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Because the light is better here: correlation-time analysis by NMR 

Albert A. Smith,[a] Matthias Ernst,*[a] Beat H. Meier*[a] 

Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland  
E-mail: maer@ethz.ch,  beme@ethz.ch 
 
 

Abstract: Relaxation data in NMR is often used for dynamics analysis, by modeling motion in the sample with a correlation 
function consisting of one or more decaying exponential terms, each described by an order parameter, and correlation time. 
This method has its origins in the Lipari-Szabo model-free approach, which originally considered overall tumbling plus one 
internal motion and was later expanded to several internal motions. We consider several of these cases in the solid state, and 
find that if the real motion is more complex than the assumed model, then model fitting is biased towards correlation times 
where the relaxation data is most sensitive. This leads to unexpected distortions in the resulting dynamics description. We 
propose using dynamics detectors, which each characterize a range of correlation times, and can be used to give an analysis 
of protein motion without assuming a specific model of the correlation function. 

 The story starts: Mullah Nasruddin has lost his ring, and is searching under a street lamp. A passer-by stops to help him 
find it. After half an hour, he asks “Are you sure you lost your ring here?” “Not here! I lost the ring in the basement of my house.” 
The passer-by is perplexed. When he asks why they are looking for the ring outside, Nasruddin replies it is because the light is 
better here! 

—Adapted from The Funniest Tales of Mullah Nasruddin[1] 

 

 Dynamics plays a critical role in understanding the stability and function of proteins.[2] Nuclear magnetic resonance (NMR) 
can provide such information, since relaxation in NMR is the result of incoherent modulation of NMR interactions via stochastic 
motion in the sample. Due to the large number of internal degrees of freedom (3N-6 where N is the number of atoms in the 
protein, typically more than 1000), the interpretation of the data will always have to involve severe approximations. 

Fitting NMR relaxation-rate constants allows modeling of the underlying motion. Wangsness-Bloch-Redfield theory details 
how to calculate relaxation-rate constants from specific motions.[3] However, a complex dependence of each relaxation-rate 
constant on multiple, orientation dependent correlation functions makes extraction of the original motion nearly impossible. In 
solid-state NMR, a correlation function with multiple correlation times τi, and order parameters Si

2 is often used to model the 
dynamic processes especially for proteins:  

 

(1) 

which is very similar to and evolved from the Lipari-Szabo model-free approach in solution-state NMR.[4] Note that the 
coefficients and final term sum to 1 so we can rewrite this more simply as  

.

 

(2) 

1–S2 determines the amplitude of the total motion, the Ai specify the contributions from each individual motion with correlation 

time τi. Although the real correlation function may have motion on many time scales, limitations in the amount and precision of 

experimental data have typically restricted the model of the correlation function to 1-3 exponential terms. 

While the original model-free approach was very well justified, the modified solid-state correlation function was proposed 

more ad hoc. This motivated us to reinvestigate its ability to accurately represent protein motion in solids. In particular, we 

investigate how well a model of the correlation function describes the motion when the model is characterized with fewer 

correlation times (τi) than the real correlation function, which is most probably the case in a typical dynamics analysis of a protein. 

In a first example, we calculate relaxation-rate constants from a simulated input correlation function having 2-4 correlation times, 

and then fit those generated rate constants with a model having one fewer τi. In this example, both longitudinal, R1, and 

transverse, R1ρ rate constants are fitted, and all fits are performed both without and including the total order parameter S2. The 

results are shown in Figure 1. 

What we find is that, with the exception of Figure 1B, the data is well fit despite the model correlation function having fewer 

correlation times than the input correlation function. If the data is well fit, we expect that the model should be a good 

representation of the input correlation function. Therefore, each fitted τi should be approximately the weighted average of the 

nearest τi from the original correlation, and the amplitude ((1–S2)Ai) of each term in the model should be approximately the sum 

of the nearest input amplitudes.[4a] What we find, however, is a model having both correlation times far removed from the average 

of the input correlation times, and fitted amplitudes that are quite different than the sum of the nearest input amplitudes.  
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Figure 1. Fits of simulated relaxation data for 15N relaxation. In each plot, several relaxation-rate constants are simulated with 
2, 3, or 4 exponentials (τi) in the correlation function (each described by τi and (1–S2)Ai). They are then fitted with a model having 
one motion τi. less than the input data. Fits are performed without fitting 1–S2 in A, C, and E and with fitting 1–S2 in B, D, and 
F. In A and B correlation functions with 2 τi (left plot, blue line) are input, and then fitted with a single τi (left plot, red line), where 
3 R1 measurements have been fitted. In C and D, 3 τi are input, and modeled with 2 τi, where 3 R1 and 1 R1ρ measurements are 
fitted. In E and F, relaxation resulting from 4 τi is simulated and fitted with 3 τi, where 3 R1 and 3 R1ρ are used in the fit. Bar plots 
for each fit show the calculated rate constants for the input motion, and black dots show the fit. External field for R1 
measurements is indicated below bar plots. Spin-lock strength for R1ρ measurements is also indicated below the bar plots, 
where the external field is fixed at 850 MHz, and the magic angle spinning (MAS) frequency is fixed at 60 kHz. 

 



To understand where the problems in modeling originate, we consider a simple set of experiments that we can fit using a 
correlation function having only a single correlation time. We assume a log-uniform distribution of motion (we use 200 Ai in eq. 
(2) that are all equal with τi logarithmically spaced from 10-14 to 10-3 s), and calculate three R1ρ rate constants. The spin-lock 
field strength is fixed at 5 kHz, and the spinning frequencies used for probing the relaxation are 0.5ωr

0, ωr
0, and 1.5ωr

0 where 
we vary ωr

0. The values of the three calculated R1ρ rate constants are plotted against ωr
0 in Figure 2A (lines), and are fitted 

(circles) with a motional model which has only a single correlation time τc. The results of the obtained correlation time and order 
parameter are plotted in Fig. 2B and C respectively. Although the input motion is always the same, the extracted motion with a 
single correlation time varies, and is a near linear function of ωr

0, where τc≈1/ωr
0. If we had generated the relaxation-rate 

constants using a correlation function with only a single correlation time, we would have always correctly extracted that value. 
However, since the fit model contains fewer correlation times than the input correlation function, the modeling fails. Then, if a 
constant distribution function is input, we find that we always extract τc approximately where our R1ρ experiments are most 
sensitive. One finds motion where the “light” is better, that is, where the experiments are most sensitive. If the motion is not 
uniform, but nonetheless given by a correlation function more complicated than the model, then the fitted correlation times may 
deviate from where experiments are most sensitive but will still be biased. Note the behavior demonstrated here for R1ρ can 
also be demonstrated for R1 (see SI, Fig. S2). Since R1 and R1ρ are largely independent and are mainly sensitive to correlation 
times at different time scales, a simultaneous fit of such R1 and R1ρ data with a two time scale model will also result in correlation 
times where the two experiments are most sensitive (see SI, Fig. S3). Again, one finds motion where the “light” is better. Adding 
an order parameter to the relaxation data makes the fit more complex as will be discussed below. 

Based only on the experimental measurement conditions (see SI for details), it is possible to determine towards which τc an 
experimental R1ρ data set is biased. We do so for several dynamics studies, and compare the most sensitive correlation times 
to the reported τc. The biasing/reported τc for a number of studies are: HET-s(218-289) 15N 17 μs/19 μs, HET-s(218-289) 13Cα 
11 μs/7 μs,[5] Ubiquitin (MPD cryst.) 2.1 μs/1.5 μs (median value),[6] Ubiquitin (PEG cryst.) 26 μs/20 μs (SI Fig. 1).[7] The good 
agreement between these numbers suggests that the real motion is too complex to be described with a mono-exponential 
correlation function, so that the results bias towards where the experiments are sensitive.  

 

Figure 2. Fitting behavior as a function of experimental settings. A uniform distribution of motion is used to calculate 3 R1ρ rate 
constants at different spinning frequencies (0.5ωr

0, ωr
0, and 1.5ωr

0), with the spin-lock field strength fixed at ω1/2π=5 kHz. 
ωr

0/2π is swept from 1 kHz to 1 MHz, where the calculated rate constants are shown in A (lines). The rate constants are well-
fitted with a mono-exponential correlation function (A, circles), with the fitted correlation time (τc) shown in B, and amplitude, 
(1–S2), shown in C.	

 Fitting of only one type of data to a mono-exponential correlation function represents a simple dynamics analysis of solid-
state NMR data. Many dynamics studies involve fitting multiple longitudinal (R1), transverse relaxation-rate constants (R1ρ, R2, 
etc.), and REDOR-derived order parameters, S2. This allows a correlation function with two correlation times to be fitted (three, 
if multiple R1ρ are acquired[8]). Such studies report similar sets of correlation times, typically near 10-10.5 s and 10-7.5 s (see Table 
1). Figure 3A plots R1 at several typical fields used for such dynamics analyses (lines), where we see that R1 rate constants are 
most sensitive for τc~10-8.5 s. The same behavior is also seen in generated data sets as shown in the SI (see SI Figs. 4 and 5). 
Then, the reported correlation times are clearly not near where “the light is better”, although the similarity of the correlation times 
demands further investigation. 
 

Table 1. Median fast (τf) and slow (τs) correlation times for various proteins studied with solid-state NMR 

 SH3[9] Ubiquitin[10] GB1[11] HET-s[5] 

τs 10-7.6 s 10-7.3 s 10-6.4 s 10-7.4 s 

τf 10-10.7 s 10-10.4 s 10-10.5 s 10-10.7 s 

 

In fact, we find an interesting property of these correlation times. If we take a correlation function with the two correlation 

times fixed such that 



,

	
(3) 

we find that we obtain a good fit of the three R1 rate constants at all correlation times, by varying (1–S2)A1 and (1–S2)A2 (Figure 
3A). This is reminiscent of an analysis of solution-state NMR relaxation data using fixed correlation times proposed by 
LeMaster.[12] The possibility to fit three R1 rate constants with two fixed correlation times also implies that one can fit any real 
motion with multiple correlation times using a model that fixes τi = 10-7.5 s and 10-10.5 s. This holds relatively well for any pair of 
correlation times with one shorter than 10-10 s and one longer than 10-8 s (see SI for further discussion). We also note that the 
values of the (1–S2)Ai are actually highest near 10-8.5 s, where the R1 are also most sensitive. So, although the fixed correlation 
times are not where “the light is better”, we actually find the greatest contributions to the amplitudes of the correlation function 
from the most sensitive correlation times, with the unfortunate side effect that, unlike in previous examples, our fitted τi are no 
longer indicative of where we are sensitive. 

 

Figure 3. R1 rate constants fitted with the correlation function given in eq. (3). Lines in A show R1 rate constants for 
monoexponential correlation functions, as a function of correlation time, τc, where (1–S2)=1 (at external fields of 400, 500, and 
850 MHz). Circles show fits at each τc to eq. (3). B shows the weighting of the two terms in eq. (3), with the positions of the τi 
marked as dotted lines. 

Although these correlation times can fit any set of high-field R1 data, the order parameter, S2, and transverse relaxation-rate 
constants must also be fitted. Since these analyses do not actually fix the τi, one may simultaneously decrease the short 

correlation and increase (1–S2)A1 (or vice-versa), to fit S2 while leaving the fit of R1 nearly unchanged. Similarly, one may 

increase the long correlation time and increase (1–S2)A2 to fit the transverse relaxation, also leaving R1 unchanged (details in 
SI). Then, one can fit motion resulting from many correlation functions to a two-timescale correlation function, when combining 
several R1 rate constants with S2 and a single transverse relaxation-rate constant. If the dynamics is actually well described by 
a model with two τi, then the correct τi can be extracted, but if the internal motion is more complex, then the fit may bias towards 
these two “universal” correlation times. The high frequency of fitted correlation times around τc=10-7.5 and 10-10.5 s suggests 
either they have some physical significance or, maybe more likely, these values are an artifact of fitting a complex dynamic 
process with an oversimplified model. 
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Figure 4. Different distributions of motion with the same relaxation data. Four distributions of motion are plotted as (1–S2)Ai 
vs τc. Distributions have been chosen in A-C so that resulting dynamics data (circles, right) yields exactly the same values in 
each case (bars, right).  D is restricted to having three non-zero amplitudes, so does not exactly reproduce the data set. 

 

We suspect that real protein motion is not well described by a correlation function having only two to three correlation times. 
However, if the real motion can have an arbitrary number of correlation times, then different distributions of correlation times 
will lead to identical relaxation data. This is shown in Figure 4A-C, where three different distributions of motion produce almost 
exactly the same set of relaxation data (5 R1ρ, 3 R1, 1 S2). Figure 4D fits a motional model having three correlation times to the 
relaxation data, yielding a good, although not perfect fit. 

When the real motional process is more complex than the model, the model biases towards correlation times that are more 
sensitive - where “the light is better”. Furthermore, when the motion is complex, there is necessarily ambiguity in the data from 
which we wish to extract dynamical information. Therefore, we introduce the concept of a dynamics detector, which contains 
information only where the light is. A detector would report on the average or total amplitude of motion for a range of correlation 
times, as opposed to returning an exact amplitude at a specific correlation time – therefore not requiring a specific model of the 
correlation function. Then, one could describe protein dynamics using multiple detectors that would each characterize protein 
motion on a different timescale. One would furthermore only have detectors where the dynamics experiments are sensitive.  

We then define a detector response as follows, where the response can be calculated from dynamics data: 

.

	
(4) 

(1–S2)θ(τc) describes the distribution of motion in the protein- so that (1–S2)θ(τc) gives the contribution of each τc to the total 
motion. The detector takes the sum of motion at each τc, multiplied by the sensitivity to that correlation time, defined by ρ(τc) to 
yield the detector response (ρ(τc) is known). A relaxation-rate constant is by this definition a detector, where the sensitivity of 
the rate constant to different correlation times determines how the rate constant responds to a distribution of motion (the traces 
in Figure 3A are sensitivities, ρ(τc), of the R1).  

Ideally one would like to have a narrower sensitivity than provided by the R1 rate constants, to say more precisely what 
range of correlation times is contained in the motion. Then, a detector can be constructed from a linear combination of relaxation 
data, for example multiple R1 rate constants may be combined to obtain multiple detectors with narrower ranges (see SI Fig. 6). 
Previous work along these lines exist: spectral density mapping is performed by taking linear combinations of relaxation data, 
and yields sensitivities defined by the spectral densities at specific frequencies, J(ω,τc).[13] Also, LeMaster created detectors by 
fixing multiple τi to carefully chosen values[12] (also see [14]). However, these cases are used for specific applications, requiring 
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c
)ρ(τ

c
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specific sets of measurements. A generalized method for designing detectors, and investigation of properties of those detectors 
for a variety of data sets, will be presented in a separate report. 

In conclusion, NMR dynamics data should be analyzed with great care to yield a picture of protein dynamics that is not 
biased by selection of a particular correlation function. Based on initial detector analysis, and resulting trends throughout a 
protein, it may make sense to then introduce a more specific model. However, as we have seen here, we should be aware that 
modeling can bias our results towards where “the light is better”, and should be suspicious of models describing motion where 
there is little light. 
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