
Beauty in the Eye of the Home-Owner:

Aesthetic Zoning and Residential Property Values

This paper empirically confirms one core motivation for architectural zoning: Shape homogeneity among neighboring

homes increases the value of residential buildings. Drawing on large-scale shape and transaction data, this study first

develops a data-driven measure of architectural similarity, condensing three-dimensional shapes to univariate shape

distributions. These algorithm-based similarity estimates are good predictors of human perceptions of shape similarity

and  are  linked  to  property  attributes  and  transaction  prices.  For  the  city  of  Rotterdam,  a  price  premium  of

approximately 3.5 percent  is  estimated for  row houses  within very homogeneous ensembles  over  buildings facing

heterogeneous neighbors. 

One eminent objective of urban planning is the safeguarding of present and future property values (e.g.

Levy, 2013, p. 43), which motivates not only the close regulation of the location or scope of new

development  but,  additionally,  the  external  appearance  of  new  structures.  Very  explicitly,  urban

planners posit that too much or too little variation in architectural forms depress property values. The

zoning ordinance for Eastchester, NY, is one of many manifestations of this wide-spread belief as it

aims to prevent “monotonous and unsightly uniformity of building development or unsightly structures

of incongruous or inappropriate form that might tend to depress surrounding property values” (Town

of Eastchester NY, 2000).1 Following this proposition, lawmakers and courts have been significantly

curtailing land owner's rights to independently chose designs for new buildings and justified this stark

intervention with assumed welfare gains at the neighborhood and city level  (Anderson, 1960; Regan,

1990; Rubin, 1975). The far reaching limitation of architectural freedom warrants the question: Does

the regulation of architectural diversity indeed bolster property values?

A wealth of studies has established solid evidence for tight land use regulations being associated with

rising in property values and, simultaneously, declining levels of new construction (Glaeser and Ward,

2009; Hilber and Vermeulen, 2014; Ihlanfeldt, 2007; Koster et al., 2012; Mayer and Somerville, 2000;

Quigley and Raphael, 2005). However, the extent to which the increase in prices is caused by land use

1 Similar regulations can be found throughout the US and also in the UK or continental Europe. Japan's zoning, in 

contrast, allows large variations in architectural design at lot level.



regulation  imposing  supply  constraints  or  by  the  planning  process  creating  value  directly  is  less

understood.

Overall, the identification of economic effects of policies regarding architectural designs and levels of

homogeneity between neighboring building remains difficult at the policy level, since geographic and

temporal variation in architectural regulation is challenging to quantify. Empirical research on the price

effect of land use policies is plagued by regulation being “astonishingly vague”  (Glaeser and Ward,

2009).  Architectural  regulation  is  no  exception  to  this  ambiguity.  For  instance,  the  Dutch  city  of

Rotterdam  requires  new  construction  to  adhere  to  “high  design  standards”,  to  use  “high  quality

materials” and to follow the “shape and appearance of surrounding buildings”  (City of Rotterdam,

2016).  In addition,  the enforcement of architectural policies is commonly delegated to architecture

review boards for case by case decisions, blurring any boundaries and regulations even more. 

At  the  building-level,  however,  the  assumed  link  between  architectural  design  and  the  value  of

surrounding properties  have been explored to  some extent:  Historic  landmark buildings have been

found to support the value of surrounding properties  (Ahlfeldt and Maennig, 2010; Leichenko et al.,

2001; Listokin et al., 1998). Similarly, dwellings designed by famous architects leads to other buildings

in the vicinity being more highly-valued. For instance, homes within 50 m of a residential building by

Frank Lloyd Wright in Oak Park, Illinois, enjoy a price premium of 8.5 percent over buildings further

away  (Ahlfeldt  and  Mastro,  2012).  Inversely,  buildings  can  also  impair  the  value  of  surrounding

buildings  very  directly,  for  instance  by  protecting  or  blocking  a  sought-after  view.2 At  the

neighborhood level, perceived beauty of the built environment is one of the main determinants of the

resident's satisfaction, alongside economic factors,  school quality, and the perceived opportunity of

2  An unobstructed sea view will increase property prices by 15% in Singapore (Yu et al., 2007) while positive values for

viewsheds on nature and historical buildings have also been documented for Kyoto (Yasumoto et al., 2011).



social interactions (Florida et al., 2009). This body of literature suggests that a building's architectural

quality indeed creates externalities.

To our knowledge, only one study has investigated the direct effect of architectural similarities within

ensembles of buildings on their respective sales values: For 19th century Boston, Moorhouse and Smith

(1994) find that properties which look different from their neighbors sell for more. In a sample of

(relatively homogeneous) rowhouses from Boston's South End, properties with facade styles different

from other fronts close by carry a price premium. The observed premia for “sticking out” become

smaller  with  each additional  building  in  the  proximity  sharing  the  same architectural  style.  These

findings  are  strong  but  not  conclusive,  since  they  rely  on  relatively  few  observations  from  one

neighborhood only (and from more than 150 years ago). 

The lack of empirical research on the economics of building shapes is not surprising since shape is

difficult to capture quantitatively. So far, existing studies on the economic value of architecture relied

on on-site inspections by experts and the classifications of styles and shapes into a limited number of

categories  (Asabere et al., 1989; Fuerst et al., 2011; Moorhouse and Smith, 1994; Vandell and Lane,

1989).  Less  palpable  dimensions  like  the  silhouette,  massing,  roof  forms,  proportions,  angles  or

similarities to surrounding properties remain unrecorded and ignored. 

This study is the first to estimate the effect of architectural homogeneity within ensembles of three or

more  adjacent  buildings  on  observed  sales  prices  using  a  large,  city-wide  dataset  on  the  three-

dimensional shapes. Using an automatic, algorithm-driven evaluation of similarity between buildings, it

unlocks  property-level  data  for  all buildings  in  a  city  and  also  on  the  degree  of  architectural

homogeneity between them. The full-city approach drastically increases the number of observations

available for analysis compared to subsamples based on sales, mortgage originations or valuations for



tax purposes only. Furthermore, the direct context of neighboring buildings can be analyzed which is

not always possible when relying on subsamples instead of the universe of structures. 

The remainder of the paper first refines a method to convert three-dimensional building shape data into

a numerical representation that can be fed into empirical pricing equations. For the city of Rotterdam,

form-related building attributes  are found to vary  extensively between buildings,  as  individualistic

developer  preferences,  architectural  creativity  and  amendments  during  the  life-time  of  a  building

constitute a source of constant diversity. At the same time, economies of scale during construction,

architectural preferences for harmony, overall fashion trends and zoning induce similarities between

buildings.

Subsequently, we verify whether these quantitative representations of shape can help to explain recent

transaction prices using a large database of housing transactions. Controlling for location and property

quality,  a  positive  effect  of  architectural  similarity  at  the  ensemble  level  on  transaction  prices  is

identified,  providing  empirical  evidence  for  one  core  justification  of  architectural  control:  Home

owners indeed pay an economically significant premium for buildings that are surrounded by similar

properties. 

Methodology 

The  shape  and  the  hedonic  configuration  of  a  building  are  inextricably  tangled  as  “form follows

function” (Sullivan, 1896). The function or use of a building determines its shape and, simultaneously,

its  value. A  three-dimensional  model  of  building  shells  not  only  reveals  the  location,  type  and

spaciousness of a dwelling but also a wealth of hedonic attributes for the place  (as in Jensen and

Cowen,  1999).  Trained  observers  might  be  able  to  estimate  the  year  of  construction  from  the

architecture,  the  height  of  rooms  from the  location  of  windows and  other  element  in  the  facade.

Additional  amenities  like green spaces,  garages  or  balconies  are  directly  observable.  Also,  certain



shapes  might  be  perceived as  more  aesthetically  pleasing  than  others  and therefore  carry  a  direct

architectural premium.

The heterogeneity and multi-dimensionality of building shapes renders their classification a non-trivial

challenge.  Broad categories can describe roof forms, the 2D shape of the ground plates or overall

dimensions. Still, classifications relying on a manageable number of categories cannot provide a finely

grained view and the variation in shape within each of the classes remains high. In addition,  even

objective  shape  measures  and  large  sample  sizes  do  not  fully  differentiate  the  aesthetic  side  of

architecture from its functional aspects. However, as both form and price depend on the stream of

services provided by a building, we hypothesize that prices of buildings with  similar shapes tend to

have similar prices. Estimating pairwise shape similarities between buildings circumvents the problem

of finding a meaningful classification system for property forms.

Thanks to advances in satellite and airplane based surveying technology, shape data availability is less

of a limiting factor anymore. Advances in the interpretation of remotely sensed data has lead to a surge

of large and spatially consistent data sets with detailed three-dimensional information at building level.

New  York,  Paris,  Singapore,  Tokyo  and  many  other  cities  can  be  explored  digitally,  while  the

municipalities of Berlin or Rotterdam openly share semantic city models3. So far, these models have

been put to use in a wide range of research areas, including urban planning (Ranzinger and Gleixner,

1997; Wu et al.,  2010),  disaster management  (Kwan and Lee,  2005),  law enforcement  (Wolff  and

Asche,  2009),  navigation  (Rakkolainen  and  Vainio,  2001),  facility  management  and  building

information models  (Nagel et al., 2009), or emission and other environmental modeling  (Nichol and

Wong, 2005). An investigation linking building shapes and property prices is still lacking.

3 3D city data for Berlin is available for download at  http://www.businesslocationcenter.de/en/downloadportal and for

Rotterdam at http://www.rotterdam.nl/rotterdam_3d.

http://www.rotterdam.nl/rotterdam_3d
http://www.businesslocationcenter.de/en/downloadportal


Measuring shape similarity 

Methods on measuring shape similarity both in 2D and 3D have been suggested in computer graphics,

computer vision, biology and other disciplines. For a general review please refer to Cardone, Gupta, &

Karnik (2003) or Tangelder & Veltkamp (2008). This paper builds on the shape distribution approach

put forward by Osada, Funkhouser, Chazelle, & Dobkin (2001): A large number of random points are

drawn from the surface of each shape and pairwise distances between these points are calculated. The

estimated  probability  density  functions  (EDF)  of  these  distances  represent  building-specific  shape

signatures that can be stored and compared efficiently for large numbers of buildings. The mean of the

distances is a proxy for the volume of buildings.  The distributions can be normalized by dividing all

pairwise distances by the average distance for each shape.

======= Insert Figure 1 about here =========

Figure  1 illustrates  that  differences  in  the  shapes  lead  to  distinct  differences  in  the  corresponding

density functions. Three stylized building shapes are constructed by combining two base shapes, cubes

and triangular prisms. The shape distribution of a single cube exhibits a single distinct peak while the

distribution for a cuboid, formed by joining two cubes, has a long tail to the right. Adding a triangular

roof  to  the cube changes  the resulting shape distribution yet  again:  The “house with saddle roof”

representation differs strongly from the other two examples. 

While it is easy to reduce 3D objects to univariate shape distributions, it  is not possible to do the

reverse. The skewness of the distribution might give a rough indication of the overall compactness of a

structure but backing out shape details from shape distributions is not feasible. However, similar shapes

will lead to similar distributions. Intuitively, if the area between two plots of shape distributions is

small,  then the original shapes can be considered similar.  A pairwise measure of similarity  Si,j for

shapes i and j is calculated from the respective EDFs (similar to Osada et al., 2001):



(1)

Obviously, Si,j = Sj,i . 

Shape distributions possess several advantageous characteristics: they can be calculated for solid and

non-solid 3D shapes like surfaces and 2D shapes alike and are tolerant to errors in the underlying

geometries (Ohbuchi et al., 2005). This robustness is crucial when working with shape data for large

numbers of buildings that have been automatically derived from areal scans and oftentimes comprised

of non-solid shapes for individual buildings (Alam et al., 2013), caused by small gaps between walls or

missing walls between adjacent buildings in the resulting models. In a sense, the building models that

will be later used in this study are “drafty”. If one printed these models on a 3D printer only few houses

would  be  reasonably  airtight.  The  share  of  non-solid  building-level  models  derived  from 3D city

models has been documented to be as high as 95%  (Boeters, 2013), which rules out any approach

requiring input shapes to be solid. 

The accuracy and relevance of the suggested estimate of shape similarity S is first tested directly: Are

buildings, that are known to have identical forms, recognized as being similar? In real cities, the most

basic  architectural  form is  probably a  cube,  which is  also  the easiest  to  identify using just  a  few

geometric rules: Cube-buildings feature exactly four walls, a roof and a ground plate which are all

squares of the same area. For a subset of buildings know to be cubic, the estimate of pairwise similarity

S is  expected to be close to 1,  with 1 representing perfect  identity.  Across dissimilar  shapes,  S is

hypothesized to be significantly smaller.

The  mapping  of  shapes  to  shape  distributions  is  not  a  bijective  function.  Shape  distributions  are

invariant to rotation, mirroring and, if normalized, also to scaling (Osada et al., 2001). While a shape is

converted into exactly one shape distribution, one distribution can be the shape signature of multiple



3D shapes. For example, a cube balancing on one of its corners will have exactly the same distribution

as one resting flat on one face. Combining the three-dimensional similarity measure with an estimate of

similarities of the 2D ground plates,  estimated in  the same way as  S  but in two dimensions only,

reduces the odds of false positives when searching for similar shapes. In addition, other dimensions like

the overall volume of the properties can also be (re-)introduced to account for large deviations in scale. 

On a different note, human perceptions of similarity are likely to be a nonlinear function of  S. For

example,  a  decrease  in  S from a high  0.95  to  0.85 might  change the  perceived similarity  of  two

buildings dramatically while moving from 0.35 to 0.25 might not. Translating S into a binary variable

that classifies pairs of buildings as either similar or dissimilar accounts for non-linearities effectively.4 

As the subsequent  data section will  show, the  shape of  a  building is  closely  intertwined with  the

physical  attributes  of  the  buildings  and  the  location  of  the  property  within  the  city.  Modelling

proximities between observations as described by spatial weight matrices in spatial regression models

can account for spatial dependencies. In the same light, the “proximity in shape” can be explicitly

modelled  using additional  matrices  capturing the similarities  in  the  shapes  of  the  buildings  in  the

sample.

In this paper, a similarity matrix  WS contains the pairwise similarity estimate for all pairwise

combinations of buildings in a sample of size n . Each element wsi,j is defined to be 1 if buildings i and j

are sufficiently similar  in shapes (high  S in 3D),  ground plates  (high  S in  2D) and volumes,  or 0

otherwise:

4 An either/or classification also resonates well with the vocabulary available when describing similarity of shapes: We

only have words for the extremes and cannot describe “somewhat similar” or other more nuanced degrees of similarity

with single words. 



(2)

The similarity estimate is symmetrical, as wsi,j = wsj,i. As mentioned before, the volume of a building is

approximated by the average distance between random points on the surface of each building. 

To achieve  a  similar/dissimilar  classification that  resembles  the perceptions  of  shape similarity  by

humans as closely as possible, values for the parameters a, b, vlow and vhigh are selected based on a web-

based survey on shape similarity. In that survey, students are repeatedly presented pairs of 3D model

visualizations of buildings and asked to classify them as either “rather similar” or “rather dissimilar”5.

Drawing from this unique dataset of similarity perceptions, threshold values are selected that lead to a

good  fit  between  human  classifications  and  the  algorithm based  classifications  in  WS.  With  pre-

compiled 2D- and 3D-shape signatures, a pairwise similarity matrix  WS can be estimated fast and

without consuming excessive computing resources even for large samples. 

Does shape similarity  translate  into  similarity  in  hedonic  characteristics  and property  values?  The

economic relevance of shape similarity is investigated by linking the shape information to data from

residential property transactions featuring information on sales prices and building attributes. In an ad-

hoc test,  all  properties  are assigned to 10 broad shape categories  applying the k-means clustering

algorithm to the shape similarity matrix  WS. The distributions of prices and differences in hedonic

attributes for properties across these clusters are compared. Any cross-cluster differences in observable

hedonic  characteristics  can  be  read  as  evidence  for  the  shape  similarity  data  being  correlated  to

similarities in hedonics also.

5 Details on the survey design and all response data are available from the author upon request. 



Alternatively, the intrinsically arbitrary classificantion into  N categories is avoided by estimating a

hedonic spatial error model (SEM) which investigates the relationship between transaction prices for

single family homes and set of explanatory variables including property characteristics, the year of

transaction,  the  location  of  each  building  and  the  transaction  prices  of  similar  properties  in  a

generalized method of moments (GMM) regression:

(3)

(4)

The natural  logarithms of  transaction  prices  P for  building  i is  explained by a  vector  of  hedonic

attributes Xi and a vector of dummies variables Yeari  for the year of transaction. The vectors B and G

contain  regression  coefficients.  The  error  terms  μ are  correlated  with  one  another  for  nearby

observations and for similar shapes. The elements in the spatial weight matrix W are defined to be

1 for all corresponding properties which are closer than 100 m and 0 otherwise. Before estimating  the

model, both W and WS are row-normalised by dividing each element by the sum of all elements in the

corresponding  row.  The  coefficient  λ1 is  expected  to  be  positive,  since  properties  that  are

geographically close share the same unobserved location amenities. In a similar spirit, the error terms

of  similar  buildings  (indicated  by  WS)  are  expected  to  be  correlated  as  well,  since  they  share

unobserved attributes. If the coefficient of shape correlation λ2 is found to be significant and positive,

then prices paid for properties that share the same shape are correlated beyond the factors explained by

hedonics, time, or location. 

LeSage (2014) advises  to  “avoid  the pitfall  of  multiple  weight  matrices” in  spatial  models,  since,

among other concerns, covariances between multiple weight matrices are restricted to be zero (LeSage

and Pace, 2011). When estimating Eq. (3), alternative specifications of  WS are therefore tested that



explicitly have a correlation of zero with the spatial weight matrix  W, circumventing any covariance

restrictions.

Estimating the value of architectural homogeneity

At the neighborhood-level, architectural homogeneity in residential real estate has been traditionally

associated  with  large-scale  developments  of  affordable  and  mass  produced  homes.  Examples  are

“monotonous” post-WWII home building schemes (Gartman, 2009) for returning veterans in the US or

aesthetically  bland  suburbs  where  few large  developers  continue  to  produce  “more  of  the  same”

(Peiser, 2014). Affluent neighborhoods, on the contrary tend to exhibit more variety in architecture.

Despite the array of hedonic controls introduced in Eq. (3), a residual link between a building’s shape

and its location or attributes cannot be fully ruled out. Lot specific constraints, for instance, could

jointly influence the hedonic configuration X and also the shape. The shape can determine additional

unobserved variables like the orientation,  the positioning of the building on the lot,  or the general

openness to light and air.

We control  for  neighborhood  and  unobserved  building  quality  effects  by  looking  at  homogeneity

within small ensembles of rowhouses within close geographic bounds. Ensembles comprise three or

more adjacent rowhouses that are identified to have (almost) identical shapes and that are therefore

very likely to stem from the same development and to share very similar hedonic characteristics. Due

to their close proximity, location specific amenities are also comparable within each ensemble, which

ensures that all buildings from that ensemble are almost perfect substitutes. Remaining differences in

upkeep and interior amenities of buildings within the ensemble are assumed to be distributed randomly.

A systematic difference between otherwise homogeneous ensemble buildings is introduced whenever

the ensemble directly borders a house of distinctly different architectural shape. To illustrate, picture a



row of four houses (A, B, C, D) containing an ensemble of three substitutable structures (A, B, C) next

to an architecturally diverse house D. In this example, C differs from B only in terms of its location

within the ensemble as differences in location and hedonic attributes are negligible. C is subject to the

architecture  externalities  of  D,  while  B  is  surrounded  by  homogeneous  properties.  Comparing

transaction prices of buildings within the ensemble (B) to prices of buildings from the periphery of the

same ensemble (C), singles out the value of homogeneity: If prices within are higher than prices at the

periphery, then homogeneity in architecture is preferred over shape variety. 

Any  price  premium  (or  discount)  for  homogeneity  is  hypothesized  to  depend  on  the  degree  of

architectural impairment by building D. If the shape difference between C and D is large, then any

price effect is expected to be highest, while small difference matter less. Additionally, for small and

affordable rowhouses ensemble effects are likely to account for a larger share of total value than for

larger dwellings.

This identification approach translates into a regression estimation in which the ratio of the sales price

from  a  periphery-of-ensemble  property  C  over  a  within-ensemble  building  B  transaction  price

(PriceRatioCB = PriceC/PriceB) is regressed against an intercept α and a linear combination of the shape

similarity between C and D (SimilarityCD) and the volume of C (VolumeC): 

(5)

A set of dummy variables Yb,c accounts for different years of sale for B and C. Yb,c are defined to be 1

for all pairs i where B was sold in year b and C in year c, -1 if B was sold in year c and C in year b –

and 0 otherwise. The ratio of interior floorspace of C over B's interior floor space  (IntSpaceRatioCB)

accounts for any remaining differences in the interior floorspace that might exist due to different floor



plans  within  similar  external  shapes  or  differently  used  basements  or  attics.  The  β's  and  δ's are

regression  coefficients  to  be  estimated  and  the  error  term  ε is  assumed  to  be  independently  and

identically distributed. 

Data

This paper relies on four sources of data. First, the City of Rotterdam provides a three-dimensional

model of all buildings in the city6, which has been calculated from surface scanning data captured from

helicopters in April 2010. The accuracy of the spatial data is high: At least 30 points per square meter

have been scanned in the city center and 65 percent of these points are within 10 cm of the true location

(95 percent within 15 cm), and the confidence intervals around height estimates are even narrower

(City of  Rotterdam, 2015).  The virtual  representation of  Rotterdam is distributed in  the CityGML

(Level  of  Detail  2)  format,  which  is  an  open  data  model  for  the  storage  and  exchange  of  three-

dimensional city information. A building's shape is defined by a set of polygons, each representing a

wall, part of a roof or the ground plate. One can compare this to building a model of a house by cutting

two-dimensional shapes out of cardboard and gluing them together: any structure can be approximated

but very fine architectural nuances might be lost. Demarcations of buildings that share walls have been

added based on land registry records (City of Rotterdam, 2015). After dropping small structures with a

ground plate of less than 3 m2, 185,914 properties remain in the database.

Second, data on residential transactions in Rotterdam is acquired through the Association of Dutch

Realtors (NVM). About 70% of all transactions in the Netherlands are facilitated by members of the

NVM7. The NVM database contains 29,948 observations for Rotterdam in the years 2006-2013. For

each sale, the sales price, the exact address and a basic set of quality attributes for the property like

interior  floor  space,  dwelling  type,  year  of  construction,  number  of  bedrooms,  number  of

6 Available for download at http://www.rotterdam.nl/links_rotterdam_3d

7 https://www.nvm.nl/over_nvm/english.aspx



bathrooms/WC and  the  building's  volume  are  recorded.  The  street  address  can  be  translated  into

geographic  coordinates  using  the  geocoding  service  of  the  Dutch  land  register8.  Based  on  these

coordinates, sales can be matched with buildings in the 3D model.

Third, the Dutch land registry maintains a national register of all buildings (Basisregistraties Adressen

en Gebouwen, BAG) which offers information on the number of units within each building. Fourth, a

web-based survey of perceived similarity is conducted.

Combining  the  3D  data,  the  sales  database  and  the  building  registry  gives  a  sample  of  6,717

transactions of individual structures that contain only one residential unit and for which at least one sale

has been recorded. Multi-unit buildings are excluded because their 3D shape cannot be assigned to

individual sales reliably. Further, observations with extreme or potentially wrongly coded values are

dropped whenever the transaction price is below 30,000 EUR or above 1 million EUR, the value for

interior floor space is below 30 m2 or above 500 m2,  a lot size above 5,000 m2  or an estimate of the

building's volume below 30 m3 or above 5,000 m3. The adjusted final sample is comprised of 6,126

transactions.

==== Insert Figure 2 about here ====

Figure 2 gives an overview of the spatial distribution of the sample within the borders of the Rotterdam

municipality. The gray areas indicate all buildings from Rotterdam's 3D city map, including residential,

industrial and commercial properties. The black areas represent the final sample of single family homes

for  which  transaction  data  is  available  in  2006-2013.  Solid  lines  mark  the  official  neighborhood

boundaries. The majority of residential transactions can be found in the residential neighborhoods in

Rotterdam proper in the east, while the west is dominated by harbor, infrastructure, warehouses and

industrial properties.

8 More  information  on  the  geocoding  webservice  is  available  at  https://www.pdok.nl/nl/service/openls-bag-

geocodeerservice .



Results 

Shape Similarity Measures

For all buildings in Rotterdam, the 3D shape distributions and 2D shape distributions of ground plates

are calculated.9 The computation of the shape distributions for a single building takes only a fraction of

a second on a contemporary PC. 

To verify  that  the suggested  shape similarity  measure  S holds  up in  a  real  world application,  the

distribution of S for buildings that are known to be similar is compared to the overall distribution of S.

Cube-shaped buildings can be easily identified as they have exactly four walls, a roof and a ground

plate which are all squares of the same area. For 1,229 (out of 185,914) buildings, these conditions are

met reasonably well. For all pairwise combinations of cube-buildings, the average value of S is 0.95,

which is close to the ideal value of 1. In contrast the distribution of S for all buildings has a mean of

0.76. It is re-assuring that the difference in means between cube and non-cube buildings is large and

statistically significant (t-value: 3,828). Overall,  S passes the initial test of being able to tell similar

from distinct shapes.

 ==== Insert Table 1 about here ====

==== Insert Figure 3 about here ====

The 6,129 shape distributions displayed in Figure 3 exhibit substantial heterogeneity, indicating a large

diversity in the shapes of the single-family homes in Rotterdam. At the same time, the darker areas in

the figure show a clustering around typical distributions – despite all uniqueness, building exteriors

appear to be variations of a limited number of typical architectural forms.

9 Both the code to draw large numbers of random points from the exterior of a building model and the stored shape

distributions are available from the author upon request.



Similarity in shapes comes with similarity in hedonic attributes (Table 2). When dividing the buildings

into 10 dominant shape clusters (the dark thick traces in Figure 3) using the k-means algorithm, stark

contrasts in building attributes can be observed. For instance, Cluster 8 features the most affordable

transaction price (EUR 194,000), the smallest average interior floor space (101 m2), a low volume (281

m3) and the most recent average year of construction (1975). It is comprised almost exclusively of

terraced houses (99.1%). Cluster 10, in contrast, features the highest share of detached homes (11.7%),

the highest average values for sales price (EUR 365,000) and volume (450 m3), and high values for

interior floor size (153 m2). The test for equal means in a one-way layout shows that the differences in

cluster means are statistically significant, with F-values of 22 and higher (num. df = 9, denom. df =

2,163). Also, housing types are not equally distributed across clusters (Χ2 =3333.4, df = 36).

==== Insert Table 2 about here ====

Finding a link between shapes and building characteristics corroborates the underlying assumption of

this  paper:  Shape  information  can  be  used  as  a  proxy for  observable  –  and  more  interestingly  –

otherwise  unobservable  building  attributes.  However,  shape-related  estimates  remain  difficult  to

interpret as they represent both an effect for a specific shape and jointly the contribution of unobserved

hedonic variables correlated with specific shapes.

Strict zoning in combination with economies of scale in large developments of multiple units with

similar designs enforce a high degree of homogeneity in buildings' forms and appearances at block or

street level. This combination of strong regulations and market forces induces high levels of spatial

correlation in any measure of building shape for Rotterdam. The data support this expectation: The

odds of  observing buildings  from identical  shape clusters  within 100 m are 2.8 times higher  than

expected  under  the  assumption  of  random  spatial  distributions.  The  same-shape  joint  count  test

statistics  with  nonfree  sampling  (Cliff  and  Ord,  1981;  Upton  and  Fingleton,  1985) are  highly



significant.  With  such  strong  spatial  correlations  present  in  shape,  strong  spatial  controls  are

indispensable in the subsequent analysis. 

==== Insert Table 3 about here ====

Reassuringly,  the automatic classification of buildings into similar and dissimilar pairs corresponds

well  with the perception of building similarity by human. Overall,  374 combinations of Rotterdam

building models have been presented to human survey participants, who were then asked whether they

would  consider  these  buildings  as  being  “pretty  much  the  same”  or  “different”10.  The  automatic

classification  suggested  in  this  paper  can  predict  the  human  classifications  well:  116  out  of  125

combinations  that  have  been  classified  as  being  “rather  similar”  by  human  respondents  are  also

classified as similar in WS.11 Only 9 (or 7%) are not. For pairs that are perceived as being different by

humans, the match is a little lower: 193 out of 249 combinations flagged as “rather dissimilar” by

humans are also considered dissimilar by the automatic classification (76%). A highly significant chi-

squared statistic of 163 (with 1 degree of freedom) confirms that the automatic identification of similar

buildings is highly correlated with human classifications. 

==== Insert Table 4 about here ====

Shape distributions and property values 

Table  5  presents  coefficients  for  four  independent  GMM  regressions.  First  a  reduced  version  of

Equation 3 is  estimated in  Model  I,  which explains the natural  logarithm of  transaction prices  by

dummies for the year of transaction and a traditional spatial weight matrix W (in which element wi,j is

set  to  one  if  buildings  i and  j are  less  than  100  m apart,  and  0  otherwise)  only.  The  fit  of  this

rudimentary  model  is  surprisingly  good  (adj.  R2:  0.716)  due  to  the  fine-grained  spatial  weights

10 An example of the comparisons presented in survey is shown in Appendix 1.

11 The 98th percentiles for 3D-S and 2D-S  are used as  thresholds  a  and  b,  and  vlow and  vhigh are set  to 0.83 and 1.2,

respectively, when calculating WS.



capturing the variation in location amenities and building characteristics.  The coefficient of spatial

correlation, λW, is large (0.8) and statistically significant. 

 ==== Insert Table 5 about here ====

Adding a second weight matrix WS based on shape similarity (Model II) boosts the explanatory power

further.  The  adj.  R2 reaches  0.74,  reducing  the  unexplained  variation  by  8.5%  (  (1-0.74)/(1-

0.716)=0.915). The coefficient of similar-shape correlation,  λWS,  is relevant in size (0.286) and also

found to be significantly different from zero. In the sample, three quarters of all variation in transaction

prices can be attributed to the overall market, location and similarities in shapes – all variables that can

be remotely observed without on-site inspections and which represent  low-hanging fruits  for mass

appraisal systems.

The coefficient estimates for the hedonic variables in III and IV do not surprise: Detached homes are

valued most as all other types carry significant negative discounts. Terraced houses, for instance, are

about 25% more affordable. Interior floor space and volume have positive elasticities, which add up to

a little below 1. The elasticity of lot size is a low 0.039. The 1960s through 1980s vintages carry a

significant discount, while newer homes command a premium over historic homes built before 1906.

Interestingly, the spatial correlation coefficient λW is the highest (0.805) in Model I, and drops sizably

(to 0.699) after controlling for shape similarities in Model II. This suggests that spatial correlations in a

traditional SEM model does not exclusively capture micro-location related amenities but also includes

a sizable share of property attribute information. Similarly, adding hedonic control variables directly

(Model III) reduces the magnitude of the spatial correlation estimate (0.637), while the “purest” spatial

correlation estimate (0.609) can most  likely be observed in  Model  IV, which includes  both direct

hedonic variables and the indirect controls for unobserved variables through the shape similarity weight

matrix WS. With weight matrices being row-normalized and coefficients λ1 and λ2 being below 1 (albeit



the sum of both only just so in case of Model II) and the cross-sectional nature of the data one might

argue that stability conditions are not a major concern.

Including hedonic control variables reduces the coefficient for shape similarity λWS, by more than half,

again indicating that form and function are correlated. Still, even with strong hedonic controls, finely-

grained spatial weight matrices and strong model fits (R2  exceeding 0.8!), shape similarity correlation

estimates remain statistically significant (p-value of 0.03).

Robustness tests find that buildings of similar shapes exhibit a common structure in regression error

terms even if observations are located far apart: setting all elements of WS for buildings that are less

than 5 km from each other to 0 does not change the λWS estimates substantially. This is interesting for

buyers and sellers of properties: Using shape information, one can identify relevant comparables, even

if they are at the other end of town. 

Finally,  to  rule  out  that  the  shape similarity  matrix  WS is  not  solely  a  disguised  fixed  effect  for

buildings by the same developer (which happen to have similar designs), the weight matrix is again

manipulated.  Assuming  that  buildings  from  different  vintages  have  been  realized  by  different

developers, all elements of WS for buildings built less than 15 years from each other are set to 0. Again,

the λWS estimate remains robust in magnitude. As long as shapes are similar, differences in building age

do not matter when looking for comparables. 

The Value of Homogeneity

In 320 cases, sales of properties both at the periphery and the interior of the same ensembles have been

recorded between 2000 and 2013. The homes from these pairs of sales are very comparable in their

location and in their hedonic attributes, yet they differ in their exposure to non-similar neighbors.    For

pairs of sales from the same year, the ratio of periphery-over-within ensemble sales (PriceRatioCB) is on



average 0.97.  A relatively  close  standard  deviation  of  0.09 confirms that  the  quality  and location

characteristics of the homes are controlled for effectively. 

========= Insert Table 6 about here ==========

Table 6 presents the regression estimates of Equation 5 based on an ordinary least squares regression

with robust standard errors (White's estimator). The dependent variable  PriceRatio (PriceC/PriceB)  is

normalized around mean 0 and all independent variables are standardized (mean 0, SD 1). Panel (I)

displays the estimated coefficients from a reduced version the suggested model. The negative constant

(–0.036, norm.) indicates a significant price discount for buildings at the periphery of an ensemble

versus closely comparable buildings within the same group of buildings. This result is robust across

many different variations of Eq. 5. 

Despite the high similarity of the exteriors of buildings within each ensemble, difference in the interior

floorspace might still exist.  The 25th and 75th percentiles of the  IntSpaceRatioCB are 0.96 and 1.04,

respectively. Panel (II) controls for differences in the interior space ratio within each pair. Again, the

discount for a peripheral location is estimated to be negative and significantly different from 0. 

The third model suggests that the periphery-discount is smaller for ensembles of larger buildings.  A

one-standard-deviation increase in the volume of ensemble buildings almost fully offsets the discount

(positive coefficient of 0.025 vs. the –0.03 discount). Apparently, larger buildings are less subject to the

architecture of their neighbours. This finding is confirmed in Panel IV, where the ratio of the volume of

the peripheral ensemble building over the neighboring building is added to the regression. The positive

and significant coefficient (0.017) suggests that the premium for  homogeneity decreases in relative

size. No significant coefficients are found for the degree of shape similarity (Panels V and VI). 



Conclusion

The far reaching question of how the architecture of a building and its neighbors codetermines their

respective values has so far not been addressed in a large-scale and data-driven study. This paper shows

that it is not only feasible but also worthwhile to empirically analyze the shape of buildings. Existing

research on property values has eschewed three-dimensional building models as an information source

since these data do not come in convenient bite-size formats but have unwieldy “Big Data” properties.

City-wide shape data sets tend to be massive in size, exceeding the computational limits of traditional

regression-style empirics. Furthermore, the data is unstructured and needs interpretation before derived

information on shapes can be linked to other property characteristics.

Extracting shape information is not “Big Data” wizardry, however. Condensing building models to

shape  distributions  reduces  the  complexity  while  preserving  sufficient  information  to  estimate  the

degree of similarity between properties. These algorithm-based similarity estimates are good predictors

of human perceptions of similarity.  This opens up new avenues of research not only in real estate

finance and economics, but also in the domain of architecture, urban planning or sustainability. 

Ultimately,  this  paper  presents  empirical  support  for  the  notion  that  architectural  homogeneity  is

positively valued in  residential  property markets.  Rowhouses surrounded by other buildings of the

same shape carry an economically and statistically significant premium of several percentage points

vis-à-vis comparable buildings in heterogeneous rows of houses, which can be interpreted as evidence

for benefits of enforcing coordination between developers of new buildings and owners of existing

stock.  After  all,  the  value  of  buildings  we live,  work and are  invested  in  largely  depends  on the

architectural choices of neighbors. 

The estimated price effects are conservative estimates. The identification of ensembles is based on

similarities of entire buildings, which might be overly restrictive. It could be sufficient to evaluate the



similarity of the street-facing facades only, for instance by classifying photos of ensembles taken from

the streets. 

Whether  this  preference  for  shape homogeneity  is  specific  to  Dutch  home buyers  or  whether  the

positive attitude towards ensembles of similar shapes is universal remains a question for follow-up

studies in other markets and cultures.  Additionally, considering the shape of properties in empirical

price estimations could put a price tag on certain architectural forms and could lead to more accurate

marginal price estimates for attributes like housing type, year of construction, or location which are

closely correlated with architecture.
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Figures and Tables 

Figure 1: Basic solid geometries and their representation as a shape distribution
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Notes: The distributions are normalized by dividing all pairwise distances by average distance for the respective shape

before  estimating  the density  functions.  The estimated  density  functions of  three  basic  shapes  show very  distinct

profiles with cubes having the most pronounced peak. Rectangular shapes exhibit flatter space distributions with a

hump in the right tail. 



Notes: The gray areas indicate all buildings from Rotterdam's 3D city map. The black areas represent the final sample of

single family homes for  which transaction data  is  available in  2006-2013.  Solid lines  mark  the  official  neighborhood

boundaries. The majority of residential transactions can be found in the residential neighborhoods in Rotterdam proper in

the east, while the west is dominated by the harbor, infrastructure, warehouses and industrial properties.

Figure 3: Shape distributions of single family homes in sample 

(Rotterdam, 2006-2013)
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Notes: The shape distributions of all 6,129 buildings in the sample exhibit substantial heterogeneity, indicating a large

diversity in the shapes of the single-family homes in Rotterdam. At the same time, the darker areas in the figure show a

clustering around typical  distributions – despite  all  uniqueness,  building exteriors  appear to be variations of  a  limited

number of typical architectural forms.



Table 1: Distribution of Shape similarity S across all Rotterdam buildings

Min 1st Quantile Median Mean 3rd Quantile Max SD

All buildings 0.21 0.69 0.77 0.76 0.84 1.00 0.11

Cube-shape buildings 0.60 0.94 0.96 0.95 0.97 1.00 0.03

Notes: The pairwise shape similarity measure S is calculated for all combinations of 185,914 buildings in Rotterdam. The

distribution of similarity values clearly differs from the distribution for cube-shaped buildings, which display higher levels

of similarity. Overall, 1,229 buildings are classified as having a cube shape: they consist of exactly 4 walls, a roof and

ground plate which are all squares and of similar size. The difference in means between non-cube and cube-shape buildings

is statistically significant (t-value = 3,828). 

Table 2: Mean values for hedonic attributes and distribution of house types across shape clusters

Cluster Count Mean % House type
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1 319 285 148 128 428 7.7 5.2 3.0 1963 0.3% 0.3% 0.6% 2.2% 96.6%

2 581 303 151 127 439 7.7 5.5 3.2 1956 0.2% 0.2% 0.9% 0.7% 98.1%

3 406 286 131 208 392 7.3 4.6 2.5 1960 7.1% 15.8% 21.2% 5.9% 50.0%

4 860 322 140 275 403 6.6 5.1 2.8 1959 7.8% 19.3% 50.5% 2.3% 20.1%

5 491 248 123 165 351 6.4 5.1 3.0 1961 0.0% 0.2% 1.0% 0.8% 98.0%

6 800 301 141 181 406 6.8 5.3 3.1 1961 0.1% 7.0% 42.5% 1.9% 48.5%

7 716 259 133 151 378 7.1 4.8 3.0 1967 0.3% 1.0% 11.7% 2.5% 84.5%

8 319 194 101 179 281 6.4 4.1 2.1 1975 0.0% 1.3% 6.6% 0.3% 91.8%

9 785 284 137 146 396 6.9 5.4 3.2 1958 0.0% 0.1% 0.3% 0.5% 99.1%

10 849 365 153 273 450 7.0 5.1 2.8 1968 11.7% 24.4% 38.9% 6.8% 18.3%

Total 6,126 294 138 192 400 7.0 5.1 2.9 1962 3.3% 8.3% 21.4% 2.5% 64.54%

One-way analysis of equal means, F-value Chi-squared test of independence

89 96 62 96 159 64 145 22  Χ2 =3333.4, df = 36

Notes: Properties are grouped based on their shape distributions using the k-means clustering algorithm (k=10). The

values for core hedonics differ across shape clusters. The equality of means can be rejected, with all F values exceeding

22 in one-way analysis (num. df = 9, denom. df = 2,163). Also, housing types are not equally distributed across clusters

(Χ2 =3333.4, df = 36).



Table 3: Spatial correlation in building shapes

Shape cluster Same-shape statistic Expectation Variance P-Value

1 42.48 8.48 1.18 0.00

2 99.19 28.19 3.60 0.00

3 60.71 13.75 1.86 0.00

4 131.95 61.79 7.21 0.00

5 85.88 20.12 2.64 0.00

6 101.44 53.46 6.36 0.00

7 119.51 42.82 5.24 0.00

8 57.81 8.48 1.18 0.00

9 153.00 51.48 6.15 0.00

10 132.11 60.22 7.05 0.00

Notes: Joint count tests under nonfree sampling (Cliff & Ord, 1981) suggest that buildings of similar shapes tend to be

close to each other. The odds of observing buildings from identical shape clusters within 100 m off each other are 2.8

times  higher  than  expected  under  the  assumption  of  random  spatial  distributions.  The  same-shape  statistics  are

statistically highly significant. 

Table 4: Automatic vs. human classification

Automatic classification (WS)

Different Similar

Classification by survey 

respondents

Different 193 56

Similar 9 116

 
Notes:  Overall, 374 pairs of buildings have been classified by human subjects as either being similar or different. The

corresponding values in similarity matrix WS show that the automatic shape comparison leads to classifications that are, on

average, similar to classifications by humans. X2 = 162.81, df = 1, p-value < 0.001.



Table 5: Regression coefficient estimates 

I II III IV

Variable Coeff. SE P-Val. Coeff. SE P-Val. Coeff. SE P-Val. Coeff. SE P-Val.

Const. 12.510 0.015 0.000 *** 12.631 0.016 0.000 *** 8.399 0.069 0.000 *** 8.475 0.072 0.000 ***

Year of sale (vs. 2006)

2007 0.013 0.010 0.211 0.019 0.010 0.047 ** 0.018 0.008 0.019 ** 0.019 0.008 0.016 **

2008 0.047 0.011 0.000 *** 0.049 0.010 0.000 *** 0.044 0.008 0.000 *** 0.046 0.008 0.000 ***

2009 -0.003 0.011 0.766 0.003 0.011 0.748 0.006 0.009 0.461 0.008 0.009 0.357

2010 -0.005 0.012 0.668 0.000 0.011 0.993 0.008 0.009 0.382 0.009 0.009 0.311

2011 -0.014 0.012 0.257 -0.012 0.011 0.282 0.006 0.009 0.525 0.006 0.009 0.505

2012 -0.082 0.012 0.000 *** -0.079 0.011 0.000 *** -0.050 0.009 0.000 *** -0.050 0.009 0.000 ***

2013 -0.122 0.016 0.000 *** -0.131 0.016 0.000 *** -0.102 0.013 0.000 *** -0.106 0.013 0.000 ***

Type (vs. detached)

Corner -0.207 0.016 0.000 *** -0.212 0.016 0.000 ***

Terraced -0.269 0.016 0.000 *** -0.274 0.016 0.000 ***

Semi-det. -0.088 0.017 0.000 *** -0.095 0.017 0.000 ***

Linked-det. -0.216 0.021 0.000 *** -0.226 0.021 0.000 ***

ln(int. space m2) 0.741 0.015 0.000 *** 0.725 0.016 0.000 ***

ln(lot size m2) 0.039 0.003 0.000 *** 0.039 0.003 0.000 ***

ln(Volume) 0.247 0.036 0.000 *** 0.252 0.038 0.000 ***

Year of construction (vs. before 1906)

1906-1930 -0.013 0.016 0.413 -0.014 0.015 0.364

1931-1944 0.018 0.017 0.303 0.006 0.017 0.738

1945-1959 0.025 0.019 0.192 0.018 0.020 0.365

1960-1970 -0.054 0.021 0.010 ** -0.055 0.021 0.010 **

1971-1980 -0.090 0.021 0.000 *** -0.080 0.021 0.000 ***

1981-1990 -0.071 0.019 0.000 *** -0.063 0.019 0.001 ***

1991-2000 0.094 0.019 0.000 *** 0.086 0.019 0.000 ***

Yoc ≥ 2001 0.102 0.020 0.000 *** 0.095 0.021 0.000 ***

Yoc unknown 0.007 0.187 0.972 -0.056 0.186 0.763

λW spat. 0.805 0.000 *** 0.699 0.000 *** 0.637 0.000 *** 0.609 0.000 ***

λWS shape 0.286 0.000 *** 0.120 0.030 **

R2 0.716 0.740 0.838 0.840

Adj. R2 0.716 0.740 0.837 0.839

Notes: N=6,126. Coefficients are estimated from the Spatial Error Model with

. Xi is a vector of hedonic attributes for property i; Yeari is a vector of year dummy variables.

See text for definition of the the spatial weight matrix W and the shape similarity matrix WS. Both matrices are row-

normalized.



Table 6: Regression estimates for architectural homogeneity premium within ensembles

Variable I II III IV V VI

Discount peripheral 

location
-0.036** -0.040*** -0.030** -0.038** -0.037** -0.039**

(0.021) (0.008) (0.050) (0.015) (0.018) (0.013)

Difference int. floorspace 

(%, norm.)

0.015

(0.131)

Volume of ensemble 

buildings (m3, norm.)
0.025***

(0.007)

Difference of volume of 

ensemble buildings over 

neighbors (%, norm.)

0.017*** 0.014

(0.009) (0.222)

3D-similarity to neighbors 

(norm.)

0.004 0.003

(0.654) (0.661)

3D-similarity to neighbors 

int. with diff. volume 

(norm.)

-0.003

(0.820)

Year effects (Y) YES YES YES YES YES YES

R2 0.774 0.778 0.784 0.781 0.775 0.781

Adj. R2 0.634 0.639 0.649 0.643 0.633 0.640

Notes: N= 320. This table shows estimates of Eq. 5. The dependent variable PriceRatioCB is the price of a building at the

periphery  of  an  ensemble  over  an  otherwise  similar  building  in  the  interior  of  the  same  ensemble,  in  %  and

normalized. P-values based on robust standard errors in parentheses. Independent variables are all standardized (mean:

0, SD: 1). The stars (*/**/**) indicate statistical significance of coefficient being different from 0 at 10%, 5% and 1%

confidence levels.



Appendix 1

Overall, 374 combinations (similar to the one shown above) of Rotterdam building models have been presented to human

survey participants, who were then asked whether they would consider these buildings as being “pretty much the same” or

“different” The automatic classification suggested in this paper can predict the human classifications well: 116 out of 125

combinations that have been classified as being “rather similar” by human respondents are also classified as similar by the

automatic classification system suggested in this study. Only 9 (or  7%) are not.  For pairs  that  are perceived as being

different by humans, the match is a little lower: 193 out of 249 combinations flagged as “rather dissimilar” by humans are

also considered dissimilar by the automatic classification (76%). A highly significant chi-squared statistic of 163 (with 1

degree  of  freedom)  confirms  that  the  automatic  identification  of  similar  buildings  is  highly  correlated  with  human

classifications



Appendix 2

Example of a residential street in Rotterdam: Cypruslaan

Photo: Google Steetview.

Notes: Three shapes of buildings can be observed in this section of a residential street in Rotterdam. On the left, complex

single family homes with flat roofs while the right hand side features more basic semi-detached homes with saddle

roofs. Some of the semi-detached houses have garages. Based on the 3D models of these houses (first panel in Table

7) ,  three distinct  shape distributions are calculated.  The estimated density  functions (EDF)  for  distances  between

randomly selected points on hull of buildings show clear differences between all three shapes. In this example, the EDF

for the semi-detached house with a garage (c) is situated between the EDFs for the more complex shape of the detached

house (a) and the basic form  of the semi-detached house (b).



Table 7

(a) Detached house (b) Semi-detached (c) Semi-detached, 

with garage

EDF for distances between randomly selected points on hull of building 

Pro

babi

lity

Normalized distance

Blue: detached (a), green: semi-detached (b), red: semi-detach, with garage (c)



Appendix 3: Architectural homogeneity can reduce perceived shape heterogeneity 

Ensemble of homogeneous houses bordering a diverging shape and architecture

Photo by author

Notes:  In this picture, the building on the right is perceived as the “odd one out” by respondents in a survey and also

automatically classified as an outlier based on shape distributions. In the picture below, the automatic classification

clearly sets the right row house apart  from the other four. Survey respondents,  however, do not perceive the right

building  to  be  very  different  since  it  adheres  to  the  homogeneous  architecture  of  the  ensemble.  Architectural

homogeneity can reduce perceived shape heterogeneity.

Ensemble of 5 row houses with homogeneous architecture but one diverging shape

Photo: Google Streetview
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