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Abstract

We propose an abstraction, named BEC, to enable Global Address Space (GAS)

capabilities for parallel programming in SPMD style . It is a portable lightweight ap-

proach for incremental acceptance of the GAS model, along an evolution path that

leverages existing infrastructures and maintains backward compatibility with existing
programming methods and environments . It assists migration of legacy applications

thereby encouraging their expert programmers to adopt the new model.

In addition, it provides for some of the unaddressed needs, such as efficient support

for high-volume fine-grained and random communications, which are common in par-

allel graph algorithms, sparse matrix operations, and large scale simulations . The idea

behind BEC is that messages are aggregated by a runtime library for bulk transport

to handle such unpredictable communication patterns . Data from initial experiments

with a prototype communication bundling library using the Bundle-Exchange-Compute

(thus motivating the name BEC) programming style shows that this approach scales
well . As examples of suitable BEC applications, we present sparse matrix kernels for

multiplication and overlapping Schwarz preconditioning [5, 11] . We also discuss solid

mechanics material contact [1, 18] with abundant irregular, fine-grained communica-

tion.

BEC can be used as an enhancement to existing environments such as MPI . It

can also function as an intermediate language [14] to other high level GAS languages

such as PRAM C [8] and UPC [30] . Furthermore, it can serve as a bridge between

programming models such as virtual shared memory and message passing.
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BEC: A Virtual Shared Memory
Parallel Programming

Environment

1 Introduction

GAS stands for Global Address Space . On distributed memory hardware, GAS provides ease
of programming by allowing one processor direct access to another processor's memory. GAS

promises improved productivity over existing programming environment (such as MPI) ; and

therefore it is attractive for high productivity computing systems (HPCS).

The DARPA HPCS program is entering its phase III (2006-2010) with a focus on pro-
gramming models [15] . GAS is regarded as a key step toward HPCS goals . Major parallel

machine vendors have dedicated teams developing their own future models, all to offer GAS

as a subset . GAS languages such as Co-array Fortran (CAF) and Unified Parallel C (UPC)

have received endorsement by universities, industry, and government agencies . CAF and

UPC are already available on many computing platforms . Selected applications written in
CAF and UPC have demonstrated comparable performance with MPI ; and the GAS ver-

sions required only a small fraction of the development time compared to the MPI versions
[23, 25] . However, there are still significant challenges on the path to true adoption of GAS
models by the parallel programming community.

A practical programming model must balance the often conflicting technical factors such

as application performance, expressiveness and ease of use (for programmer productivity),

scalability to increasing number of processors, and portability to a wide range of architec-
tures.

Furthermore, there are non-technical barriers to acceptance of new programming models.

Legacy applications represent significant past investment . Expert application programmers

of legacy models are comfortable with existing environments . Migration of legacy applica-
tions and their expert programmers, along with the cost of development and adoption of a

new model, pose real challenges to any new programming model effort.

There are two distinct paths for introduction of new programming models : build every-
thing from scratch while ignoring legacy applications and users; and introduce new program-

ming models gradually through a bootstrapping process that leverages existing infrastruc-
tures .
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1 .1 Our Approach

We choose an incremental path to introduction of new programming models . BEC is an

abstraction that enables GAS capabilities for parallel programming in SPMD style . It is a

lightweight approach for the gradual adoption of the GAS programming model . In addition,

it provides for some of the unaddressed needs, such as efficient support for high-volume fined-

grained and random communications, which are common in parallel graph algorithms, sparse

matrix operations, and large scale simulations . As examples of suitable BEC applications,

we present sparse matrix kernels for multiplication and overlapping Schwarz preconditioning
[5, 11] . We also discuss solid mechanics material contact [1, 18] with abundant irregular,
fine-grained communication.

In contrast to other existing GAS languages, some of which build everything from scratch,

the BEC approach is an inexpensive and portable way to introduce GAS capabilities . It is

minimally intrusive and compatible with existing programming methods.

The BEC abstraction can be implemented as a minor language extension to high-level

languages such as C and Fortran, plus a thin runtime layer which serves as an interface

to the underlying communication infrastructure . Since this runtime layer is so thin, its

bulk-transport function can be manually fine-tuned to take advantage of the communication

capabilities of the platform.

One copy of the thin runtime layer runs on each processor . It bundles remote com-

munication requests into message queues according to their destination physical processors.
The underlying communication infrastructure is then called upon to exchange the remote

requests . After that, remote requests from other physical processors are resolved ; and results

are sent back . The returned remote data is maintained locally by the runtime layer for future
references by the user program. (Note that these activities require little user intervention .)

As detailed in this report, an implementation of the BEC abstraction focuses on a C

language extension plus this thin runtime layer . (For convenience, this implementation is
also referred to as BEC.) Specifically, the C extension includes a shared data type and a very
simple API for the runtime layer . In a program, accesses to a shared data structure must

first be "requested" through the API to the BEC runtime, which bundles up the requests
for remote data . By a simple call to the API in a subsequent programming step, the request

bundles collected by the BEC runtime, are exchanged among the physical processors to
resolve all the requests. After the exchange, computation involving shared accesses can

proceed.

The idea behind BEC is motivated in part by dynamic communication bundling tech-

niques proposed in [8] . In that fundamental approach messages are aggregated automatically

by a runtime library for bulk transport to provide efficient support for fine-grained communi-

cation that may be both irregular and random . Such communication patterns are common

in parallel graph algorithms, sparse matrix operations, and many large-scale simulations.

Data from initial experiments with a prototype communication bundling library using the
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Bundle-Exchange-Compute (thus motivating the name BEC) programming style shows that

this approach scales well ; and it outperforms the the current UPC implementation [30],

which does not scale on the test problem: a parallel linked list ranking [22] algorithm that

exhibits high-volume fine-grained random shared memory accesses.

Another motivation of the BEC idea comes from the fact that MPI programmers of-

ten develop ad hoc message queues and communication utilities to dynamically bundle up

messages in order to reduce total communication overhead . The introduction of BEC will

formalize and simplify the creation and usage of message bundling . In implementation, the

BEC runtime layer can leverage some existing communication utilities, such as the EPETRA

package in Trilinos [20].

BEC can be used as an enhancement to an existing environment such as MPI . It can also

function as an intermediate language [14] to other high level GAS languages such as PRAM

C [8] and UPC [30] . Furthermore, it can serve as a bridge between programming models

such as virtual shared memory and message passing.

1 .2 Role of Programming Models

Parallel programming models provide an abstraction for programmers to develop good par-

allel software . A model provides mechanisms for the movement of data between processors

and for the synchronization of processors . A good model abstracts away unnecessary hard-

ware details, while, at the same time, it encourages a programming style designed to exploit

the underlying system architecture to yield high performance . Parallel programming models

have yet to achieve the success of completely abstracting hardware details while maintaining

good performance, as has been done for sequential computation, and thus the two most com-

mon parallel programming models mirror the most common system architectures : shared

memory and message passing.

Shared memory programming provides the user with globally addressable memory space.

This is usually implemented in hardware, and suffers from architectural scaling limits . Shared

memory programming usually uses barrier constructs for synchronization, as there is no im-

plicit synchronization with a read or write to a shared location . Shared memory programming

has no explicit communication, and thus it becomes difficult to pinpoint where in user code

improvements could be made to reduce communication and improve performance . Further,

seeking only to minimize accesses to shared memory locations does not address the actions

of cache-coherent hardware in modern shared memory systems, which can generate data

movement for cache updates or invalidations . However, shared memory programming more

closely approximates the flexibility of Parallel Random Access Machine (PRAM) program-

ming [34] than does message passing, and as such can be considered a more natural model

for expressing parallel algorithms.

By contrast, message passing is an architecturally driven programming model, with hard-

ware considerations driving the programming style . Commodity or near-commodity proces-
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sors can be connected with message passing networks . Message passing code has explicit

read and write calls, which also provide for synchronization, and the very successful message

passing library, MPI, includes a vast array of common communication collective operations.

Since communication is explicit, it is easy to pinpoint where communication occurs in mes-

sage passing code, and thus alter the user code to reduce communication.

1 .3 Historic Perspective

For decades researchers and language developers have been exploring and proposing parallel

library and language (PLL) extensions to support large-scale parallel computing . In this

entire time, MPI has been the only project that can be called a broad success . PVM [13]

and SHMEM [24] have made an impact on a subset of platforms and applications . Co-Array

FORTRAN [31] and UPC [30] are still active efforts with some promise of being widely

adopted. Shared memory parallel models such as POSIX [35] Threads and OpenMP [33]

are also extremely useful, but large-scale parallelism using threads is limited by a number

of factors such as a lack of computers with large processor counts, problems with latency
and data locality of logically shared data that is physically distributed and subtle issues

such as false cache line sharing that can make a parallel program much slower than its serial
counterpart.

Ironically, the success of MPI has made the adoption of true language extensions, and

other novel library approaches extremely difficult across existing parallel application bases

and within existing parallel application development teams because there is a high degree

of satisfaction with the performance and availability of MPI and a critical mass of MPI
expertise. In other words, many people think MPI is all they need . Many good ideas have

failed because they have not recognized and addressed this attitude . There are still many

opportunities to improve upon MPI, both in usability and performance . In particular, we

can improve upon MPI in the following ways:

• Readability : Because MPI is a set of library interfaces, MPI code tends to be less

readable than a language extension such as the square bracket notation of Co-Array

FORTRAN or the SHARED keyword of UPC . Language extensions tend to make code

easier to develop, understand and maintain.

• Runtime Overhead : Although MPI function call overhead can be negligible for coarse-
grained parallelism, it can be significant for very fine-grained parallelism . Language
extensions can avoid this overhead.

• Compiler Optimization : MPI function calls are opaque to the compiler . Therefore,

remote memory references, which in principle could be scheduled and buffered, are not

visible to an optimizing compiler.

• Specialized interfaces : MPI is a general-purpose low-level library. This is excellent

for flexibility, but makes it difficult to implement specialized communication patterns
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because they must be built up as an unwieldy sequence of low-level calls . Language

extensions support irregular remote memory access in a natural way with loop expres-

sions using indexed reads and writes to get or put remote data, without recourse to

buffering or registering user data types to a library. This capability is arguably the

most important practical feature of Co-Array Fortran and UPC.

An additional problem in the area of language extensions is the "chicken-and-egg" dy-
namic . Any language extension will not be used by applications unless compilers will support

it, and compilers will not support it unless applications are obviously willing to use it . So a

carefully orchestrated bootstrapping process must be managed to reach a critical mass of use

and support . However, Sandia is an excellent environment for this kind of bootstrapping pro-

cess since we have research and development efforts throughout the entire vertical spectrum

from hardware, OS and programming environments to new application development.

From our perspective this is the challenging environment any PLL project needs to ad-
dress . The efforts described in this report are intended to provide a suitable alternative or

enhancement to MPI, capabilities that MPI cannot provide, or both.

2 BEC Model

BEC can be viewed as an enhancement to existing message-passing systems, such as MPI.

It provides a virtual shared memory interface with explicit software control for data com-
munication . BEC is also designed to overcome one of the shortcomings of shared memory

programming in that it allows programmers to identify when communication occurs . In

this section, we present an overview of programming in BEC, the BEC language extension

and compiler support, BEC execution model, and the support infrastructure for BEC . For

additional details, see Appendix A.

2.1 Overview

BEC is a formalization of the Bundle-Exchange-Compute programming style . BEC presents

its users with convenient language extensions (to ANSI C) and library calls . Its execution

is supported by the compiler and runtime . In addition to BEC's language extensions and

library, programmers can also use MPI and C in their BEC programs.

BEC follows the Single Program Multiple Data (SPMD) model . There is an instance

of the BEC runtime object executing on each physical processor . BEC programs should
roughly adhere to the following structure:

a Issue requests for reads of shared variables.
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• Issue exchange call . This call signals the runtime to fetch the shared values requested.

Exchange calls also write through any outstanding write requests, which are implicitly

generated by assigning value to a shared variable.

• Local computation resumes, with the requested values available for a read by the

requesting processor . For convenience, we refer to the instructions executed between

consecutive exchange calls as executing within the same phase, with exchange calls

separating distinct phases of execution.

• Optional barrier calls to synchronize amongst processors . The Exchange call is also a

barrier, but with data exchange.

Note: All reads must be explicitly requested . Multiple uses of the same data only need

to be requested once for one exchange call . The user can request an array section (say

elements B[20 : 50]) . Writes need not be requested explicitly ; they will be registered at

runtime by the BEC runtime library. Physically remote (shared) data will only be available

after the exchange call, which carries out the actual transporting and processing of remote
communication requests . Remotely fetched values will be stored in a local software cache,

which is a component of the BEC runtime library.

Next, we present the language extensions of BEC and the compiler support, showing how

each of the above steps are accomplished.

2 .2 Language Extension

BEC adds the following extensions to ANSI C:

• shared: The shared keyword, when used to modify a C variable declaration, creates a

shared region . If this is outside any function, exactly one shared region will be created.

If this is in a function body, one region will be created per execution of the declaration.

If the type of the declaration is modified by the star, the shared region will be of pointer

type to a shared region of the base type . If the shared keyword appears in the formal

arguments of a function, then the shared variable will be passed by reference, when

the function is called.

• BEC_joint_allocate: This is a space allocation function . It is called by all processors

to create exactly one shared region . There is no guarantee of synchronization.

• BEC_local_allocate: This is another space allocation function . It is called by only

one physical processor to create a shared region . The creation notice is sent to other

physical processors on the subsequent exchange call.

• BEC_request : Shared data must first be requested with the BEC_request call to make

them available in the next phase of computation . BEC_request takes as parameters a
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shared variable, an offset, size of data needed, and an optional "persistence bit" which,

if set to 1, will keep the region available until explicitly released . If no persistence

bit is set, the shared region will only be available until the next exchange call unless

requested again. The size parameter allows programmers to fetch data of arbitrary

length, which is often useful in fetching a segment of a shared array.

• BEC_exchange : BEC_exchange causes data communication . Read requests are served,
and writes are recorded. The exchange call takes an optional parameter to clear all

persistence bits.

• BEC_barrier: BEC_barrier is a wrapper on the underlying transport layer 's barrier
call . It can be used as a synchronization tool . BEC_exchange () acts as a barrier also,

but should be called when data exchange is needed.

• PROCOF : A function that takes a shared variable as a parameter, and returns the process

ID of the physical processor owning the byte identified by the argument.

• MY_PID : A variable that contains the physical processor ID of the calling processor.

In addition to extensions listed above, BEC also provides functions to manipulate per-

sistence bits and to check whether specific shared locations are available to read . BEC can

also expose runtime functions for advanced tuning.

2.2.1 Compiler

The BEC compiler has the following functions:

• Inserting Initialize() and Finalize() calls to appropriate places in the program to

initialize and clean up Shared Memory Manager.

• Rewriting shared variable declarations to the declaration of shared_ref _t type.

• Calling the appropriate Shared Memory Manager allocate functions, BEC_JointAlloc

or BEC_LocalAlloc for shared variables that have static memory storage require-

ments (i .e ., shared int a[5] ) . For shared pointer declarations where the program-

mer does not immediately allocate space, (for example, shared int* a [5] ; . . . a [0]

= BEC_JointAlloc ( . . .) ), the compiler generates calls to allocate space for the
shared_ref _t types created by these later allocation calls, and write the later-created
shared_ref _t to the shared region.

• Generating read/write calls to the Shared Memory Manager when shared variables

are referenced, as well as creating local variables to hold the values of shared memory

reads/writes. For example, indexing into a shared variable is an implicit read/write,

which can be translated to a BEC_read or a BEC_write call, before computation can
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continue . The following is an example translation of an addition/assignment involving
shared arrays A, B, and C. (Note: This translation scheme is provided for illustration

purposes; many optimizations are possible to improve such a simple scheme .)

A [i] = B [i] + C [i] ;

Translation:

tempB = BEC_read(B, i, . . .)

tempC = BEC_read(C, i, . . .)

tempA = tempB + tempC;

BEC_write(A, i, &tempA, . . .);

• Translating PROCOF and MY_PID references to the appropriate runtime calls.

2 .3 Execution Model

A translated BEC program will execute on a user-determined number of processors. A BEC

program follows the SPMD model : programs are executed asynchronously except when

explicit synchronization is requested (i .e ., via BEC_barrier, or BEC_exchange functions).

Shared memory is managed by the Shared Memory Manager (Section 2 .4.1), which is

part of the BEC runtime library. The Shared Memory Manager interface provides functions
to read from and write to shared memory regions . These functions use MPI as the underlying
communication library. Before any access to shared memory, a call to function Initialize ()

is made. This function creates an instance of the Shared Memory Manager for the calling
processor. After the final access to shared memory, a call to function Finalize() is made

to clean up local memory taken up by the Shared Memory Manager. Both of these calls are

generated by the BEC compiler.

BEC expects users to explicitly request the exchange of data. This means that before

any BEC_exchange call is issued, any writes to shared memory will not be seen by other read

requests . If a read follows a write to the same location in the same phase, the result may be

undetermined.

2 .4 Support Infrastructure

BEC is designed to be interoperable with existing message passing libraries. Its support

infrastructure is designed in layers and implemented in C++:

• Bulk Transport

At the bottom level, the Bulk Transport is a wrapper on the underlying message
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passing library. It is designed to move large arrays between processors in a synchronous
fashion . The Bulk Transport is designed to shield the upper-level objects from changes

in underlying message-passing libraries, as well as to allow for performance tuning.

• Bundler

Above the Bulk Transport, the Bundler implements a push/pull interface with mail-
boxes for all other processors . The Bundler builds aggregate messages on-the-fly, in

response to pushes of small messages, and, on an exchange, passes transfer buffers to
the Bulk Transport for communication . After an exchange, upper-level objects can
access messages received via the pull call.

• Shared Memory Manager

The top level of the infrastructure stack, the Shared Memory Manager maintains the

virtual shared memory components, and converts reads and writes to the appropriate
action that is passed to the Bundler.

• BEC Object

The BEC object is a shallow object that implements an interface that acts as a wrapper

on the Shared Memory Manager and other support objects and libraries . It provides
a consistent interface for the translator/compiler.

The infrastructure supporting BEC is depicted in Figure 1.

2.4.1 Shared Memory Manager

The Shared Memory Manager is responsible for maintaining all data structures to support
BEC virtual shared memory. It maintains a map of shared references to Partition Objects
and Range Query Objects, described in subsequent sections . This permits identification of

owning processors for shared regions, as well as the maintenance of a software-managed cache

of remote values in a searchable data structure . The Shared Memory Manager implements
request, read, write, and exchange function calls, which are exposed upward to the BEC
language extension.

2 .4.2 Partition Objects

Shared regions, though globally addressable, exist as distinct memory regions on each of
the physical processors . Partition Objects are responsible for maintaining the map from

global logical offsets to physical offsets on specific processors . Partition Objects implement
functions to identify the owning processor of subregions of a shared memory region, as well

as to find physical addresses on the local processor for subregions located on that processor.

The type of Partition Object is selected at allocation. Because allocation can be done by

a single processor, there is an option to serialize a Partition Object to produce a configuration
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BEC Interface Object

Shared Memory Manager

Read/Write/Request/Exchange

Bundler

Push/Pull

Bulk Transport

Transfer Buffer

Transport Layer (MPI)

Figure 1 . BEC supporting infrastructure . BEC is

designed to work with existing message-passing transport

layers, such as MPI . The Bulk Transport is responsible for

transferring large buffers between processors . The Bundler is

responsible for receiving small messages, aggregating these,

then separating received aggregate messages after an ex-

change call . The Shared Memory Manager implements the

virtual shared memory interface . The BEC Interface Object

provides a thin wrapper for the support infrastructure.
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string, and to read that configuration string into a Partition Object . A Partition Object

Factory is responsible for creation of Partition Objects upon allocation using a convenient

index for choosing the type of Partition Object.

2.4.3 Range Query Objects

The BEC model uses a structured bundle-exchange-communicate programming pattern.

Data is requested, requests are bundled, then data becomes available after the exchange

operation for the next communication phase . This data needs to be stored until the next

exchange operation . Further, if a shared memory location is marked as persistent, it is up-

dated on every exchange, and also must be stored . The Range Query Object is responsible

for storing and managing these local copies of shared data.

The Range Query Object gets its name from its interface : it implements a function for

locating the local pointers to ranges of bytes in a shared region . One Range Query Object

exists for each shared region on each processor.

3 BEC in Context : Related Models

A comprehensive survey of past and present parallel programming model research can be

found in [6] . This section only covers closely related models.

GAS models can be realized in libraries and language extensions . Examples of GAS

libraries are Cray's SHMEM [24], and MPI-2 [32] . Existing library-based GAS models sup-

port global address space programming in the sense that one processor can access another

processor's memory without the remote processor's cooperation. GAS language extensions

based on similar ideas include Unified Parallel C (UPC), Co-Array Fortran (CAF) [31], and

Titanium (Java-based) [12] . These languages typically support global address space through

virtual shared memory, such as UPC "shared array" and co-array in CAF . Virtual shared

memory is physically distributed when the language is implemented on a distributed ma-

chine . Virtual shared memory provides convenience in programming because the shared

memory can be accessed at random by all the processors regardless of the actual physical

data layout.

In addition to the shared data type, GAS languages also provide language constructs to

express parallelism. For example, UPC provides a parallel loop construct as follows.

upc_forall(i = 0 ; i < N ; i++ ; A[i]) {

A[i] = B [i] + Ca];
}
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The UPC_forall loop looks like the C forloop except for the addition of the fourth

expression in the loop header . This additional expression is called the affinity expression as

a tip to the compiler. In this example, the compiler will try to assign i-th iteration of the

loop to the physical processor that hosts shared array element A[i].

3 .1 Fine-Grained Access to Shared Data

The convenience in virtual shared memory programming can sometimes lead to (intentional

or unintentional) abuse in random fine-grained accesses to shared array elements . Access

to shared array elements in other processors requires communication, which is more expen-

sive than access to local data . Too much fine-grained communication can cause significant

performance penalty because of the communication overhead (latency) in each separate

transaction.

To avoid (or minimize) fine-grained remote accesses, several conditions are necessary.

• The problem solution does not require random fine-grained accesses, but this is not true

for graph algorithms, sparse matrix manipulation, and many large scale applications

(such as Sandia simulations that have extensive material contacts).

• Furthermore, the fine-grained access pattern in a problem solution needs to be regular

to match the limited and strict data layout patterns of the GAS language (such as

those specified by block size in UPC shared array declarations) . Programmers need

to be careful about data locality in shared data structures in order to avoid or mini-

mize fine-grained remote accesses . (To solve the data locality problem, an application

support layer [7] is proposed to manage data locality for UPC applications . This layer

includes domain-specific libraries which "map" the natural array access patterns in

algorithms to the physical data layout patterns of UPC . Such a support layer would

require substantial time and resources to develop and mature .)

3 .2 PRAM C

Recently, another GAS language, named PRAM C, has been proposed [8] to address the

performance penalty for fine-grained access to (physically remote) shared data structures.

PRAM C is a simple extension of C . Like other GAS languages, PRAM C supports shared

array as well as a couple of language constructs to express parallelism. For example, PRAM

C has the following construct.

PRAM_do(N) : f( . . .);

where f () is a function whose instances would be executed in parallel by N virtual

processors. The PRAM_do construct is introduced to match the semantics of the theoretical
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PRAM model (Parallel Random Access Machine [27]) . PRAM was the model of choice for
two decades of parallel algorithm research [22] ; and volumes of published parallel algorithms
are available for implementation.

The PRAM C approach to fine-grained communication is not to avoid it, but to reduce the

total overhead of all (fine-grained) communication in an application . This approach depends

on two key ideas working together : automatic communication bundling by the runtime

library and other opportunities to bundle communication owing to the PRAM semantics.

3 .3 Comparison of PRAM C and UPC

For comparison we focus on the main control constructs of the two languages, PRAM_do
and upc_forall . Both constructs are used to express parallelism, up to N parallel threads of
execution. In PRAM_do, N instances of function f ( . . .) will be executed in parallel ; while in
upc_forall, N instances of body will be executed, possibly in parallel.

But there are many fundamental differences.

Nested upc_forall constructs are reduced to sequential for-loops . Nesting of PRAM_do is

allowed and the parallel semantics of the nested PRAM_do is unchanged.

There is also some difference in semantics . Statements in f ( . . .) of PRAM_do follow
implicit barriers ([8]) ; so the parallel execution of the instances of A . . .) is synchronous.
Statements in a upc_forall body follow only explicit barriers ([29]), so the parallel execution
of the instances of body is asynchronous.

PRAM_do enables expression of parallelism in virtual processors . That is, each instance
of the function f ( . . .) will be executed by one virtual processor . In upc_forall, each instance of
body somewhat resembles an instance of function f ( . . .) in PRAM_do . But they are different.

• In PRAM_do, each instance of f ( . . .) can have its own local variables, which are truly

private to the executing virtual processors . (Communication between different in-
stances of f ( . . .) can only be through shared variables or shared arguments .)

• In UPC local variables pertain to physical processors . Therefore, local variables in

UPC are potentially shared by multiple instances of the executing body assigned to
run on the hosting physical processor . So local variables in UPC are not private to

one instance of the body, but are really shared by a group of instances . In this sense,

upc_forall does not fully support expression of parallelism in virtual processors.

There is also difference in how work is assigned to physical processors.

• Depending on the affinity expression in upc_forall, the group of instances assigned to

a physical processor needs to be determined at compile time (and even at runtime).
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Consequently, users need to make sure that sharing of local variables by multiple body

instances does not lead to unexpected program behavior . Explicit synchronizations

may be needed for program correctness; but such synchronization points apply to all the

instances on all physical processors . Currently, there is no synchronization mechanism

in UPC to deal with such sharing of local variables on each physical processor.

• PRAM_do does not have such an issue since all the local variables are truly private to

the virtual processors . Work assignment to physical processor can either be done at

compile time or runtime, beyond the concern of the user.

3.4 BEC's Relationship to MPI and High Level GAS Languages

BEC can serve as a bridge between MPI and high level languages such as PRAM C . BEC

can be used as an enhancement to MPI ; and it runs on top of and together with MPI. Also,

a PRAM C program can be translated into a BEC program [14].

Like PRAM C, BEC provides virtual shared memory for ease of programming, but with-

out any of the automatic data movement or synchronization . It relies on explicit request and

global exchange steps to make remote data available, similar to a message passing system.

BEC emphasizes bundling fine-grained communication into larger packets, then calling the

runtime library in explicit steps to exchange and process these packets . It is well designed

for the massively thread multiplexing envisioned for PRAM C, offering fine-grained access

to the programmer while using the underlying message passing network to transfer larger,

aggregate packets.

3.5 Relationship to the Bulk-Synchronous Parallel (BSP) Model

BSP is an abstract model proposed by Valiant [36] . It is defined as the combination of three

attributes:

1. A number of components, each performing processing and/or memory functions;

2. A router that delivers point-to-point messages between pairs of components ; and

3. Facilities for synchronizing all or a subset of the components at regular intervals of L

time units where L is the periodicity parameter . A computation consists of a sequence

of supersteps . In each superstep, each component is allocated a task consisting of

some combination of local computation steps, message transmissions and (implicitly)
message arrivals from other components . After each period of L time units, a global

check is made to determine whether the superstep has been completed by all the

components . If it has, then the machine proceeds to the next superstep . Otherwise,

the next period of L units is allocated to the unfinished superstep.
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3.5 .1 BSPlib

Much research has been done on the BSP model since its first introduction [21] . One sig-
nificant example is BSPlib, developed as an alternative to MPI[16] and PVM [13] . BSPlib
is a runtime library that provides support for the BSP style parallel programming . It is

already being used by a rapidly growing community of software developers in universities
and in industry. BSP1ib can be used with C, C++, or Fortran . It supports SPMD paral-
lelism based on efficient one-sided communications . The core library (excluding collective
communications) consists of just 20 primitives . The Oxford BSP toolset includes profiling

tools and implementations of BSPlib for many different machines [21].

3.5 .2 BEC vs . BSP

There is similarity between the BEC model and the theoretical BSP model . That is, com-

putation and communication in BEC are performed in phases clearly separated by the

BEC_exchange() call, which serves as a barrier . This is similar to "superstep" in the BSP

model, with a minor difference that in BEC there is no need for parameter L to control the

regular time interval for a superstep . As to the similarity, BEC can be seen as a practical
implementation of the abstract BSP model.

However, BEC provides shared data type as virtual shared memory to support Global

Address Space programming, which is not addressed in either the abstract BSP model or
BSPlib . For this reason, BEC supports a higher level of abstraction (thus improved ease
of programming) than BSP/BSPlib . Therefore, BEC can be seen as a BSP implementation
plus virtual shared memory.

Another important aspect of BEC is that it can serve as a GAS intermediate language

to other higher level GAS languages such as UPC [30] and PRAM C [8], which can be
compiled into BEC [14] . The theoretical significance is that this is the first time that fine-

grained parallel PRAM programs (in PRAM C) can be compiled into coarse-grained BSP

style programs (in BEC).

Extending BEC futher, so as to support asynchronous programming, may increase the
difference between BEC and BSP.
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4 Performance

Performance numbers were measured on seaborg, an IBM SP2 system at NERSC . Seaborg

is configured with shared memory nodes, having sixteen processors each, connected by a

high speed network . MPI can be used within or between shared memory nodes . The BEC

prototype code used MPI calls exclusively for communication between processors, whether

on the same node or between nodes.

4.1 Linked List Ranking

Given a linked list, the problem of list ranking is to compute the distance from each node to

the tail of the list . This problem is of interest to us as a test case for the effectiveness of BEC

on code exhibiting fine-grained, random, irregular communication . Linked list ranking is a

fundamental operation in parallel algorithm design, described in many parallel programming

texts and tutorials (e .g . [22]) . We consider a list of n items, where each item i has a pointer

p(i) to its successor in the list . The final element in the list has a special nil pointer . At

the end of the algorithm, we would like each item i (0 < i < n — 1) in the list to hold an

integer r(i) that signifies its distance to the tail of the list, and thus is its rank in the list.

To compute the ranking in parallel, p and r are realized as shared arrays.

We implemented a straightforward algorithm to solve the linked list ranking problem for

a list of n items: We create three shared arrays jp, p, and r, each of n elements . We assume

that the pointer array, p is initialized to the linked list values . At the outset, each item i has

a "jump pointer" jp[i], which is initialized to p[i] . We initialize r[i] to 1 . We loop [logni

times . In each iteration j, each item i adds r[jp[i]] to r[i], and sets jp[i] to jp[jp[i]] . An item

stops participating once jp[i] is nil.

This algorithm basically does pointer jumping in parallel . In this context, pointer jump-

ing refers to indirect addressing of the elements of the global shared array . Here indirect

addressing uses the value of an array element as an pointer (index) to get to another array
element . Since the pointer values are random, this algorithm produces many fine-grained

messages that are unpredictable and irregular . And therefore parallel linked list ranking

provides a good example of the type of algorithm that does not perform well in a straight-

forward MPI implementation but may benefit from the BEC communication bundling and

aggregation strategy. The above algorithm, when executed by n PRAM processors, is not

work optimal, as it takes time O(logn) . The usual solution is to simulate the n PRAM

processors on a smaller number of processors, but, as our goal is to explore the performance

of this algorithm, not necessarily to provide the optimal solution to this problem, we eschew

the added complexity. For our code, we use a globally addressable BEC shared array to

store arrays p, jp, and r. Each of P MPI processes are then responsible for n/P list items.

Lists were generated in a quasi-random fashion with a balanced tree library and the

standard rand() system call, seeded by the time of execution. Lists were generated on one
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Figure 2. Execution time for BEC prototype, lists

of 128 to 8K items. With small lists, the overhead of the

prototype implementation is clear . We see a fixed time cost
of 0.1 to 0.3 seconds, and execution time scales up with both
increasing processor count and increasing list size.

processor and distributed with an MPI scatter call . To simplify the sequential implementa-

tion, we assume that the list starts with element O.

Parallel execution was timed from before the scatter call to the end of the corresponding

gather call . For details about the BEC prototype implementation, please see Appendix C.

4 .2 BEC Prototype Results

The BEC prototype was tested on lists of size 128 to 4M (2 22 ) items, and on P = 1 to 128

processors. The execution time is shown in Figures 2, 3, and 4 . We present scaling relative

to a single processor's execution of the parallel code in Figure 5 . We observe that, once the

list became sufficiently large, reasonable relative scaling was observed.

4 .3 UPC Implementation

A UPC version of the parallel linked list ranking code was also developed and benchmarked.

Due to limitations on the shared segment size and time constraints, the maximal list size
used was 1M (220 ) items. This was sufficient to see several general trends in the results.
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Figure 3 . Execution time for BEC prototype, lists of

16K to 256K items . With these moderately-sized lists, we

see an initial trend of falling execution time for increasing pro-

cessor counts . However, we observe diminishing returns for

64 and 128 processors, as the execution time curves level-off

at 32, then start to rise up to 64 and 128 processors . This is

evidence of a cost trade-off between computation per proces-

sor and communication cost of adding additional processors;

with these list sizes, dividing only the work more than offsets

the added communication cost for up to 32 processors.
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Figure 4. Execution time for BEC prototype, lists

of 512K to 4M items . With these larger lists, we see a

continual advantage for adding processors . The execution

time appears to be free of L1 cache effects, as the L1 cache is

now far too small for the working set, and the 8 MB L2 cache

available on the test system is sufficient for the working set.
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Figure 5 . Relative scaling for BEC prototype, lists

of 16K to 1M items. With increasing list size, we see good

scaling up to a ratio of list items to processors of roughly

4096 . For example, for input size of 256K, speedup deteri-

orates after 64 processors, at an average of 4096 items per

processor . This may be an artifact of the implementation -

parallel arrays of integers are used to hold the pointers, jump

pointers, and counts - as well as cache effects from a 64 KB

L1 cache on the test system . We observe that there is a tran-

sitional range as this ratio increases up to 16384 items per

processor, when the working set would be larger than the L1

cache .
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Figure 6. Execution time of UPC parallel ranking
code . We observe a trend in execution time of greater cost
as the threads per node increases, and less cost as the total
number of nodes increases . For example, the execution time

uniformly increases up to sixteen threads, but drops at 32
threads, for which two nodes were used . The Berkeley com-
piler optimizes execution for a single UPC thread, and thus
we see dramatically lower execution time for a single UPC
thread than any other number . Lists of size 16K (2 14 ) to 1M
(220 ) were used due to limitations on the UPC shared region
size.

Execution time is presented per UPC thread (Figure 6) and per node (Figure 7) . There

was a general pattern of execution time increasing on a single node as the number of threads

increased on that node, and a trend of decreasing execution time as the number of nodes
increased. We provide relative scaling for nodes (Figure 8) to show the scaling with the
number of nodes.

Version 2 .1 .17 of the Berkeley UPC compiler was used, and published performance studies

of code generated by the Berkeley compiler use only one processor per shared memory node,
thereby forcing communication through the GASNet network layer [10] . It appears that

the Berkeley compiler relies on some other mechanism for communication within a shared

memory node, and that this mechanism does not perform well . The LAPI library was used,

instead of MPI, for better performance on the suggestion of the Berkeley UPC group.

Throughout, one UPC thread was executed per processor . Thus, we may consider

"thread" and "processor" to be indistinguishable in this context.
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Figure 7. Execution time of UPC parallel ranking

code by node count . For one node, two UPC threads

per node were used, as this produced the best performance

number for a single multiprocessor node that used the UPC

runtime. For all others, sixteen threads per node were used.

UPC does appear to get a performance gain by using multiple

nodes for the parallel ranking code, but the BEC prototype

performance remains better in total execution time . Lists of

size 16K (2 14 ) to 1M (2 20 ) were used due to limitations on

the UPC shared region size.
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Figure 8. Relative scaling of UPC parallel ranking

code by node count . For one node, two UPC threads per

node were used . For all others, sixteen threads per node were

used. Scaling waned as the list size increased, suggesting that

the larger lists were generating communication at a rate w(n),

and hence we would expect the long-term behavior of UPC

to be poor on this problem due to a lack of bundling of fine-

grained communication . Lists of size 16K (2 14 ) to 1M (220 )

were used due to limitations on the UPC shared region size.
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4 .4 Analysis

First, we explain the behavior observed in the execution of the BEC prototype . In general,

we have that parallel execution time T is related to Tcomm, the time of communication, and

Tcomp, the time of computation, by

T = Tcomm + Tcomp

The goal of parallel computation is to reduce T by dividing the work across P processors.

Here, the parallel execution time behaves as the dominating factor of Tcomp and Tcomm.

When P increases, Tcomp decreases (scales) when there are no cache effects; on the other

hand, Tcomm increases . From our experiments, when there are more than 4K items per

physical processor, Tcomp dominates; otherwise, Tcomm does. However, when the number

of items per processor is greater than 16K, the cache effects upset the scaling of Tcomp.

The division of labor that decreases Tcomp comes at the cost of added communication

Tcomm, as communication tends to increase both with the volume of data communicated

and with the number of processors communicating . Execution time improves if the reduction

in Tcomp is greater than the corresponding increase in Tcomm . In Figure 2, we see that

execution time increases with increasing numbers of processors, indicating that the decrease

in computation was insufficient to offset the increase in communication. In Figure 3, we see

that the input size grows so that, up to 32 processors, increasing the number of processors

is a winning proposition . Increasing beyond 32 processors for lists of 16K to 256K items

provides an insufficient decrease in computation time to offset the rise in communication.

Once we reach list of at least 512K items, the savings in computation cost is sufficient to

achieve continual performance gains for up to 128 processors, as shown in Figure 4 . We

observe that, in order to maintain positive scaling relative to P, input size per processor

needs to be between 4K and 16K items.

There are two clear conclusions that can be drawn from the data about our BEC proto-
type and the BEC strategy:

• Communication bundling can be used to implement a natural algorithm

with fine-grained, random, irregular communication on message passing

hardware and outperform existing GAS languages . There is no published source

to indicate how the current generation of UPC compilers perform any communication

bundling – in fact, in [10], we have that the Berkeley UPC compiler performs no opti-

mizations . Thus, the UPC code is an example of a virtual shared memory programming

language permitting fine-grained communication ; our BEC prototype outperforms the

UPC implementation (Figure 9) . Further, our BEC prototype does not display the

same scaling pains as input size increases that was observed with the UPC code . For

the UPC code, smaller problem sizes showed better performance with greater processor

numbers, whereas the BEC prototype continued to do well as the input size increased.
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Figure 9. Comparison of BEC prototype and UPC

execution time. Time is provided for lists of 128K and 1M
items . Note that, for a single processor, the UPC version will

execute as sequential C code, and thus we start at P = 2.

Additional work is needed to decrease overhead in the BEC support library.

The BEC prototype has several shortcomings:

— The prototype was not designed for performance, and thus has many memory-to-

memory copies . The cost of local memory operations appear to be quite expensive

with respect to communication operations — when profiled, the time spent in

push/pull operations to pack aggregate packets for transmission was greater than

that spent in communicating these aggregate packets.

The prototype did not implement the software cache for shared locations, and

relied on ad hoc methods for globally indexing into the arrays of pointers and of

counts.

The use of a circular buffer in software added to the need for memory-to-memory
copies, and a better solution should be devised in the next version.

5 Sparse Matrix Examples

Unstructured sparse matrix computations provide several excellent examples that can utilize

BEC. To illustrate the types of problems we are addressing and to motivate our design, we

begin with a discussion of several examples . Specifically, we discuss:
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Figure 11 . Partitioned vectors x and y.

1. Sparse matrix-vector multiplication and

2. Overlapping Schwarz preconditioning.

5 .1 Sparse Matrix-Vector Multiplication

Sparse matrix-vector multiplication is one of the most important parallel distributed memory

kernels for a broad set of applications . For unstructured problems, communication patterns

for this kernel are determined at runtime by the nonzero pattern of the sparse matrix.

For PDE applications and sparse iterative solver libraries, a row-based partitioning has been

commonly used . For example, Trilinos/Epetra [20, 19], PETSc [4, 3, 2] and Aztec [28] all use

this distribution by default for general sparse matrices . Figure 10(a) shows this partitioning

for a 4-by-4 matrix A on two processors. In this case the first two rows are stored in the local

memory of the first processor while the last two rows are stored on the second processor.
In contrast, sparse direct solvers are primarily based on column partitioning as shown in

Figure 10(b), storing the first two columns of the matrix on the first processor and the last
two rows on the second processor.

Regardless of how the matrix is partitioned, vectors are typically partitioned to match
the row or column distribution . Figure 11 shows how 4-by-1 vectors x and y would typically
be stored to be compatible with A in Figure 10.
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5.1 .1 Row-oriented multiplication

Assuming our matrix A is partitioned as in Figure 10(a), to compute y = Ax each processor

needs to first obtain values of x that are not local . We call this type of data transfer an

import operation, where we know what we want to receive . For our specific example, the

first processor needs x 3 and the second processor needs x 1 . Once the off-processor x values

are obtained the matrix vector multiplication can proceed without further communication

since elements of y are stored on the same processors as rows of A.

5 .1 .2 Column-oriented multiplication

Assuming our matrix A is partitioned as in Figure 10(b), we can begin computing y = Ax

without any communication . However, after this step each processor will have contributions

toy that must be sent to the other processor for summation . We call this type of data transfer

an export operation, where we know what we want to send . For our specific example, the

first processor must send its portion of y4 to the second processor and the second processor

must send it portion of y2 to the first processor . As each processor receives data from other

processors it must sum the partial results to obtain the final result for y.

5 .2 Overlapping Schwarz Preconditioning

Schwarz methods are a family of domain decomposition methods that introduce coarse-

grained parallelism by partitioning the problem domain into subdomains . Assuming one or

more subdomains is completely assigned to a processor, on each subdomain the majority

of computation can be performed without communication . Overlapping Schwarz methods

assign parts of subdomains to more that one processor . Without overlap, preconditioners

based on Schwarz methods tend to lose robustness as the number of subdomains increases.

With overlap this problem still exists, but is less pronounced . In many practical settings, even

though overlap introduces redundant work, there is an overall improvement in performance.

The typical way to implement overlapping Schwarz preconditioners is to create a subma-

trix for each overlapped subdomain . Given this matrix, we can choose one of many serial

preconditioners and apply it to the submatrix as though it were the full matrix . Common

submatrix preconditioners are Gauss-Seidel, Incomplete Cholesky or Incomplete LU.

5.2.1 Determining the overlap

Although overlapping Schwarz methods originated in the context of PDEs on continuous

domains, it is well known that they can be applied to sparse matrices that are similar in

nature to PDEs. In particular, level-based overlap approaches are simple to define . Consider

the row-oriented matrix A in Figure 10(a) . level 1 overlap is obtained by determining which
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(b) second processor.

columns have nonzero entries on a processor and then including the corresponding rows in

the overlap . For the first (last) two rows of our matrix A, there is a non-zero entry in column

3 (1) . The level 1 overlap matrices are shown in Figure 12.

5.2 .2 Factoring the overlapped preconditioner

In order to compute local factors for the overlapped preconditioner we must first import the

rows of matrix that are part of the overlap . On each processor, we scan the columns of the

owned rows, looking for entries whose column number has no corresponding row number on
the processor . The import step then gathers the off-processor rows, typically ignoring any

column entries that do not correspond to rows in the overlapped matrix . After the import

step, any serial preconditioner can be used, since all data is local and the matrix is square.

5.2.3 Applying the overlapped preconditioner

In order to apply the preconditioner, say z = M- 'r as part of a preconditioned iterative

method, the same basic import pattern is needed to get ofd processor entries of r as we used

for creating the overlap matrix . Similarly, we will have extra values of z on each processor

that must be resolved . These can be combined as an average using an export pattern that

is the reverse of the import, or can simply be set to zero if the entry is does not correspond

to an owned row of the original matrix.

5 .3 Using BEC for Row-based Matrix-Vector Multiplication

To implement a row-based matrix-vector multiplication algorithm for computing y = Ax

using a partitioning as in Figure 10(a) and Figure 11, only a single object needs BEC
support, namely the vector x . To improve efficiency, we would first scan the entries of the

matrix A on each processor to identify the columns on that processor that have non-zero

entries, storing these column numbers in a local array. This would be done as a preprocessing

step and is equivalent to knowing which columns are non-trivial on a given processor.
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Given this array column_numbers q of length num_local_columns, a code fragment that

would effectively prefetch the off-processor elements of x is as follows:

for (i=0 ; i<num_local_columns ; i++)

Request(x, column_numbers[i], sizeof(double));

BEC_exchange();

At the end of the BEC_exchange () call, the appropriate elements of x would be available

for computing the local portion of the matrix-vector multiplication kernel . Similar simple

constructs would be used for column-based matrix-vector multiplication and for overlap-

ping Schwarz preconditioning, as well as many other distributed unstructured sparse matrix

computations.

6 Conceptual BEC Approach for a Large-Scale

Application

In this section, we consider the challenges to efficient parallelism that are presented by the
simulation of contact . We will focus on solid dynamics ; however, the basic steps and algo-

rithms are the same for simulations of quasi-static and transient dynamic solid mechanics.
Section 6 .1 describes briefly the interactions of material contacts with finite element cal-
culations. In section 6.2 we discuss global address space considerations for detection and

enforcement of contact . We propose two algorithms, in the BEC style, for the enforcement
phase. Section 6 .3 outlines our approach to a BEC implementation of contact enforcement.

From a parallel computation standpoint, it is desirable to consider contact algorithms

because these typically exhibit fine-grained and random communication patterns that require

a global view . Moreover, the detection and enforcement of contact constraints are important
to many Sandia mechanics applications . We point out areas where load balance among the

parallel processes may be less than optimal and outline BEC approaches to alleviate this
condition.

By its nature, the current implementation of contact simulation is quite complex. The

purely computational phases use sophisticated algorithms; the communication between pro-

cessors requires careful timing and bookkeeping . A measure of this complexity is the number

of man-years (approximately 25) that have been invested in the development of the various

algorithms, starting with the original serial implementation and continuing to date with the

ACME library. We recognize that introduction of new methods into a mature library re-

quires careful analysis and planning . An estimation of the scope of this work is provided in

section 6 .3.

We gratefully acknowledge conversations with Kevin Brown, Mike Glass, and Steve

Plimpton, which helped us simplify the presentation of contact constraint detection and
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enforcement . The authors came to understand that enforcement of contact constraints is

poorly load balanced in the current contact library . Therefore, we chose to focus on the en-

forcement computational phase in the following sections, which describe the BEC approach

as it could be applied to contact.

6 .1 Finite Element Method with Material Contacts

Solid mechanics simulations involve a number of complicated computational phases such as

finite element integration, detection of contacts between moving surfaces, and enforcement

of contact constraints . Inherent differences in these phases present challenges for efficient

parallelization of such simulations . Finite element integration requires local information

about geometry of elements and nodes and about physical attributes like location, velocity,

material properties, etc . A decomposition based on the finite elements results in effective

load balance, with communication mostly between "nearest neighbors" in the collection of

processes that are applied to the simulation.

Contact simulations, however, require a global view of the surfaces that can potentially
touch each other . Surface interactions result in additional nodal forces in the computation of

the finite element mesh . Contact interactions can be extremely complicated in terms of the

communications required for detection and enforcement . Figure 13 shows a simple (albeit

mechanically unrealistic) example that illustrates how random communication can arise in

a parallel contact algorithm.

It is not our intent to mimic the current algorithm, but rather to seek new insights that

are possible from a global shared data representation of contact . Therefore, we briefly discuss

the current algorithm before turning to global address space considerations . As outlined in

[9], the steps for finite element method with contact are these.

1. Compute FE forces on each mesh element.

2. Predict mesh movement without considering contact.

3. Detect mesh/mesh contacts.

4. Generate push-back forces, i .e ., enforce contact constraints.

5. Update mesh positions.

A parallel contact detection algorithm was developed from a serial one that is described

[17] . In [1], the excellent general description of parallel contact includes the reasons that

computations on the finite element mesh are well balanced with respect to workload per

processor . The development of a separate decomposition [9, 26] for the geometric surface

information results in good load balance for contact detection . In recent years, advances in

the calculation of the push-back forces have emphasized the load imbalance of the contact
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Figure 13. Random communication in a parallel con-

tact example . In the top figure the finite elements in the bar

are evenly partitioned across P processors . Force is applied

to bend the bar into a circular shape . For some length of time

during the simulation, only "nearest neighbor" processes need

to communicate . Eventually, the remote processes, logically

numbered 0 and P, will hold surfaces that come into contact.

The continuing simulation will require that information be

exchanged between these two processes . If the simulation

continues until the bar is bent into a pretzel shape, then

more (and random) processes will need to communicate.
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enforcement phase of the simulation . This imbalance arises in part from the use of the finite

element decomposition for enforcement due to the need for physical properties that reside in
that decomposition. Now let us examine enforcement of contact constraints, taking a BEC
point of view.

6 .2 Global Address Space Concepts for Contact Simulation

According to [18], the search for contact constraints is global in nature . This attribute makes

it natural to approach parallel contact algorithms using a global shared data framework.

Because the list of pairs of surfaces that come into contact is dynamic, we choose to think

of it as an entity that is formed at the beginning of a simulation and incrementally updated
at each time step. This view leads us to reorder the steps of the finite element computation
cycle. Moreover, the simple statements about contact list creation and updates are a result

of our choice to focus first on contact enforcement . We feel that this focus is reasonable,

because the developers who discussed the contact algorithms appeared to be happy with the

load balance of parallel contact detection . At a later time, we will examine a BEC global

shared approach to contact detection (creation and incremental adjustment of the global

contact list) . Thus, for our BEC-style algorithms, the general description of a calculation
cycle, which emphasizes enforcement, is the following.

Input: shared data structures

FE, containing finite element data, and GCL, global contact list

Output: updated FE and GCL

1. Enforce contact.

2. Move FE mesh.

3. Update contact list.

Before stating algorithms that use a global view of finite element and contact data, a

summary of terminology is given here.

• FE : finite element data, a static shared data structure that contains finite elements
with their associated geometric and physical properties

• FE_partition[i] : the i-th logical partition of FE, where 0 < i < P — 1

• GCL: global contact list, a dynamic shared data structure that contains "pairs of

surfaces", which are geometric data describing the surface plus the logical position of
the surface in the global FE structure
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• GCL_partition[i] : the i-th logical partition of GCL, where 0 < i < P — 1

• Note : FE and GCL are shared (global) data structures . The dynamic association of

partitions of GCL with processors is not necessarily related to the static association of

processors with FE partitions.

• pair(A,B) : a pair of contact surfaces denoted by A and B

• color(surface) : equals k iff surface belongs to FE_partition[k]

• color(pair(A,B)) : equals color(B)

• Note : 0 < color < P — 1

• fe(surface) : FE data needed for local contact enforcement calculation

• P i : the i-th logical process of P processes

Now we can present two alternative approaches to contact enforcement simulation, both

of which are derived from global views of the finite element and the contact information.

Creation of the global contact list involves nontrivial parallel manipulation of geometric
data. Both of these algorithmic approaches ignore, for the present time, the details of

parallel contact detection.

Algorithm 1 : FE_partition centric approach

1. Group pairs in GCL by color, resulting in color groups CG[i], 0 < i < P — 1.

2. In parallel, Pi uses CG[i] and FE_partition[i] to do

(a) contact enforcement (produce new forces);

(b) finite element calculations (propagate new forces through the mesh);

(c) produce a new contact sublist CL[i] locally.

3. Assemble the local contact sublists into the global contact list.

Taking a global view allows straightforward derivation of Algorithm 1, which is not too
different from the current implementation of contact . In step 1, grouping the surface pairs

in the global contact list is a matter of integer sorting . The BEC environment provides

a sort function on a shared array. The parallel section in step 2 is developed via a single

program, multiple data (SPMD) model, the same as that used by the BEC technique . Each

process accesses "shared" data and does local computation . BEC provides data fetch before

computation, thus saving costs associated with fine-grained communication . The fetch is

accomplished by registration of the shared data needed, followed by a global exchange of

bundled items . Step 3 can be done by concatenation via a prefix sum with copy of purely

39



local data to the shared data structure . BEC will provide a collective operation for this

action.

The current contact implementation must support a global view with manual bookkeep-

ing, bundling, and random communication . These are tasks that BEC can do . In Algorithm

1, as in current parallel versions of the contact algorithm, the work of contact detection is

evenly distributed across processes. It can be seen, by inspection of Figure 14, that contact

enforcement may suffer from load imbalance.

Algorithm 2 : GCL_partition centric approach

1 . In parallel, Pi uses each pair(A,B) of surfaces in GCL_partition[i] to do

(a) fetch fe(A) and fe(B);

(b) produce new contact forces;

(c) put these forces back into FE;

2 . In parallel, Pi uses FE_partition[i] to

(a) propagate the new forces in the finite element mesh;

(b) produce a new contact sublist CL[i] locally.

3 . Assemble the local contact sublists into the global contact list.

Enforcement is naturally load balanced in this algorithm, a point of distinction with

Algorithm 1. Figure 15 illustrates communication between shared data structures . Steps

2 and 3 are nearly the same as in the first algorithm, except that contact enforcement

takes place from the viewpoint of the global contact list . Registration of all requests for

finite element data associated with contact surface pairs is followed by a potentially large

exchange of the bundled data . In putting the new forces back onto the FE data structure,

the registration of BEC communications is implicit in requests to write to a shared variable,

while exchange is explicit.

6 .3 Discussion of Potential BEC Approach to Contact Simulation

As we have seen, the global approach that is integral to BEC makes it relatively simple

to propose new versions of contact enforcement . The complex nature of the current imple-

mentation, as it continues to be developed in the ACME library, makes a literal translation

into BEC difficult . The manual bookkeeping and already established communication pat-

terns create a parallel construction that would need to be carefully modified in order to

accommodate the BEC library calls .

J
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Figure 14. Finite element partition centric algo-

rithm for contact enforcement . This figure illustrates

Algorithm 1, in which the decomposition FE_partition is used

for contact enforcement . The global contact list (GCL) con-

tains pairs of contact surfaces and geometric information that

relates each pair to the physics data in the finite element data

(FE) . The arrows indicate that information about geometry

must flow from the partitioned GCL data structure to the

FE_partition . In the example surface contact of the figure,

logical processes 1 and P must communicate with each other

in order to derive and propagate the contact forces . The

GCL_partition is used for parallel contact detection . Note

that the same set of P processors is used for both FE and

GCL partitions; however, the allocation of data to processors

need not correspond between these shared data structures.
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Figure 15 . Global contact list centric algorithm for

contact enforcement . This figure illustrates Algorithm

2, in which the contact enforcement has been load-balanced

by using the global contact list (GCL) processor allocation

for this function. The small squares around surfaces in the

FE_partition represent additional physical data that must be

migrated into the process allocation for the global contact

list . It is possible that the data shipment will not be small.

The GCL_partition is used in parallel both for contact detec-

tion and for contact enforcement . Note that the same set of

P processors is used for both FE and GCL partitions ; how-

ever, the allocation of data to processors need not correspond

between these shared data structures.
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In the ACME library, there are roughly 75000 source lines of code for contact search;

about 10000 lines are related to parallelism in the search. Contact enforcement, by contrast,

has approximately 18000 lines, of which about 2000 comprise the manipulation of parallel

data structures . Because of the difference in the size of the source code that would require

modification for BEC, it makes sense to begin with enforcement. It is also the case that the

ACME team is considering alternative strategies for enforcement decomposition . With its

capability to abstract communications at a high level, a BEC implementation can hide the

parallel bookkeeping tasks, with the potential of more rapid prototyping.

7 Conclusion

We have presented our incremental approach to introduction of new programming models . In

particular, we have defined BEC as an abstraction that enables GAS capabilities for parallel

programming in SPMD style . It is a portable lightweight approach for the incremental
adoption of the GAS programming model . It also provides for some of the unaddressed

needs, such as efficient support for high-volume fined-grained and random communications,
which are common in parallel graph algorithms, sparse-matrix operations, and large scale

simulations.

The BEC abstraction can be implemented as a minor set of language extensions to ex-

isting high-level languages such as C and Fortran, plus a thin runtime layer which serves as

an interface to the underlying communication infrastructure . Since this runtime layer is so

thin, its bulk-transport function can be manually fine-tuned to take advantage of the com-

munication capabilities of a particular platform . The BEC runtime layer can also leverage

existing communication utilities that are already optimized . Data from initial experiments

with a prototype communication bundling library in the BEC style shows that this approach

scales well.

BEC can be used as an enhancement to an existing environment such as MPI . It can

serve as an intermediate language [14] to other high level GAS languages such as PRAM C

[8] and UPC [30] . Furthermore, it can serve as a bridge between programming models such

as virtual shared memory and message-passing.

For future research, there are many directions to extend this work. For example, we are

considering the addition of more flexibility to the BEC_exchange operation, which currently

behaves as a barrier . Another extension is to allow multiple BEC threads to run on one

physical processor .
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.

A BEC Language Specification

A.1 Types

We define the following types:

• proc_id_t : The processor ID or rank type

• partition_object_t : An enum of partition object types . This is built at compile time

from the available classes that implement the Partition Object interface.

• shared_ref_t: A structure with a processor ID, counter, and offset field . If the shared

region was created by a joint allocation, the processor ID is a special value . Otherwise,

the processor ID is that of the creating processor . The counter is the value of a physical

counter (either a counter for joint or for local allocation calls) on the calling processor.

• BEC_error_t : An enum of well-known error codes for the BEC object.

• PlacementStruct : A structure with a processor ID, offset, and length field.

• LocalStruct : A structure with an offset, length, and local pointer.

A.2 Language Extension

A .2 .1 The shared Keyword

The shared keyword is a type modifier . It is used to declare a shared region . It satisfies

shared <type> <identifier> ( [ <integer> ] )*

where <type> is any valid C type . This declaration is converted by the compiler to a
declaration of shared_ref_t type. If the declaration is outside functions, it is as if a joint

allocation were called and assigned to the identifier, and only one shared region is created.
If the declaration is inside of a function, one region will be created per execution of the
function.

If <type> is a pointer type, that is, a regular C type augmented with a star (*) before

the identifier, a shared reference is created . A shared reference behaves just like a pointer,

but only supports the operations of indexing (using brackets) and assignment . For example,

shared int A[10];

shared int * B;

B=&A[4] ;
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The above code results in PROCOF call returning the same value when called with B or A

as argument . B and A also agree on and counter value (in their respective shared_ref_t).

However, B will have an offset of 4x sizeof(int) greater than that of A.

A.2.2 Pseudo-Functions

The following are wrappers for functions on the BEC interface object . As they respect types,

but the BEC interface object is byte-oriented, they are pseudo-functions. The compiler or

translator is responsible for scaling when needed . We use <shared_type> to refer to any

type that was declared with a shared keyword.

•

	

BEC_error_t BEC_Read(<shared_type> R, unsigned int offset,

unsigned int count, void * localPtr)

•

	

BEC_error_t BEC_Write(<shared_type> R, unsigned int offset,

unsigned int count, void * localPtr,

bool persistent = false)

•

	

BEC_error_t BEC_request(<shared_type> R, unsigned int offset,

unsigned int length, bool persistent = false)

• BEC_error_t BEC_exchange(bool clearPersistant = false)

•

	

shared uint8_t * BEC_local_allocate(size_t totalBytes,

partition_object_t identifier, void * hintBuffer)

•

	

shared uint8_t * BEC_joint_allocate(size_t totalBytes,

partition_object_t identifier, void * hintBuffer)

•

	

bool BEC_is_available(<shared_type> R, unsigned int offset,

unsigned int length)

•

	

bool BEC_get_persistence(<shared_type> R, unsigned int offset,

unsigned int length)

•

	

BEC_error_t BEC_set_persistence(<shared_type> R, unsigned int offset,

unsigned int count, bool bitVal = true)

•

	

void BEC_clear_persistence(<shared_type> R, unsigned int offset,

unsigned int count)

• void BEC_clear_all_persistence_bits(<shared_type> R)

• void BEC_barrier()

i
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A.3 BEC Interface Object

The BEC Interface object exposes the following calls . All those involving data offsets and

lengths are byte-oriented.

•

	

BEC_error_t read(shared_ref_t R, size_t offset, size_t length,

void * buffer)

• BEC_error_t write(shared_ref_t R, size_t offset, size_t length,

void * buffer, bool bitVal)

•

	

BEC_error_t request(shared_ref_t R, size_t offset, size_t length,

bool bitVal)

• BEC_error_t exchange(bool clearPersistence = false)

• shared_ref_ localAllocate(size_t size, Partition * po)

• shared_ref_t jointAllocate(size_t size, Partition * po)

• Partition * getPartitionObject(shared_ref_t R)

• BEC_error_t setPartitionObject(shared_ref_t R, Partition * po)

• RangeQuery * getRangeQueryObject(shared_ref_t R)

• BEC_error_t setRangeQueryObject(shared_ref_t R, RangeQuery * rq)

• bool isAvailable(shared_ref_t R, size_t offset, size_t length)

• bool getPersistence(shared_ref_t R size_t offset, size_t length)

•

	

BEC_error_t setPersistence(shared_ref_t R, size_t offset,

size_t length, bool bitVal)

• void clearPersistence(shared_ref_t R, size_t offset, size_t length)

• void clearAllPersistenceBits(shared_ref_t R)

• BEC_error_t Initialize()

• BEC_error_t Finalize()

• BEC_error_t InitializeGlobalMem()

• BEC_error_t FinalizeGlobalMem()

• Partition * createPartitionObject(partition_object_t T)

• proc_id_t PROCOF(shared_ref_t R)
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B Code Examples : Parallel Linked List Ranking

Linked list ranking is a computation that produces a "rank" for each element in the linked

list . The "rank" represents an element's "distance" to the end of the list . The last element of

the list has rank of 0, while the first element of the list has rank equal to length of the list -1.

In a multi-processor setting, a linked list is stored as an array of indexes, each index

represents the index of the next element that the current element links to . A fairly efficient

parallel list-ranking algorithm utilizes the "pointer jumping" technique . The pointer jumping

technique dictates that each element of the list finds the element it points to, x, and updates

its own link with the link of x. With this technique, any element in the list can reach the

"top" of the list in O(logn) time, where n is the length of the linked list.

The parallel ranking algorithm is a slight modification to the pointer jumping algorithm.

First, we keep ranks of each element in an array ranks, and initialize the values to 1, except

for the last element (the element with no link to another element), where the rank value is
0. For each round, in addition to modifying the links (pointers) of elements, we also modify

their ranks to be the addition of the original rank and the rank of the element they link to.
In the logi n round, all elements should have no link to chase, and ranks should contain the
appropriate values.

The following subsection contains the list ranking algorithm in BEC, and the translation

to ANSI C by the BEC compiler follows in the next subsection.

B .1 Linked List Ranking in BEC

#include <stdlib .h>

#include <math .h>

// shared variables

shared int* ranks ; // stores the ranks of each element.

shared int* links ; // stores the links of each element.

shared int n ;

	

// list length.

void main ( int argc, char** argv ) {

int round = 0;

int i=0;

int j=0;

// length of list is user input.

n = atoi(argv[1]);

// allocated space for list . BEC_JointAlloc divides up requested space
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// among available processors.

ranks = BEC_JointAlloc(n*sizeof(int));

links = BEC_JointAlloc(n*sizeof(int));

// MAGIC function to initialize links and ranks.

initalizeList();

// number of rounds needed.

round = (int) (log((float) n) / log(2 .0));

// main loop.

for (i=0 ; i<round ; i++) {

// request local values.

for (j=0 ; j<n ; j++) {

if ( PROCOF(links[j]) == MY_PID) {

// for each element this processor handles, request the link and

// rank value.

Request(links, j, sizeof(int));

Request(ranks, j, sizeof(int));

}

}

// fetch data

BEC_exchange();

// request (remote) link/rank data.

// for each element that local element links to, request

// link and rank data.

for (j=0 ; j<n ; j++) {

if ( PROCOF(links[j]) == MY_PID ) {

// links[j] and ranks[j] always reside on the same processor.

// if one is local, the other is too.

Request(links, links[j], sizeof(int));

Request(ranks, links[j], sizeof(int));
}

}

// fetch data.

BEC_exchange();

// update rank

for ( j=0 ; j<n ; j++) {

if (PROCOF(links[j]) == MY_PID) {

ranks [j] += ranks [links [j] ] ;

links[j] += links [links [j] ] ;

}
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}

}

// write-through data.

BEC_exchange O ;

}
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B .2 Compiler Generated C Code

#include <stdlib .h>

#include <math .h>

// all shared variables are translated to have shared_ref_t type.

shared_ref_t ranks;

shared_ref_t links;

shared_ref_t n;

void main ( int argc, char** argv ) {

int round = 0;

int i=0;

int j=0;

// GENERATED DECLARATIONS

// a variable is generated for each shared variable read.

int tmpl, tmp2, tmp3, tmp4, tmp5;

// length of list is user input.

n = atoi(argv[1]);

// allocated space for list . BEC_JointAlloc divides up requested space

// among available processors.

ranks = BEC_JointAlloc(n*sizeof(int));

links = BEC_JointAlloc(n*sizeof(int));

// MAGIC function to initialize links and ranks.

initalizeList();

// number of rounds needed.

round = (int) (log((float) n) / log(2 .0));

// GENERATED : before shared variable access, we call Initialize() to

// prepare Shared Memory Manager.

Initialize();

// main loop.

for (i=0 ; i<round ; i++) {

// request local values.

for (j=0 ; j<n ; j++) {

// PROCOF's parameter, links[j], is translated.

// PROCOF takes a shared_ref_t (links), and an offset (j)

if ( PROCOF(links, j) == MY_PID) {
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// Similarly, Request's parameter links[j] and ranks[j]

// are translated to be a shared_ref_t and an offset.

Request(links, j, sizeof(int));

Request(ranks, j, sizeof(int));
}

}

// fetch data

BEC_exchange();

// request (remote) link/rank data.

for (j=0 ; j<n; j++) {

if ( PROCOF(links, j) == MY_PID ) {

// links[j] and ranks[j] always reside on the same processor.

// if one is local, the other is too.

Request(links, links[j], sizeof(int));

Request(ranks, links[j], sizeof(int));
}

}

// fetch data.

BEC_exchange();

// update rank

for ( j=0 ; j<n ; j++) {

if (PROCOF(links, j) == MY_PID) {

// GENERATED FOR:

// ranks[j] += ranks [links [j] ] ;

// temporary variables hold the values of READ's from shared memory.

tmpl = BEC_Read(links, j, sizeof(int));

tmp2 = BEC_Read(ranks, tmpl, sizeof(int));

tmp3 = BEC_Read(ranks, j, sizeof(int));

tmp3 += tmp2;

BEC_Write(ranks, j, sizeof(int), &tmp3);

// GENERATED FOR

// links[j] += links [links [j] ] ;

tmp4 = BEC_Read(links, j, sizeof(int));

tmp5 = BEC_Read(links, tmp4, sizeof(int));

tmp4 += tmp5;

BEC_Write(links, j, sizeof(int), &tmp4);

// finalize writing data.

BEC_exchange() ;
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}

// GENERATED

Finalize();

}

•
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C Prototype Code Overview

Initial performance numbers were measured on a prototype message aggregation and com-

pression library. The library relied on the calling application to do explicit processing of

messages, and did not implement the full Shared Memory Manager interface.

C .1 Library Classes

The prototype library consisted of the following C++ classes:

• BufferPool : A simple pool of buffers, managed with a balanced tree, implementing a

very lightweight design pattern.

• Codec: A combination of an Encoder and a Decoder, capturing the notion of a

processor-specific mailbox.

• CompressionStatus: An error enumeration with a printer object for capturing error

conditions and returning something meaningful to the user.

• Decoder : An object that received an aggregate message and divided it into smaller

messages . With a "pull" interface, higher-level code could ask for these smaller mes-
sages one-by-one . The Decoder used in benchmarking was based on the ManagedBuffer

class.

• Encoder : An object that received small messages and bundled them into aggregate

messages . The Encoder offered virtual channels in that it enforced a priority scheme

on messages, permitting the placement of small, high priority messages at the start of

the aggregate message. The Encoder was also based on the ManagedBuffer class . The

Encoder implemented a "push" interface.

• ManagedBuffer: A simple circular buffer that simulated a finite-capacity hardware

buffer.

• NetworkLayer: The top-level interface, bundling one Codec per processor along with

the MPI exchange code . The NetworkLayer exposed the push and pull functions,

with a facility for addressing the remote processors, and "trigger" call similar to the

exchange call in BEC.

• SequentialNetwork : A simple implementation of the NetworkLayer implementation

that used no MPI code, designed for debugging.

A program using the prototype library would create a NetworkLayer object and interact

with it . The NetworkLayer used varying Codecs, Encoders, and Decoders following a strategy

design pattern. In addition, a list generator was used that was based on a balanced tree.
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C .2 Parallel Ranking Code

The parallel ranking code was implemented with the following major steps:

1. Initialization : Initialize MPI, a NetworkLayer object, and other local variables.

2. List Creation: Generate a "random" list on process 0 and distribute this to the other

processors with an MPI scatter.

3. Make Secondary Structures : Each processor created a Jump and Count array for its
portion of the list.

4. Execute a Main Loop : Each processor used pointer jumping and a simulation of the
Shared Memory Manager 's exchange call to compute the position of each list item in
log N steps.

5. Gather Result and Verify : The result was gathered to processor 0 and checked against
a sequential solution.

In the main loop, we simulated Shared Memory Manager behavior by packing data into

"data quads" — a struct that tracked the requesting and requested global index in the list,

and had additional fields for the values of the remote Jump and Count arrays . As an artifact

of how the prototype was implemented, it was natural to use the same structure for all
messages . The main loop was as follows:

• The calling code used the requested global index to choose the appropriate processor

for a push request of the remote Jump and Count array values.

• Once all requests were enqueued, each processor executed the trigger function of the

NetworkLayer to exchange data quads.

• Each processor then received requests for data from the other processors . These were

satisfied, and the requesting global index was used to return the data to the requesting

processor . The requesting processor ID could also be deduced from the Codec that

held the received data quad.

• Once all requests received were satisfied, each processor again called the trigger on the
NetworkLayer.

• Finally, each processor unpacked the received data values and updated its local Jump

and Count arrays .
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