we used I = 0.5). When

the points correspond to arrival times and packet sizes,

bursts are presumably associated with the transmission

of higher-level elements such as HTTP responses (see

Section 2). A burst series is a series where every point

corresponds to a burst. The time of the burst is the mid-

point between the beginning and the end of the point se-

quence that forms the burst. The value of the burst is the

sum of the values of points in the sequence. We aggre-

gate bursts series by summing into 0.25-second chunks.

Netflix. We streamed each of the 100 titles one by one

and captured the first minute of network traffic for each

stream. This was repeated 100 times.

For the cross-network experiments, we chose a sub-

set consisting of 5 episodes of “Mad Men” and 5 other

titles. For each title in this subset, we captured 20 90-

second streaming sessions on the training network and

20 sessions on the test networks.

YouTube. We streamed and captured each of the 20

selected titles 100 times, and each of the 3,558 titles

from the automated crawl once. Encoding for YouTube

videos varies and bitrate can be less variable than for Net-

flix; also, the content is sometimes preceded by an ad.

Therefore, we took 4.5-minute Wireshark captures and

cropped the captured streaming flows to 3 minutes. For

2 of the 20 titles, the ad was so long that the capture of

the actual content was shorter than 3 minutes. We dis-

carded these and only used the remaining 18 titles, with

3-minute content captures for each.

We also downloaded actual 720p MP4 file video files

(as opposed to their network streams) for the 3,558 ti-

tles from the crawl, using the SAVEFROM.NET Web tool.

These files were used for measuring the uniqueness of

burst patterns, not for identification experiments.

Amazon and Vimeo. We streamed every title 100 times.

For Amazon, we captured 90 seconds of each stream. For

Vimeo, we noticed that burst patterns are very consistent

and strongly identifying, so we only needed to capture

60 seconds per stream.

Storage. After feature extraction, the data saved for our

attack experiments totals 1.2GB for Netflix, 2.3GB for

YouTube, and about 0.5GB each for Vimeo and Amazon.

6 From Leaks to Fingerprints

In Section 2, we explained how DASH leaks information

about the segment sizes of video files. We now show that

for 19% of YouTube files, this leak is actually a finger-

print: the sequence of segment sizes identifies the video

with virtually no false positives.

Modeling the server. We used the Bento4 MPEG-

DASH toolset [4] to process our 3,558 YouTube videos

(see Section 5.2) for standardized streaming, i.e., divide

them into time segments and create the manifests. We

opted for 5-second segments, which matches our obser-

vations of both Netflix and YouTube and is close to a

USENIX Association 26th USENIX Security Symposium 1361

recent recommendation [10]. We believe that the encod-

ing parameters of these videos are representative of other

YouTube videos. The MPEG-DASH client-server inter-

action induced by our simulated server is close to what

we empirically observed on YouTube (see Section 2).

Modeling the attacker. Let m be a video. When m is

streamed, let its trace t ∈ R
k be the sizes (in bytes) of

the first k bursts and let T m denote the probability distri-

bution of these traces. We assume that T m is the same

whether the video is streamed to the attacker’s client

(during training) or to the victim’s client (during iden-

tification). This is empirically justified in Section 7.4.

For the theoretical analysis in this section, we use

a very simple fingerprinting algorithm. For any v =
(v1, . . .vk) ∈R

k, define α(v)≡ (v1, . . .vk,v2−v1, . . .vk−
vk−1). Intuitively, α(v) accounts for both the absolute

magnitudes of segment sizes and their variability pattern.

During training, the attacker acquires n training traces

T S = {t1, . . . tn} drawn from T m. Let sm =mean(T S), the

element-wise average over T S. Training produces α(sm),
which is the attacker’s fingerprint of m.

During the attack, the attacker is given the victim’s

trace t ∈ R
k and computes its traceprint, α(t). The at-

tacker concludes that the victim is watching m if and only

if ‖α(t)−α(sm)‖1 ≤ B, where B = 3,500,000 bytes.

Attacker’s recall. To compute the recall, or true

positive rate, of this attack, we first estimate the error

α(t)−α(sm) by lower-bounding the probability that this

error is small: Prt←T m [‖α(t)−α(sm)‖1 < B].
We expect that the bigger the burst size, the bigger the

potential error. For example, the average size of bursts in

the “Iguana vs. Snakes” video is particularly high, over

1MB, vs. the average of 693K across the videos in our

set. We streamed this video 100 times, aggregated the

traces, and computed the 10-burst fingerprint. We then

computed the error for each trace (i.e., the discrepancy

between the attacker-measured traceprint and the finger-

print of the underlying video) and fitted a Gaussian dis-

tribution using SciPy’s Maximum Likelihood Estimator.

The expected value of the error is 41,643 bytes, standard

deviation is 24,970 bytes. Observe that B/7 is over 10

standard deviations away from the expectation of the er-

ror. Thus, Prt←T m [‖α(t)−α(sm)‖1 ≤ B/7]≥ 1−10−12,

for the aforementioned k = 10.

To estimate the error for k = 40 (as will be needed

later), we partition1 t ∈ R
40 into 4 contiguous blocks

of length 10 and apply the union bound on the prob-

abilities of error in each block and the difference el-

ements in α , i.e.,

∣

∣

∣
(ti− t j)− (sm

i − sm
j)
∣

∣

∣
for (i, j) ∈

(11,10),(21,20),(31,30). For each of the 7 elements

of α , the error is bounded by B/7 with probability

≥ 1− 10−12. Total error is thus bounded by B with

1With longer captures, we could have estimated this error directly.

very high probability, Prt←T m [‖α(t)−α(sm)‖1 ≤ B] ≥
1−7 ·

(

10−12
)

≥ 1−10−11, implying very high recall.

Attacker’s precision. Even if the distance between

the attacker-measured “traceprint” and the video’s finger-

print is small, the attacker may still misclassify the video

if its fingerprint is close to another one. We show that for

almost 20% of the videos in our YouTube dataset, such

mistake is unlikely (and indeed never occurs in practice).

Let D be the 3,558 videos in our YouTube dataset. For

m ∈ D, let zm ∈ R
k denote the series of sizes (in bytes)

of the first k segments of m, as produced by the server’s

segmentation of the corresponding MP4 files. We say

that a video has variable segment size if (1) the overall

bitrate is over 100 kBps, and (2) in zm, more than half of

the adjacent pairs differ by more than 110 kB. Let V be

the set of videos with variable segment sizes. We observe

that in our dataset, |V |= 671 (≈19% of D).

A collision is video pair m ∈ V,m′ ∈ D∪V such that

m 6= m′,

∥

∥

∥
α(zm)−α(zm′)

∥

∥

∥

1
≤ 2B. Then our attacker

could mistake m for m′ even if m’s traceprint is B-close

to the fingerprint (as must be the case with high proba-

bility). There are no such collisions in our dataset.

To estimate the attacker’s precision, we need to as-

sume that sm, the series of average burst sizes used to

compute the fingerprint, is similar to the correspond-

ing series of segment sizes zm in the following sense: if
∥

∥

∥
α(zm)−α(zm′)

∥

∥

∥

1
≥ 2B, then

∥

∥

∥
α(sm)−α(sm′)

∥

∥

∥

1
≥ 2B.

This assumption is empirically true. In general, we ex-

pect each burst size to be related to the corresponding

segment size by an affine function (accounting for the

constant and multiplicative overheads of the encoding

and headers added by each network layer).

It follows that no two fingerprints α(sm),α(sm′) are

2B-close in the L1 norm. Since with probability 10−11 a

traceprint α(t) (of a video m with variable segment size)

is B-close to the correct fingerprint α(sm) (by the recall

bound above), the probability that an attacker mistakes

t’s video for another one in our dataset is at most 10−11.

Discussion. This theoretical analysis demonstrates that

a significant fraction of YouTube videos are unique given

a rudimentary fingerprinting algorithm. This algorithm

yields a very strong detector for the videos that satisfy

the variable segment size criterion, which is 671 videos

out of 3,558 in our dataset. The attacker can easily check

whether a particular video satisfies this criterion.

While our dataset is small in comparison to the en-

tire YouTube, the extremely low error rate and complete

absence of collisions indicate that the attack should gen-

eralize. The false positive rate for the the videos satis-

fying the criterion is very low, which guarantees that the

Bayesian detection rate is high even if the base rate is

low (see Section 8).

1362 26th USENIX Security Symposium USENIX Association

In the following sections, we develop a more sophis-

ticated and accurate classification method based on ma-

chine learning, relax the simplifying assumptions made

in the theoretical analysis, and empirically evaluate our

method against popular streaming services.

7 Video Identification Using Neural Net-

works

Section 6 explains why DASH-based video streams are

fingerprintable, but the theoretical model underestimates

the capabilities of realistic attackers who can use traf-

fic features other than burst sizes (e.g., packet timing).

Moreover, the simple classifier based on L1 distance is

clearly suboptimal, e.g., it does not account for the asym-

metry of the error distribution. Also, the theoretical

model assumes that the attacker can reliably detect bursts

and is thus not robust to noisy network conditions.

A more sophisticated classifier would process more

and lower-level features and construct a more complex

model to characterize the network traces of a given video.

In this section, we use machine learning to construct such

classifiers. One plausible approach is to compute the

classifier of a video from its file, but we found it to be

relatively ineffective (see Appendix A). Instead, we use

multiple streams of the same content to train a classifier.

7.1 Background on CNNs

Deep learning [29] is a branch of machine learning based

on multi-layer artificial deep neural networks (DNNs).

DNNs have proved very effective for signal recognition

tasks such as speech transcription [19], image segmenta-

tion [14], image classification [28], and many others.

In a neural network, each layer of neurons does some

computation on its input and passes the output to the next

layer (or final output)—see Figure 7.1. The first, input

layer is a tensor representation of the input, e.g., pixels

in the case of image classification. The subsequent (low)

levels typically infer representations of the features of

the input, and the final (high) layers perform the learning

task (e.g., classification) given these features.

DNNs are good at capturing high-level concepts that

are easy for humans to agree on but hard to express for-

mally. In our case, we use DNNs to capture traffic-level

commonalities of the streaming sessions of a given ti-

tle, even in the presence of some traffic variations among

these sessions. Further, neural networks are flexible and

can leverage information from the low-level features,

such as packet lengths, as well as sequences of burst sizes

(as estimated from encrypted traffic). As input, they can

use any time series that characterizes the stream. We ex-

ploit this in both on-path and off-path attack scenarios.

Convolutional Neural Networks (CNNs) [9] are deep

neural networks whose lower layers apply the same lin-

ear transformation on many windows of the input data.

Figure 7.1: Our CNN architecture. k denotes the number

of feature types taken. n is the recording time in seconds

divided by the time-series sampling rate (0.25).

These layers are typically used to produce representa-

tions of local features (e.g., spatially local in an image,

or temporally local in a time series). These are suitable

for our setting, where the network events corresponding

to each DASH burst occur in close temporal proximity.

We use supervised training on a corpus that consists

of traffic measurements labeled with their correct class,

i.e., the identity of the corresponding video. Training

involves multiple epochs. During each epoch, an opti-

mization procedure processes a batch of training data and

adjusts the parameters in the functions computed by the

layers so as to minimize the error between the correct

classification and the output of the classifier. Learning is

successful only if (1) the classifier reduces the training

error, and (2) the reduced error rate generalizes to test

samples, i.e., inputs that the classifier was not trained on.

7.2 Our classifier

We use CNNs with three convolution layers, max pool-

ing, and two dense layers (see Figure 7.1). We train them

using an Adam [26] optimizer on batches of 64 samples,

with categorical cross-entropy as the error function.

The classifier is constructed using TensorFlow with

the Keras front end. For each task, we randomly shuffle

the samples, apply the 0.7-0.3 train-test split, and train

for a specified number of epochs. The dataset was nor-

malized on a per-feature basis: the time-series vector rep-

resenting a given feature in each sample was divided by

the maximum of the aggregated values of this feature.

Table 7.2 shows the training time, on a workstation

with Intel i7-5690X CPU and two NVidia Titan X GPUs.

For comparison, we also performed training in an Ubuntu

virtual machine on a commodity laptop with an i7-6600U

CPU (and no GPUs) running Windows 10; in this case

training was 35 times slower, but even so, the most

time-consuming training (that of the Netflix classifier for

1,400 epochs) took less than 10 hours.

USENIX Association 26th USENIX Security Symposium 1363

7.3 Classification results

We trained a separate classifier for each dataset and each

feature type listed in Section 5.2, as well as for each

traffic direction (inbound, outbound, or both). Table 7.2

shows the accuracy of these classifiers as the fraction of

correctly classified test samples.

The YouTube classifier is remarkably accurate. Not

only it achieves 99% accuracy, but it also distinguishes

20 known classes from a large “other” class (unknown

videos) with high probability. Furthermore, it works well

with any of the features. For example, it achieves 90%

accuracy given just the times of packet arrivals at a very

coarse granularity of 0.25-second intervals (i.e., the PPS

feature). This suggests that YouTube streams are partic-

ularly susceptible to adversarial identification.

Netflix 1/100 classifier. To gain some insight into how

accurate these classifiers are, consider the Netflix classi-

fier that was trained on the BPS feature for 1,400 epochs,

achieving 98% accuracy. Figure 7.3a shows the confu-

sion matrix. The classifier does not consistently mistake

any class for another. All mistakes but one happen just

once. This indicates that different classes do not collide

in the classifier’s internal representation.

Minimizing false positives. The output of the last, soft-

max layer of the neural network is traditionally inter-

preted as a vector of probabilities. The classifier’s pre-

diction is the class with the highest probability. We can

use this probability as a confidence measure.

Our goal is to ensure that the classifier produces no

false positives, at the cost of occasionally failing to detect

the match (false negatives). We set a confidence thresh-

old and only accept a match if the classifier’s confidence

is above the threshold. If confidence is below the thresh-

old, we intentionally classify the input as “other” regard-

less of the class chosen by the classifier.

Figure 7.3b shows the precision and recall of the clas-

sifier for various values of the confidence threshold. Pre-

cision and recall are calculated by aggregating the false

positives and false negatives of all classes except “other”.

Without any decrease in recall, we can achieve a false

positive rate of just 0.005 (precision of 0.995). By ac-

cepting a 0.07 false negative rate (0.93 recall), we obtain

a false positive rate of less than 0.0005, or precision of

0.9995, with just 1 false positive out of 2224 matches.

YouTube 1/18 classifier. Our YouTube classifier trained

for just 150 epochs on BURSTS achieves 0.994 accuracy.

Figure 7.4a shows the confusion matrix. Almost all mis-

classifications are for “other” (i.e., known titles not rec-

ognized), thus there are very few false positives.

Figure 7.4b shows the precision and recall of the

YouTube classifier as a function of the confidence thresh-

old. Even when the threshold is 0 (equivalent to simply

taking argmax of the classifier’s output), the false nega-

(a) Confusion matrix. The entries

off the diagonal are misclassifications.

Color in cell i, j denotes the number of

samples of class i classified as j.

(b) Precision vs. recall.

Figure 7.3: Netflix 1/100 classifier.

(a) Confusion matrix. The entries

off the diagonal are misclassifications.

The bottom row and rightmost column

are of the “other” class.

(b) Precision vs. recall.

Figure 7.4: YouTube 1/18 + “other” classifier.

tive rate is 0.01 (0.99 recall), and precision is better than

accuracy (0.995). By accepting a tiny, 0.002 drop in re-

call, we achieve zero false positives.

Using multiple feature types. The classifiers discussed

above use a single feature type and a one-dimensional in-

put layer (k = 1). We also tried more sophisticated clas-

sifiers that take in multiple features. In such an architec-

ture, we expect the same one-dimensional layer to pick

up localized attributes of different features. We used a

greedy search algorithm on the feature set space that be-

gins with an empty set of features and then adds the fea-

ture that maximizes test accuracy after training. Training

on multiple features was slower and did not produce sig-

nificantly more accurate classifiers in our experiments. It

is possible that a more elaborate neural network architec-

ture with k independent convolutional layers would work

better, albeit with slower training.

7.4 Cross-network training

To collect training data, the attacker must stream videos

and record traffic. He may be unable to do this on the

same local network as the victim, e.g., because that net-

work is secured, or because the attacker wants to identify

videos en masse for multiple users on different networks.

1364 26th USENIX Security Symposium USENIX Association

Dataset TIME EPOCHS PLENIN PLENOUT PLEN BPSIN BPSOUT BPS BURSTS BURSTSIN BURSTSOUT PPSIN PPSOUT PPS

Netflix 497 700 0.318 0.377 0.333 0.983 0.901 0.982 0.926 0.044 0.708 0.917 0.892 0.921

994 1400 0.301 0.474 0.340 0.983 0.895 0.985 0.959 0.949 0.757 0.918 0.881 0.931

YouTube 94 150 0.993 0.993 0.994 0.995 0.994 0.995 0.984 0.989 0.988 0.995 0.993 0.995

Amazon 88 700 0.895 0.925 0.917 0.899 0.891 0.905 0.790 0.879 0.712 0.792 0.835 0.790

Vimeo 80 500 0.755 0.624 0.741 0.980 0.938 0.984 0.984 0.986 0.916 0.958 0.924 0.940

Figure 7.2: Accuracy of our classifiers. TIME is the approximate total training time, in seconds. EPOCHS is the number

of epochs. The remaining columns show the test accuracy of the classifier when trained on a given feature. The

features are the time series of, respectively, packet length, Bps, bursts series, and packets per second (see Section 5.2),

measured in the up, down, and both directions.

Figure 7.5: Burst sizes of streamed “Reservoir Dogs”.

The two captures were made on a campus network (+)

and a home network (∗).

The attacker can still collect training data by streaming

on his own Internet connection. This connection, how-

ever, may have different network characteristics, such as

bandwidth, latency, congestions and packet drops, all of

which affect the collected traces.

We conjecture that our classifiers learn high-level fea-

tures of video streams, such as burst patterns, that are

robust to reasonable differences in network characteris-

tics and will therefore maintain high accuracy even when

trained on a different network (in the absence of patho-

logical conditions such as excessive packet loss or inad-

equate bandwidth for streaming).

To confirm this, we captured 90-second streaming ses-

sions of 10 Netflix titles on a campus Wi-Fi network and

on a home Wi-Fi network from a cable ISP. We trained

our classifier on the campus data and measured its ac-

curacy on the home-network data. Our classifier uses

only the down BURST series (see Section 5.2). Trained

on 50 campus captures per title, it reaches 98% accuracy

on the home-network data (20 captures per title). Fig-

ure 7.5 shows that the burst patterns on the two networks

are highly correlated and aligned in time.

7.5 Possible improvements

Our classifiers attain very high accuracy but can benefit

from some potential improvements.

First, our Netflix classifier was trained on just 60-

second captures, equivalent to only about 45 seconds of

steady-state bursts after the (less discriminative) buffer-

ing period. It may be possible to train an even more pow-

erful classifier using 90-second captures.

Second, our relatively simple classifiers are slightly

under-fitted. More expressive classifiers (e.g., with more

hidden layers) suffer from over-fitting, but it may be

solved with more data, e.g., 1000 captures per video.

Finally, the low base rate potentially motivates the use

of detection cascades [56] consisting of a series of clas-

sifiers, each of which is more complex (with a larger in-

put feature space and more hidden layer activations) than

the previous one. During training, the (i+ 1)th classi-

fier is trained using only the samples accepted (possibly

falsely) by the ith classifier. A cascade thus accepts only

the inputs that are accepted by all of its classifiers and

is efficient to train because most inputs are rejected by

the simple lower-level classifiers. Cascades have demon-

strated almost human-level accuracy for complex tasks

with low base rate such as face detection [64].

8 Bayesian Detection Rate

In Sections 6 and 7, we showed detectors with very low

false positive rates. However, the attacker’s false detec-

tion rate is not the detector’s raw false positive rate but

the Bayesian Detection Rate (BDR). The BDR of a detec-

tor for video m is the probability Pr(M|A), conditioned

on the detector declaring that the victim is streaming m

(event A), that the victim is indeed streaming m (event

M). This probability is taken over all videos that the vic-

tim could be streaming, as well as network conditions

and measurement noise.

Pr(M|A) = Pr(A|M)Pr(M)
Pr(A|M)Pr(M)+Pr(A|¬M)Pr(¬M) by Bayes’

Law. We can estimate Pr(A|M) by the detector’s recall,

and Pr(A|¬M) by its false positive rate.

“Open world,” when the attacker does not know a pri-

ori a relatively small set of possibilities for the video be-

ing streamed, is characterized by an extremely low base

rate, i.e., probability P(M) that the video actually cor-

responds to any of the attacker’s detectors. In this set-

ting, when the attacker’s recall is sufficiently high, BDR

is dominated by the false positive rate.2

2For example, suppose the recall is Pr(A|M) = 1, false positive rate

is Pr(A|¬M) = 1
1000

, and the victim streams 100,000 videos sequen-

tially. If the attacker has a detector for one of them (i.e., the base rate is
1

100000
), he would get roughly 100 false matches before the true match.

USENIX Association 26th USENIX Security Symposium 1365

We now analyze the detectors from Sections 6 and 7

in the “open-world” setting.

8.1 Distance detector

We first analyze the BDR of the detector from Section 6.

Let D̂ be the world of videos, and let V̂ ⊆ D̂ be the

world of videos with variable segment size. ψ D̂ is the

distribution over D̂. Assume that the victim chooses

m′← ψ D̂, and that the videos in our set D were likewise

sampled from ψ D̂ (i.e., by sampling videos according to

their popularity on the service). Let V ⊆D the the videos

in D with variable segment size. Assume the attacker has

a detector for some m ∈V .

Let t ← T m′ be an observed trace. If the detector

matches but m′ 6= m, then either

∥

∥

∥
α(sm′)−α(t)

∥

∥

∥

1
≥ B,

or

∥

∥

∥
α(sm)−α(sm′)

∥

∥

∥

1
≤ 2B. The probability of the for-

mer is low because the recall is very high, > 1− 10−11.

Let pCOL denote the probability of the latter event, corre-

sponding to a collision between two videos.

If pCOL ≥
2

106 , then we are likely to observe a collision

in our dataset D. Under the simplifying assumption that

collisions in D are independent events,3 with overwhelm-

ing probability 1− (1− pCOL)
(|D|−|V |)|V |+|V |2/2 > 0.986

there exist mV ∈ V,mD ∈ D such that mV 6= mD and

‖α(smD)−α(smV)‖1 ≤ 2B. Since we did not observe

any such collisions in 2,162,297 pairwise tests over D,

it is likely that pCOL ≤
2

106 .

In this case, assuming the open-world base rate is 2
106 ,

BDR is very close to 0.5.

8.2 Neural-network detector

YouTube. With our YouTube classifier, when we pre-

ferred precision over recall, there were no false positives:

we never observed an “other” video that was misclassi-

fied as one of the known videos. We view this as an

indication that our results generalize.

Netflix. With our Netflix classifier, when we preferred

precision over recall, we observed 1 false positive (com-

pared to 2,240 true positives), corresponding to the false

positive rate of 0.00045. Our recall is still > 0.93.

At first glance, this result seems harder to general-

ize. We cannot simply plug Pr(A|¬M) and Pr(A|M)
into the BDR formula and expect to get a good estima-

tion, since the distribution that this classifier was trained

on—without samples from the catchall “other” class—is

3This assumption is an approximation. It could have been strongly

violated, e.g., if all collisions are due to a small set Z of videos, each of

which collides with many other videos: if we didn’t hit any of Z when

picking D, we would not observe any collisions. However, due to the

geometrical structure of video fingerprints, this seems unlikely. If the

fingerprints of videos in Z are close to those of many other videos, then

the latter videos also have fingerprints that are geometrically close to

each other and are thus likely to collide in D.

fundamentally different from the distribution of videos

that might be streamed by the victim.

Similarly to the previous section, there are two causes

of false positives: similarities in the videos’ burst

patterns (which is what the classifier learns), i.e., a

classifier-collision false positive, and noise in the mea-

surements, i.e., a network-noise false positive.

The confusion matrix (Figure 7.3b) shows no pairwise

classifier collisions for the 100 titles. The classifier does

not consistently confuse any particular title for another

(even though many are episodes in the same TV series

with presumably similar visual attributes). This indicates

that classifier collisions are uncommon.

When collisions do not occur, our classifier, tuned for

precision over recall, performs very well and misclassi-

fies only 1 out of 2,224 test samples. No other sample

was close enough, in the classifier’s eyes, to any of the

99 classes. This means that the classifier made one “con-

fident” mistake out of 220,176 possibilities.

9 Off-path Attacks

9.1 Measurement with JavaScript

Consider a remote attacker who has a restricted foothold

in the victim’s network. For example, he controls an ad

embedded in some webpage visited by the victim. An

ad may include JavaScript code executing in the victim’s

browser, but because this code may come from a ques-

tionable source with strong commercial interest in users’

data (including their viewing habits), it is confined—both

by the main browser sandbox, which prevents it from is-

suing arbitrary requests to the OS, and by the same origin

policy [51], which prevents it from accessing the content

that belongs to other Web origins. In particular, even if

the victim is streaming a video in another tab of the same

browser, confined JavaScript code cannot directly access

the URL or content displayed in that tab.

The same origin policy does permit the attacker’s

JavaScript code to communicate with its own origin (e.g.,

the Web server that served the ad). This communica-

tion is carried over the same Internet connection as the

video being streamed by the victim. Since Internet links

usually have bounded bandwidth, this means that the

attacker’s JavaScript and the video stream share a lim-

ited resource. JavaScript can send and receive arbitrary

amounts of data to and from its colluding server to create

artificial congestion on the shared link.

When the shared link is congested, any attempt to use

it can create observable delays in the communication be-

tween the attacker’s JavaScript code and its own server.

The attacker can then estimate how much traffic is flow-

ing over the link by measuring these delays. This leaks

information about the content streamed from a different

origin by the same browser (a cross-site attack, see Fig-

1366 26th USENIX Security Symposium USENIX Association

Figure 9.1: Cross-site attack.

Figure 9.2: Cross-device attack.

ure 9.1), or even by a different device on the same local

network (a cross-device attack, see Figure 9.2).

9.2 Simulating the attack

We implemented a malicious NODE.JS Web server

which, when accessed by the victim’s browser, serves

detector code written in JavaScript. This code, running

unprivileged within the browser sandbox, talks back to

the server via the SOCKET.IO API. The server sends a

stream of messages, causing congestion. The detector

code measures the arrival time of these messages, using

window.performance.now(), to estimate contention

from other traffic on the shared link.

Network. To simulate cross-site and cross-device at-

tacks, we run two browser windows concurrently, one

streaming the selected video, the other executing a

JavaScript attack client. In the cross-site setup, they run

on the same virtual machine. In the cross-device setup,

they run on different machines. Both machines are on

a home network, victim-LAN, behind a traffic-throttling

router that simulates a bandwidth-limited connection. In

the cross-site setup, we simulate victim-LAN and the

router with VMware Workstation. In the cross-device

setup, we use an actual home router. In both cases, the

router is connected to the Internet via a university LAN.

The attack server is on the same LAN. All traffic be-

tween victim-LAN (which includes the streaming client

and the attack JavaScript client) and the Internet (which

includes the streaming server and the attack server) thus

flows through a bandwidth-constrained router.

Data. We used 10 Netflix titles: 5 episodes from the

first season of “Mad Men” and 5 arbitrary other titles.

We streamed each title 100 times and used a JavaScript

client to indirectly measure the traffic as described above.

We used 5-minute captures in the cross-site experiment

and 6-minute captures in the cross-device experiment.

Cross-site attack. The attacked machine was an Ubuntu

14.04 VM, with a simulated 45 Mbps (5.625 MBps)

down/upstream bandwidth (capped by VMware Work-

station). The attack server’s messages contain 6 KB of

random data, sent at the rate of 1 per 0.001 seconds and

an overall transmission rate of 6 MBps. This is more than

enough to saturate the simulated link.4

From the {Xn} vector of message arrival times mea-

sured by the attacker’s client, we compute the vector

of message delays Y = (0)‖((X2, . . .Xn)− (X1, . . .Xn−1))
and filter the X ,Y time series for delays that exceed 8ms.

We then compute the burst series as in Section 5.2 with

0.25-second intervals and filter out the bursts whose sizes

are below 80, producing a delay bursts time series. To

create uniformly sized vectors, we aggregate this series

by averaging into 0.25-second chunks.

Cross-device attack. As the viewer device, we used a

laptop (Intel i7-5600U CPU) running Ubuntu 16.04. As

the neighbor device, we used a laptop (Intel i7-3720QM

CPU) running an Ubuntu 14.04 VM guest in a Windows

host. Both were connected over Wi-Fi to an Asus RT-

AC66U wireless router, connected to a university net-

work. The router was configured to cap its total down-

link speed at 45 Mbit, using the “Max Bandwidth Limit”

setting of the Tomato Advanced firmware. The attack

server was sending an 8KB message every 1.5ms, about

300 KBps short of saturating the network link.

In this experiment, we smoothed the time series of the

delay measurements by averaging over 0.1-second inter-

vals, filtered it for delays y > 2.1ms, computed the burst

series with 0.5-second intervals, and filtered out all bursts

whose sizes were below 10. To create uniformly sized

vectors, we chunked it into 0.1-second intervals.

Classifier. We used a variant of the classifier from Sec-

tion 7.2 that we found less prone to overfitting on the

noisier, longer samples in this attack. Between the last

max-pooling layer and the first fully-connected layer, we

added another convolution layer, with kernel size 7, fol-

lowed by a max pooling layer (both with ReLU activa-

tions). We applied 0.7 dropout after every hidden layer.

All other convolution-layer dimensions were changed to

1x12 and pooling-layer dimensions to 1x2. We used 16

filters for all hidden layers instead of 32. Finally, we used

Adadelta instead of the Adam optimizer.

4A portion of messages is queued at the server, taking up to 500MB

of memory. In the cross-device attack, we calibrated the transmission

rate in a different way, alleviating this.

USENIX Association 26th USENIX Security Symposium 1367

Figure 9.5: Cross-device attack on a Roku streamer. On

the left is the global view, including initial buffering. On

the right is the local view during steady-state streaming.

Bursts cause a visible increase in delays observed on the

neighbor machine.

9.3 Results

In all of our experiments, attacks were imperceptible to

the user and did not affect the viewing quality.

Cross-site attack. Figure 9.3a shows that bursts in the

video stream are very visible in the measurements per-

formed by the JavaScript client. Fig. 9.3b shows that the

delay bursts series is strongly correlated with the bursts

of the actual stream. Our 1/10 Netflix classifier attains

0.937 accuracy. As in Section 7, we can adjust our con-

fidence threshold to reduce false positives at the cost of

reducing recall (see Fig. 9.3c). By accepting 0.793 recall,

we obtain precision of 1.

Cross-device attack. The timing of the messages ob-

served by the detector code on the neighbor device ex-

hibits clear patterns corresponding to the stream received

by the viewer device. Figure 9.4a shows that bursts in the

stream during the steady state cause delays in the mes-

sages received by the neighbor. Figure 9.4b shows that

delay bursts are correlated with the size of bursts in the

stream (which, in turn, reflect segment sizes). Our clas-

sifier performs well, with 0.965 accuracy. By accepting

0.933 recall, we obtain precision of 0.997.

Cross-device attack on a Roku streamer. Many users

watch streaming video content on a smart TV or a dedi-

cated streaming device connected to a TV. To investigate

the feasibility of our attack in this scenario, we used the

cross-device attack setup from Section 9.2 except that the

viewer was a Roku Premiere streaming device (a very

popular brand), connected to the Internet via Wi-Fi.

The bursts corresponding to video segments are

clearly observable from a neighbor machine. Fig-

ure 9.5 shows the attacker-measured delays while Roku

is streaming Episode 1 of “Mad Men.” They exhibit the

expected pattern of a large burst followed by smaller ones

in steady intervals, each lasting a few seconds.

10 Limitations

Our attack relies on two assumptions: (1) the attacker

can measure traffic bursts in the victim’s video stream,

and (2) the pattern of these bursts is similar to what the

attacker observed when streaming the same title.

The attack works well using only very coarse traffic

features (see Section 7.3) and is therefore robust to minor

noise in the stream or in the attacker’s measurements.

If the noise is so significant as to dramatically change

the traffic characteristics of the stream (e.g., if the same

network connection is used to watch multiple concurrent

videos, upload media files, or for some other bandwidth-

intensive activity), the attack may not succeed.

In the off-path attack, the attacker’s server sends large

amounts of traffic to congest a shared network link and

his JavaScript client measures arrival times in the vic-

tim’s browser. To create congestion, the server needs

a high-bandwidth connection to the victim’s network.

Therefore, success of the off-path attack using a specific

server may depend on the victim’s location and ISP.

If the client code does not have access to precise time,

the roles must be reversed (see Section 12). The ability

of malicious JavaScript in the victim’s browser to con-

gest the network may be limited by resource-intensive

processes executing on the same machine.

As explained in Section 4, different encodings of the

same content create different burst patterns. The attack

will not succeed if the encoding of the streams used to

train the attacker’s detector is different from the encoding

of the victim’s stream. Specifically, in adaptive stream-

ing, encoding quality can be dynamically downgraded or

upgraded in response to changing network conditions. In

this paper, we did not evaluate a scenario where the vic-

tim is experiencing erratic network conditions causing

frequent switches between encodings.

Our techniques aim to identify standard, unmodified

streaming video (e.g., Netflix movies). They are not de-

signed to resist evasion. If the user or service re-encodes

the video (e.g., at a different resolution), the attacker’s

previously trained detectors will no longer work.

Our techniques can be automated and deployed on a

reasonably large scale to detect hundreds or thousands

of titles in an “open-world” setting, without assuming a

priori that the video belongs to small known set. Scaling

beyond that is likely to be expensive. Data collection is

the main bottleneck because training detectors requires

the attacker to stream the same title multiple times.

11 Related Work

11.1 Exploiting VBR leaks

Fine-grained video. Saponas et al. [46] observed that

encrypted, VBR-encoded videos leak information about

their content. To create a “signature” of a video, they

1368 26th USENIX Security Symposium USENIX Association

(a) Actual bursts size vs. measurements from

JavaScript in a different origin.

(b) Delay bursts vs. actual traffic bursts (traffic

bursts are in units of 104 bytes).

(c) Precision vs. recall of our classifier

Figure 9.3: Cross-site attack.

(a) Raw attack measurements, showing delays at

roughly steady intervals.

(b) Delay bursts vs. actual traffic bursts. Traffic

bursts are divided by 100,000 for presentation.

(c) Precision vs. recall of our classifier

Figure 9.4: Cross-device attack.

take its traffic trace as a bits-per-second time series at

the granularity of 100 milliseconds, average, and apply a

sliding-window DFT. Their detector applies DFT to traf-

fic traces and matches to the closest signature.

Li et al. [30] focus on detecting re-encoded content.

They apply a wavelet transform to the time series of

frame sizes and cross-correlate the wavelet coefficient

series of the observed traffic with those of a reference

content file. In [31], Liu et al. use aggregated traffic

throughput traces (as opposed to frame-size time series)

and report 1% false positive rate and 90% recall rate.

These methods operate on time series resembling, and

close to the granularity of, the sizes of individual frames.

DFTs and wavelet transforms capture short-term varia-

tions due to changes of picture and long-term variations

due to changes of scene. In our setting, the observable

features are bursts 4–6 seconds (120–180 frames) apart.

Even though these methods rely on fine-grained mea-

surements, their false positive rates are prohibitively high

for “open-world” identification (with a low base rate,

even 1% false positive rate implies an extremely low

Bayesian Detection Rate). None of them would work

if the measurements of the attacker (e.g., performed by

sandboxed JavaScript) are noisy and coarse-grained.

Dubin et al. [11] suggest using the (unordered) set

of segment sizes as a title fingerprint. This detector is

far less accurate than our classifiers and vulnerable to

noise, and consequently cannot be used by a JavaScript

attacker. See Appendix B for the detailed analysis.

Reed and Klimovski [43] implement a Wi-Fi sniffing

attack and suggest an approach based on Pearson corre-

lation for identifying Netflix streams. In a preliminary

evaluation, they report correctly identifying, given 50

possible titles, 24 out of 25 streaming sessions. Con-

USENIX Association 26th USENIX Security Symposium 1369

currently and independently from our work, Reed and

Kranch [44] scale this approach by fingerprinting the en-

tire Netflix title selection. They assume an on-path at-

tacker who can observe TCP-layer traffic. This approach

has not been evaluated in an off-path setting, where the

attacker has only noisy side-channel measurements, nor

for any streaming services other than Netflix.

Mass fingerprinting in [44] relies on the metadata sent

by Netflix to the client at an early stage of the streaming

process, namely the .ismv file headers that contain all

segment sizes for all possible encodings of the title. They

are sent in the clear, while the video content is DRM-

encrypted. It is not clear how the approach of [44] would

work if these headers were DRM-protected, too.

VoIP. Wright et al. showed that VBR leakage in en-

crypted VoIP communication can be used to identify the

speaker’s language [62] and detect phrases [61]. Their

detector is a Hidden Markov Model trained to identify a

specific phrase. White et al. [58] extended this approach

to extract conversation transcripts.

11.2 Congestion and timing attacks

The general approach of creating congestion on a shared

resource (network, in our case) and using it to measure

a concurrent process’s consumption of that resource is

used, for example, in shared-cache attacks on crypto-

graphic computations [21, 37, 45].

Our network congestion attack works because traffic-

flow scheduling policies for a shared internet link are

leaky. Kadloor, Gong, et al. [16, 24, 25] studied

the tradeoffs between delays, fairness, and privacy in

scheduling policies on shared resources. Kadloor et

al. [23] also showed how to exploit the queueing policy in

DSL routers: by sending a series of ICMP echo requests

(pings) and timing RTTs, they infer the traffic patterns of

a remote user. This attack can also help infer the website

being visited [15, 17]. This attack is powerful because

the attacker only needs to know the user’s IP address, but

it cannot be deployed if the user is behind a firewall or

router that discards unsolicited packets from outside the

network (as many modern routers do by default).

Agarwal et al. [1] show how a VM can use link con-

gestion to infer the traffic patterns of a co-located VM.

To the best of our knowledge, the ability of confined

JavaScript to perform network measurements at suffi-

cient granularity to identify concurrent video streams

has never been empirically demonstrated before. This

is a particularly dangerous scenario because untrusted

JavaScript code from sources who have commercial in-

terest in users’ viewing habits is ubiquitous on the Web.

Timing attacks have a long history in computer se-

curity [6, 50]. Felten and Schneider [13] observed

that JavaScript can infer information from the timing

of cross-origin requests; Bortz and Boneh [5] demon-

strated several timing-related Web attacks; Van Goethem

et al. [55] proposed timing techniques that tolerate net-

work noise and server-side mitigations. Oren et al. [36]

used JavaScript timing mechanisms for a cache attack.

Kohlbrenner and Shacham [27] showed that existing

browser-based mitigations are insufficient and proposed

a new browser-based defense.

11.3 Fingerprinting and traffic analysis

There is a large body of research on identifying websites

in encrypted network traffic [7, 8, 15, 18, 20, 39, 48, 57].

Juarez et al. [22] argue that most of these efforts make

unrealistic assumptions and fail to cope with the base rate

fallacy. Panchenko et al. [38] evaluate a state-of-the-art

method for website detection and conclude that webpage

detection is infeasible. Traffic analysis was used to infer

application-specific sensitive information, such as health

conditions [8, 33], as well as Web sources of video traf-

fic [47]. Prior work also includes mitigations [63] and

counter-mitigations [12].

12 Mitigations

Segment size leak. The root cause of information leaks

in video streams is that, for any sufficiently long video,

the encoding bitrate changes over the presentation time

in a unique, identifying way. Segmenting video files and

transmitting them in bursts (which is primarily done to

maximize quality of experience) reduces the granularity

of the leak but does not prevent video fingerprinting.

Decreasing granularity further, to minutes, will not en-

tirely prevent the leak in longer videos, but will degrade

QoE and network efficiency. Segmenting VBR video

into uniformly sized segments is futile because then their

duration will differ, thus the timing of client requests will

still leak similar information.

Constant-rate encoding with tight rate control and

large segments will eliminate the leak, at the cost of a

very inefficient encoding. Similarly, padding bursts to

the maximum segment size would require transmitting

much more traffic than the actual file size.

The VBR pattern is inherently observable in traffic if

the duration of the client’s buffered video is close to con-

stant (or, in general, an affine function of presentation

time). Solving the problem requires a different buffer-

ing regime. Client-side-only changes are easier to deploy

than changes to segmentation on the server, but devising

such a regime is non-trivial even if we allow changes to

both client side and server side.

For example, consider a variable-size buffer that

fetches equally-sized segments every X seconds (where

X is fixed). This requires a balance between increas-

ing the fetching rate (lest the buffer runs out in the mid-

dle of long high-action scenes) and increasing the ini-

tial buffering time (for robustness to network conditions

1370 26th USENIX Security Symposium USENIX Association

while also accounting for sudden buffer depletion due

to high-bitrate content). Both factors would directly de-

grade user experience and network efficiency.

Network congestion side channel. The congestion at-

tack requires big, frequent server-to-client messages that

may appear anomalous and thus recognizable at the net-

work level. Detection and prevention mechanisms can

be placed at the router, network, OS, or browser. A more

sophisticated attack implementation may be able to use

benign-looking traffic to circumvent such mechanisms.

Fuzzy-time sandbox solutions such as [27] would not en-

tirely prevent our attack: the JavaScript client can still

send packets to congest the uplink, yet timing measure-

ments can be performed by a colluding server.

13 Conclusions

Leakage of information about video content via network

traffic patterns is prevalent in modern streaming proto-

cols and popular services. We implemented and evalu-

ated a novel method based on deep learning that exploits

this leak for video identification.

Our method is tuned for high precision and effective

in an “open-world” setting. It can be used by on-path

adversaries such as ISPs and enterprise networks to spy

on their users. Furthermore, it exposes sensitive infor-

mation of the streaming service itself. For example, ISPs

can use it to construct a popularity histogram of Netflix

videos (Netflix does not release this information). We

also show how an off-path adversary who merely serves

a Web page or ad to a user can, via the network conges-

tion side channel, perform the measurements needed for

the attack and identify videos being streamed by the user

on the same or different device.

Acknowledgements. Roei Schuster and Eran Tromer

are members of the Check Point Institute for Information

Security. This work was supported by the Blavatnik In-

terdisciplinary Cyber Research Center (ICRC); Defense

Advanced Research Project Agency (DARPA) and Army

Research Office (ARO) under Contract W911NF-15-C-

0236; Google Faculty Research Awards; Israeli Ministry

of Science and Technology; Israeli Centers of Research

Excellence I-CORE program (center 4/11); Leona M. &

Harry B. Helmsley Charitable Trust; and National Sci-

ence Foundation awards CCF-1423306, CNS-1445424

and CNS-1612872. Any opinions, findings, and conclu-

sions or recommendations expressed are those of the au-

thors and do not necessarily reflect the views of ARO,

DARPA, NSF, the U.S. Government or other sponsors.

References

[1] Yatharth Agarwal, Vishnu Murale, Jason Hen-

nessey, Kyle Hogan, and Mayank Varia. Moving

in next door: Network flooding as a side channel in

cloud environments. In CANS 2016.

[2] Pablo Ameigeiras, Juan J Ramos-Munoz, Jorge

Navarro-Ortiz, and Juan M Lopez-Soler. Analysis

and modelling of YouTube traffic. ETT 2012.

[3] John S Atkinson, O Adetoye, Miguel Rio, John E

Mitchell, and George Matich. Your WiFi is leaking:

Inferring user behaviour, encryption irrelevant. In

WCNC 2013.

[4] Bento4 MPEG-DASH tool set. https://www.be

nto4.com/developers/dash/. Accessed: 2017-

01-16.

[5] Andrew Bortz and Dan Boneh. Exposing private

information by timing web applications. In WWW

2007.

[6] David Brumley and Dan Boneh. Remote timing

attacks are practical. Computer Networks, 2005.

[7] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and

Rob Johnson. Touching from a distance: Website

fingerprinting attacks and defenses. In CCS 2012.

[8] Shuo Chen, Rui Wang, XiaoFeng Wang, and Ke-

huan Zhang. Side-channel leaks in Web applica-

tions: A reality today, a challenge tomorrow. In

S&P 2010.

[9] Convolutional neural networks. https:

//en.wikipedia.org/wiki/Convolutiona

l_neural_network. Accessed: 2017-01-16.

[10] Bitmovin. https://bitmovin.com/mpeg-das

h-hls-segment-length. Accessed: 2017-01-16.

[11] Ran Dubin, Amit Dvir, Ofer Hadar, and Ofir Pele.

I know what you saw last minute — the Chrome

browser case. In Black Hat Europe 2016.

[12] Kevin P Dyer, Scott E Coull, Thomas Ristenpart,

and Thomas Shrimpton. Peek-a-boo, I still see you:

Why efficient traffic analysis countermeasures fail.

In S&P 2012.

[13] Edward W Felten and Michael A Schneider. Tim-

ing attacks on Web privacy. In CCS 2000.

[14] Ross Girshick, Jeff Donahue, Trevor Darrell, and

Jitendra Malik. Rich feature hierarchies for accu-

rate object detection and semantic segmentation. In

CVPR 2014.

[15] Xun Gong, Nikita Borisov, Negar Kiyavash, and

Nabil Schear. Website detection using remote traf-

fic analysis. In PETS 2012.

[16] Xun Gong and Negar Kiyavash. Quantifying the

information leakage in timing side channels in de-

terministic work-conserving schedulers. Biological

Cybernetics, 2016.

[17] Xun Gong, Negar Kiyavash, and Nikita Borisov.

Fingerprinting websites using remote traffic anal-

ysis. In CCS 2010.

[18] Dominik Herrmann, Rolf Wendolsky, and Hannes

Federrath. Website fingerprinting: Attacking popu-

lar privacy enhancing technologies with the multi-

nomial Naïve-Bayes classifier. In CCSW 2009.

USENIX Association 26th USENIX Security Symposium 1371

https://www.bento4.com/developers/dash/
https://www.bento4.com/developers/dash/
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://bitmovin.com/mpeg-dash-hls-segment-length
https://bitmovin.com/mpeg-dash-hls-segment-length

[19] Geoffrey Hinton, Li Deng, Dong Yu, George E

Dahl, Abdel-Rahman Mohamed, Navdeep Jaitly,

Andrew Senior, Vincent Vanhoucke, Patrick

Nguyen, and Tara N Sainath. Deep neural networks

for acoustic modeling in speech recognition: The

shared views of four research groups. IEEE Signal

Processing Magazine 2012.

[20] Andrew Hintz. Fingerprinting websites using traffic

analysis. In PETS 2002.

[21] Wei-Ming Hu. Reducing timing channels with

fuzzy time. Journal of Computer Security, 1992.

[22] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia

Diaz, and Rachel Greenstadt. A critical evaluation

of website fingerprinting attacks. In CCS 2014.

[23] Sachin Kadloor, Xun Gong, Negar Kiyavash, Tolga

Tezcan, and Nikita Borisov. Low-cost side channel

remote traffic analysis attack in packet networks. In

ICC 2010.

[24] Sachin Kadloor and Negar Kiyavash. Delay opti-

mal policies offer very little privacy. In INFOCOM

2013.

[25] Sachin Kadloor, Negar Kiyavash, and Parv Venki-

tasubramaniam. Mitigating timing side channel in

shared schedulers. Biological Cybernetics, 2016.

[26] Diederik Kingma and Jimmy Ba. Adam: A

method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[27] David Kohlbrenner and Hovav Shacham. Trusted

browsers for uncertain times. In USENIX Security

2016.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E

Hinton. ImageNet classification with deep convo-

lutional neural networks. In NIPS 2012.

[29] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.

Deep learning. Nature, 2015.

[30] Yali Liu, Canhui Ou, Zhi Li, Cherita Corbett,

Biswanath Mukherjee, and Dipak Ghosal. Wavelet-

based traffic analysis for identifying video streams

over broadband networks. In GLOBECOM 2008.

[31] Yali Liu, Ahmad-Reza Sadeghi, Dipak Ghosal, and

Biswanath Mukherjee. Video streaming forensic–

content identification with traffic snooping. In ISC

2010.

[32] Jim Martin, Yunhui Fu, Nicholas Wourms, and

Terry Shaw. Characterizing Netflix bandwidth con-

sumption. In CCNC 2013.

[33] Brad Miller, Ling Huang, Anthony D Joseph, and

J Doug Tygar. I know why you went to the clinic:

Risks and realization of HTTPS traffic analysis. In

PETS 2014.

[34] The state of MPEG-DASH deployment. http:

//www.streamingmediaglobal.com/Article

s/Editorial/Featured-Articles/The-Sta

te-of-MPEG-DASH-Deployment-96144.aspx.

Accessed: 2017-01-16.

[35] Netflix tech blog: Per-title encode optimization.

http://techblog.netflix.com/2015/12/

per-title-encode-optimization.html.

Accessed: 2017-01-16.

[36] Yossef Oren, Vasileios P Kemerlis, Simha Sethu-

madhavan, and Angelos D Keromytis. The spy in

the sandbox: Practical cache attacks in JavaScript

and their implications. In CCS 2015.

[37] Dag Arne Osvik, Adi Shamir, and Eran Tromer.

Cache attacks and countermeasures: The case of

AES. In CT-RSA 2006.

[38] Andriy Panchenko, Fabian Lanze, Andreas Zinnen,

Martin Henze, Jan Pennekamp, Klaus Wehrle, and

Thomas Engel. Website fingerprinting at Internet

scale. In NDSS 2016.

[39] Andriy Panchenko, Lukas Niessen, Andreas Zin-

nen, and Thomas Engel. Website fingerprinting in

onion routing based anonymization networks. In

WPES 2011.

[40] Planet Earth II: Iguana vs Snakes. https://

www.youtube.com/watch?v=Rv9hn4IGofM. Ac-

cessed: 2017-01-16.

[41] Zhiyun Qian, Z Morley Mao, and Yinglian Xie.

Collaborative TCP sequence number inference at-

tack: How to crack sequence number under a sec-

ond. In CCS 2012.

[42] Ashwin Rao, Arnaud Legout, Yeon-sup Lim, Don

Towsley, Chadi Barakat, and Walid Dabbous. Net-

work characteristics of video streaming traffic. In

CONEXT 2011.

[43] Andrew Reed and Benjamin Klimkowski. Leaky

streams: Identifying variable bitrate DASH videos

streamed over encrypted 802.11n connections. In

CCNC 2016.

[44] Andrew Reed and Michael Kranch. Identifying

HTTPS-protected Netflix videos in real-time. In

CODASPY 2017.

[45] Thomas Ristenpart, Eran Tromer, Hovav Shacham,

and Stefan Savage. Hey, you, get off of my cloud:

Exploring information leakage in third-party com-

pute clouds. In CCS 2009.

[46] T Scott Saponas, Jonathan Lester, Carl Hartung,

Sameer Agarwal, and Tadayoshi Kohno. Devices

that tell on you: Privacy trends in consumer ubiqui-

tous computing. In USENIX Security 2007.

[47] Yan Shi and Subir Biswas. Protocol-independent

identification of encrypted video traffic sources us-

ing traffic analysis. In ICC 2016.

[48] Yi Shi and Kanta Matsuura. Fingerprinting attack

on the Tor anonymity system. In ICICS 2009.

[49] Iraj Sodagar. The MPEG-DASH standard for mul-

1372 26th USENIX Security Symposium USENIX Association

http://www.streamingmediaglobal.com/Articles/Editorial/Featured-Articles/The-State-of-MPEG-DASH-Deployment-96144.aspx
http://www.streamingmediaglobal.com/Articles/Editorial/Featured-Articles/The-State-of-MPEG-DASH-Deployment-96144.aspx
http://www.streamingmediaglobal.com/Articles/Editorial/Featured-Articles/The-State-of-MPEG-DASH-Deployment-96144.aspx
http://www.streamingmediaglobal.com/Articles/Editorial/Featured-Articles/The-State-of-MPEG-DASH-Deployment-96144.aspx
http://techblog.netflix.com/2015/12/per-title-encode-optimization.html
http://techblog.netflix.com/2015/12/per-title-encode-optimization.html
https://www.youtube.com/watch?v=Rv9hn4IGofM
https://www.youtube.com/watch?v=Rv9hn4IGofM

timedia streaming over the Internet. IEEE Multi-

Media, 2011.

[50] Dawn Xiaodong Song, David Wagner, and Xuqing

Tian. Timing analysis of keystrokes and timing at-

tacks on SSH. In USENIX Security 2001.

[51] Same origin policy. https://developer.mozi

lla.org/en-US/docs/Web/Security/Same-o

rigin_policy. Accessed: 2017-01-16.

[52] Thomas Stockhammer. Dynamic adaptive stream-

ing over HTTP: Standards and design principles. In

Multimedia Systems 2011.

[53] Wikipedia: TCP offload engine. https://en.wik

ipedia.org/wiki/TCP_offload_engine. Ac-

cessed: 2017-01-16.

[54] Testmy: Web-based bandwidth test. http://test

my.net/. Accessed: 2017-01-16.

[55] Tom Van Goethem, Wouter Joosen, and Nick Niki-

forakis. The clock is still ticking: Timing attacks in

the modern Web. In CCS 2015.

[56] Paul Viola and Michael Jones. Rapid object detec-

tion using a boosted cascade of simple features. In

CVPR 2001.

[57] Tao Wang and Ian Goldberg. Improved website fin-

gerprinting on Tor. In WPES 2013.

[58] Andrew M White, Austin R Matthews, Kevin Z

Snow, and Fabian Monrose. Phonotactic recon-

struction of encrypted VoIP conversations: Hookt

on fon-iks. In S&P 2011.

[59] Why YouTube and Netflix use MPEG-DASH in

HTML5. https://bitmovin.com/status-m

peg-dash-today-youtube-netflix-use-htm

l5-beyond/. Accessed: 2017-01-16.

[60] Wireshark. https://www.wireshark.org/. Ac-

cessed: 2017-01-16.

[61] Charles V Wright, Lucas Ballard, Scott E Coull,

Fabian Monrose, and Gerald M Masson. Spot me if

you can: Uncovering spoken phrases in encrypted

VoIP conversations. In S&P 2008.

[62] Charles V Wright, Lucas Ballard, Fabian Monrose,

and Gerald M Masson. Language identification of

encrypted VoIP traffic: Alejandra y Roberto or Al-

ice and Bob? In USENIX Security 2007.

[63] Charles V Wright, Scott E Coull, and Fabian Mon-

rose. Traffic morphing: An efficient defense against

statistical traffic analysis. In NDSS 2009.

[64] Shuo Yang, Ping Luo, Chen-Change Loy, and Xi-

aoou Tang. WIDER FACE: A face detection bench-

mark. In CVPR 2016.

[65] StackOverflow: Youtube encoding. http://vi

deo.stackexchange.com/questions/5318/

how-does-youtube-encode-my-uploads-a

nd-what-codec-should-i-use-to-upload.

Accessed: 2017-01-16.

[66] Fan Zhang, Wenbo He, Xue Liu, and Patrick G

Bridges. Inferring users’ online activities through

traffic analysis. In WiSec 2011.

[67] Xiaoyong Zhou, Soteris Demetriou, Dongjing He,

Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang,

Carl A Gunter, and Klara Nahrstedt. Identity, loca-

tion, disease and more: Inferring your secrets from

Android public resources. In CCS 2013.

A Streams vs. MP4 Files

Since the cause of the leak is the DASH standard, it

would be nice to compute detectors directly from video

files5 instead of streaming each video multiple times.

This approach faces several challenges. First, the

attacker must infer the exact segmentation parameters,

such as segment duration and minimal buffer time, and

how they change with respect to file encoding, size, bi-

trate, view count, etc. Each service has many combina-

tions of these parameters. Furthermore, they change over

time but changes may not apply to the already-segmented

files. Second, this approach does not work at all if the at-

tacker does not have the file (as in the case of Netflix).

To learn the relationship between MP4 files and

streams, we would like to train a classifier that takes in

an MP4 file and a traffic capture, and outputs whether

the latter is a stream of the former. We used our dataset

of 3,558 YouTube videos for which we have both the

files and the captures. First, we have to align the stream

with the file, i.e., match traffic bursts corresponding

to segment-files to the segment-files’ presentation time.

Then we train a binary classifier on the extracted VBR

pattern of an MP4 file and the (aligned) burst series to

tell if the former was generated by the latter.

Alignment is a difficult problem because the extracted

720p MP4 files may not be identical to the actual files

used by the streaming service (which may not even be

in 720p). We heuristically tried several values to align

each MP4-capture pair and used neural networks to train

a classifier. Our classifier achieved 74% accuracy. This

indicates a strong correlation between the files and the

streams of the same video, but it is not sufficient for

“open-world” identification. Our main approach of using

multiple streams of the same video to train the detector

achieves much higher accuracy in practice.

B Comparison with Nearest Neighbor

Dubin et al. [11] represent the attacker’s measurements

of a stream as a set of bursts and use a classifier that

maps each such set to the closest training example. If the

size of the set intersection is smaller than a threshold for

all examples, the stream is classified as “unknown.”

5There exist tools for downloading MP4 files of content from ser-

vices such as YouTube and Vimeo.

USENIX Association 26th USENIX Security Symposium 1373

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://en.wikipedia.org/wiki/TCP_offload_engine
https://en.wikipedia.org/wiki/TCP_offload_engine
http://testmy.net/
http://testmy.net/
https://bitmovin.com/status-mpeg-dash-today-youtube-netflix-use-html5-beyond/
https://bitmovin.com/status-mpeg-dash-today-youtube-netflix-use-html5-beyond/
https://bitmovin.com/status-mpeg-dash-today-youtube-netflix-use-html5-beyond/
https://www.wireshark.org/
http://video.stackexchange.com/questions/5318/how-does-youtube-encode-my-uploads-and-what-codec-should-i-use-to-upload
http://video.stackexchange.com/questions/5318/how-does-youtube-encode-my-uploads-and-what-codec-should-i-use-to-upload
http://video.stackexchange.com/questions/5318/how-does-youtube-encode-my-uploads-and-what-codec-should-i-use-to-upload
http://video.stackexchange.com/questions/5318/how-does-youtube-encode-my-uploads-and-what-codec-should-i-use-to-upload

Dataset
Added

noise?
0B 1B 5B 10B CNN

Netflix No 0.871 X X X 0.959

Yes 0.220 X X X 0.909

YouTube No X 0.962 0.967 0.832 0.991

Yes X 0.851 0.790 0.379 0.989

Table 1: T B (bucketed nearest neighbor classifier with

threshold T) vs. CNN (our neural network).

We implemented and tried this approach for the Net-

flix dataset (which does not contain the “other” class, so

we used a threshold of 0, i.e., a match is always accepted)

and the YouTube dataset, with thresholds of 1, 5, and 10.

The test-train split was 0.9-0.1.

The nearest-neighbor classifier performs very poorly

on both datasets. For Netflix, it attained accuracy of

0.393. For YouTube, it attained accuracy of 0.624 with

threshold 1, 0.05 with threshold 5, and even less with

threshold 10. These results show that exact matches in

burst sizes are simply too rare. Even when the nearest

neighbor of a capture is actually found in its correct class,

there are fewer than 5 matches with it.

To further assess this approach, we “bucketed” all

burst sizes by rounding them to a multiple of 10, 100,

1000, and 10000. Rounding to a multiple of 1000 is ef-

fective, yielding 0.871 and 0.967 accuracy for the Netflix

and YouTube datasets, respectively. We call this classi-

fier the Bucket classifier (B).

This classifier is still very sensitive to noise and will

perform poorly if the attacker’s measurements are noisy

or if the streaming service deliberately pads bursts with a

few random bytes. We added a random number of bytes

between 0 and 2% to each burst size in the dataset and

measured the accuracy of the B classifier vs. our CNN-

based classifiers, which use the total burst series (see

Section 5.2) and are trained for 1,400 and 700 epochs

on the Netflix and YouTube data, respectively. We used

the 0.7-0.3 train-test split for the CNNs (vs. 0.9-0.1 split

for the B classifiers). Table 1 summarizes the results.

The KNN classifier of [11] is designed for direct ob-

servations of the streaming traffic. We attempted to ap-

ply it to the burst estimates as measured from JavaScript.

Because these estimates are sums of values returned

by window.performance.now(), they are measured in

milliseconds and in a floating-point representation that

captures time at an even finer granularity. Therefore,

to make it easier to recognize a (coarse) fingerprint, we

used the same approach as above and divided bursts into

coarse-grained buckets. We tried 100-second buckets, 10

seconds, seconds, deciseconds, centiseconds, millisec-

onds, decimilliseconds, centimilliseconds, and microsec-

onds. The KNN classifier of [11] works best at the granu-

larity of 10 seconds, and even then it only attains 0.22 ac-

curacy. We conclude that the approach proposed in [11]

does not work for an off-path attack.

C Titles Used in Experiments

Netflix:

• “Mad Men” Season 1, episodes 1-10

• “Arrested Development” Season 1, episodes 1-10

• “Narcos” Season 1, episodes 1-10

• “BoJACK Horseman” Season 1, episodes 1-10

• “The Office” Season 1, episodes 1-6; Season 2,

episodes 1-4

• “Luke Cage” Season 1, episodes 1-10

• “Louie” Season 3, episodes 1-10

• “Making a Murderer” Season 1, episodes 1-10

• “Stranger Things” Season 1, episodes 1-8

• “Master of None” Season 1, episodes 1-10

• “Parks and Recreation” Season 1, episodes 2-3

YouTube:

• https://www.youtube.com/watch?v=lc8804tkoaM

• https://www.youtube.com/watch?v=RDfjXj5EGqI

• https://www.youtube.com/watch?v=iW-y0Ci5nTI

• https://www.youtube.com/watch?v=_clqcSj2rKM

• https://www.youtube.com/watch?v=31784aZeJcc

• https://www.youtube.com/watch?v=DcJGalE3vn0

• https://www.youtube.com/watch?v=uINi-b5Fi1o

• https://www.youtube.com/watch?v=bFjrmATIUYU

• https://www.youtube.com/watch?v=fIOBSUSAikY

• https://www.youtube.com/watch?v=DpdJJN9OYMg

• https://www.youtube.com/watch?v=eyU3bRy2x44

• https://www.youtube.com/watch?v=0fYL_qiDYf0

• https://www.youtube.com/watch?v=Dgwyo6JNTDA

• https://www.youtube.com/watch?v=Z4uN9kh-gdE

• https://www.youtube.com/watch?v=DPeRRWSqPFY

• https://www.youtube.com/watch?v=Th9mfs5eobw

• https://www.youtube.com/watch?v=dUoC-GJ0FQY

• https://www.youtube.com/watch?v=tjhrNKQX29U

• https://www.youtube.com/watch?v=8YkLS95qDjI

• https://www.youtube.com/watch?v=BxKLpArDrC8

Vimeo:

• https://vimeo.com/110217114

• https://vimeo.com/111281488

• https://vimeo.com/11671747

• https://vimeo.com/116764246

• https://vimeo.com/120842635

• https://vimeo.com/126371564

• https://vimeo.com/130612876

• https://vimeo.com/138816246

• https://vimeo.com/146489061

• https://vimeo.com/153418170

Amazon: 10 episodes chosen arbitrarily from Season 1

of “The Wire”: 3, 4, 5, 6, 7, 8, 9, 11, 12, and 13.

1374 26th USENIX Security Symposium USENIX Association

https://www.youtube.com/watch?v=lc8804tkoaM
https://www.youtube.com/watch?v=RDfjXj5EGqI
https://www.youtube.com/watch?v=iW-y0Ci5nTI
https://www.youtube.com/watch?v=_clqcSj2rKM
https://www.youtube.com/watch?v=31784aZeJcc
https://www.youtube.com/watch?v=DcJGalE3vn0
https://www.youtube.com/watch?v=uINi-b5Fi1o
https://www.youtube.com/watch?v=bFjrmATIUYU
https://www.youtube.com/watch?v=fIOBSUSAikY
https://www.youtube.com/watch?v=DpdJJN9OYMg
https://www.youtube.com/watch?v=eyU3bRy2x44
https://www.youtube.com/watch?v=0fYL_qiDYf0
https://www.youtube.com/watch?v=Dgwyo6JNTDA
https://www.youtube.com/watch?v=Z4uN9kh-gdE
https://www.youtube.com/watch?v=DPeRRWSqPFY
https://www.youtube.com/watch?v=Th9mfs5eobw
https://www.youtube.com/watch?v=dUoC-GJ0FQY
https://www.youtube.com/watch?v=tjhrNKQX29U
https://www.youtube.com/watch?v=8YkLS95qDjI
https://www.youtube.com/watch?v=BxKLpArDrC8
https://vimeo.com/110217114
https://vimeo.com/111281488
https://vimeo.com/11671747
https://vimeo.com/116764246
https://vimeo.com/120842635
https://vimeo.com/126371564
https://vimeo.com/130612876
https://vimeo.com/138816246
https://vimeo.com/146489061
https://vimeo.com/153418170

	Abstract
	1 Introduction
	2 Information Leak in Video Streams
	3 Attack Scenarios
	3.1 Evaluated attack scenarios
	3.2 Other attack scenarios

	4 Overview of the Attack
	5 Experimental Setup
	5.1 Targets and attackers
	5.2 Data collection

	6 From Leaks to Fingerprints
	7 Video Identification Using Neural Networks
	7.1 Background on CNNs
	7.2 Our classifier
	7.3 Classification results
	7.4 Cross-network training
	7.5 Possible improvements

	8 Bayesian Detection Rate
	8.1 Distance detector
	8.2 Neural-network detector

	9 Off-path Attacks
	9.1 Measurement with JavaScript
	9.2 Simulating the attack
	9.3 Results

	10 Limitations
	11 Related Work
	11.1 Exploiting VBR leaks
	11.2 Congestion and timing attacks
	11.3 Fingerprinting and traffic analysis

	12 Mitigations
	13 Conclusions
	A Streams vs. MP4 Files
	B Comparison with Nearest Neighbor
	C Titles Used in Experiments

