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Beck’s three permutations conjecture: A counterexample and some

consequences

Alantha Newman∗ Ofer Neiman† Aleksandar Nikolov‡

April 5, 2012

Abstract

Given three permutations on the integers 1 through n, consider the set system consisting of
each interval in each of the three permutations. In 1982, Beck conjectured that the discrepancy
of this set system is O(1). In other words, the conjecture says that each integer from 1 through
n can be colored either red or blue so that the number of red and blue integers in each interval
of each permutations differs only by a constant. (The discrepancy of a set system based on two
permutations is at most two.)

Our main result is a counterexample to this conjecture: for any positive integer n = 3k, we
construct three permutations whose corresponding set system has discrepancy Ω(log n). Our
counterexample is based on a simple recursive construction, and our proof of the discrepancy
lower bound is by induction. This construction also disproves a generalization of Beck’s conjec-
ture due to Spencer, Srinivasan and Tetali, who conjectured that a set system corresponding to
ℓ permutations has discrepancy O(

√
ℓ).

Our work was inspired by an intriguing paper from SODA 2011 by Eisenbrand, Pálvölgyi
and Rothvoß, who show a surprising connection between the discrepancy of three permutations
and the bin packing problem: They show that Beck’s conjecture implies a constant worst-case
bound on the additive integrality gap for the Gilmore-Gomory LP relaxation for bin packing
in the special case when all items have sizes strictly between 1/4 and 1/2, also known as the
three partition problem. Our counterexample shows that this approach to bounding the additive
integrality gap for bin packing will not work. We can, however, prove an interesting implication
of our construction in the reverse direction: there are instances of bin packing and corresponding
optimal basic feasible solutions for the Gilmore-Gomory LP relaxation such that any packing
that contains only patterns from the support of these solutions requires at least OPT+Ω(log m)
bins, where m is the number of items.

Finally, we discuss some implications that our construction has for other areas of discrepancy
theory.
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1 Introduction

Consider a set system S of M sets on n elements and consider an assignment to the elements, χ :
[n] → {−1,+1}. The value of a set Sj ∈ S with respect to a fixed assignment χ is |∑i∈Sj

χ(i)|. The
discrepancy of a set system S is the maximum value over all sets, minimized over all assignments.
This quantity is sometimes referred to as the red-blue discrepancy of a set system. A famous result
of Spencer shows that when M = O(n), the discrepancy of a set system is at most O(

√
n) [Spe85].

Recently, Bansal gave an efficient algorithm for finding such a low discrepancy assignment or
coloring [Ban10], and even more recently Lovett and Meka gave an another efficient algorithm
yielding an independent proof of Spencer’s result [LM12].

Spencer’s result holds for general set systems. A well-studied research topic in combinatorial
discrepancy theory is to determine the discrepancy of set systems with certain restrictions, such
as bounded VC-dimension or bounded degree. In this paper, we consider set systems based on
permutations. Given a permutation on the integers 1 through n, consider the set system consisting
of each interval of this permutation. Without loss of generality, we can assume that this is the
identity permutation. Thus, this set system contains the set {1, 2, 3} and {3, 4, 5, 6}, etc., but it
does not, for example, contain the set {2, 4}. It is easy to see that the discrepancy of this set system
is one. When the set system consists of all intervals from two permutations, each on the integers
from 1 through n, then the discrepancy is at most two [Spe87].

What is the discrepancy of a set system based on three permutations? Beck conjectured that
the discrepancy of this set system is O(1). In other words, he conjectured there is always an
assignment χ : [n] → {−1,+1} such that the value of any set in this set system is O(1). Another
way to view the problem is that each integer from 1 through n can be colored either red or blue
so that the number of red and blue integers in each interval of each permutations differs only by a
constant.

Our main result is a counterexample to this conjecture. In particular, for each integer k > 0, we
give an instance of three permutations on the ground set 1 through 3k such that the discrepancy is
at least ⌈k/3 + 1⌉. Setting n = 3k, this yields a set of three permutations with discrepancy at least
⌈(log3 n)/3 + 1⌉ = Ω(log n).

1.1 Background on Beck’s conjecture

Beck first stated this conjecture in 1982 [Bec11]. The earliest written reference to this conjecture
that we have found is on page 42 of the 1987 edition of Spencer’s “Ten Lectures on the Probabilistic
Method” [Spe87]. Spencer describes a clever proof that the discrepancy of two permutations is at
most two, states the conjecture for three permutations, and offers $100 for its resolution. In the
1994 edition, Spencer attributes this conjecture to Beck. In a more recent book, Matoušek says
(on page 126) that resolving Beck’s conjecture “remains one of the most tantalizing questions in
combinatorial discrepancy” [Mat10].

Although it was not resolved until now, the conjecture did receive some attention. Fishburn and
Gehrlein give an example of three permutations based on a geometric configuration of rectangles,
for which if the coloring is restricted so that no set corresponding to one of the permutations has
absolute value more than one, then the set system has unbounded discrepancy [FG90]. Without
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this restriction on the colorings, however, their construction has discrepancy two.

Citing Beck’s conjecture as motivation, Bohus shows that a set system based on ℓ permutations
always has discrepancy O(ℓ log n) [Boh90]. This was later improved by Spencer, Srinivasan and
Tetali who show that such a set system actually has a coloring with discrepancy O(

√
ℓ log n) [SST01].

While Bohus gives an efficient algorithm to find a coloring matching his upper bound, Spencer et
al. leave open the question of whether a coloring matching their bound can be found efficiently.
Since these latter results are via the entropy method, it is possible that a constructive algorithm
can be obtained via the recent methods of Bansal, who gives constructive algorithms for finding
low discrepancy colorings for general set systems [Ban10]. Our results show that the bounds of
Bohus and of Spencer et al. are tight up to the factor containing the number of permutations, ℓ,
i.e. these upper bounds are tight for set systems based on a fixed number of permutations. Spencer
et al. also generalize Beck’s conjecture positing that any set system based on ℓ permutations has
discrepancy O(

√
ℓ) [SST01]. We note that our construction disproves this stronger conjecture as

well.

We note that one possible reason that the conjecture may have been believed to be true is
because, prior to our work, it appears that there were no constructions of three permutations
known to have discrepancy greater than two.

1.2 Consequences of Beck’s conjecture

Recently, Eisenbrand, Pálvölgyi and Rothvoß made a surprising connection between Beck’s conjec-
ture and the additive integrality gap of a well-studied LP relaxation for bin packing [EPR11]. In
the bin packing problem we are given an instance I of m items where each item i ∈ I has a size
s(i) ∈ (0, 1]. The objective is to pack the items into the minimum number of capacity one bins.
For a bin packing instance I denote by OPT(I) the optimal solution, i.e. the minimum number of
bins necessary to pack all of the items. A pattern p ⊆ I is legal if the items it contains fit into one
bin, that is, if

∑

i∈p s(i) ≤ 1. Let P be the set of all legal patterns. The following is known as the
Gilmore-Gomory LP relaxation for bin packing [Eis57, GG61]:

min
∑

p∈P

xp

∑

p∈P:i∈p

xp ≥ 1, ∀i ∈ I (LP)

xp ≥ 0.

Rounding this LP relaxation is a basic component of the famous Karmarkar-Karp algorithm for
bin packing, which results in a packing with at most OPTLP (I) + O(log2 m) bins [KK82], where
OPTLP (I) is the optimal value of the LP for a given instance I. For the special case of bin
packing, called three partition, in which each item has a size s(i) ∈ (1/4, 1/2), the Karmarkar-Karp
algorithm results in a packing with OPTLP (I) + O(log m) bins.

Let I be an instance of three partition. Eisenbrand et al. show that if Beck’s conjecture were
true, then OPT(I) ≤ OPTLP (I) + O(1) [EPR11]. In other words, they would be able to bound
the additive integrality gap by a constant in this special case of the bin packing problem! They
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leave open the question of whether a reduction in the other direction can be established: Does an
upper bound of OPTLP (I) + O(1) on the size of an optimal integral solution for three partition
imply an O(1) upper bound on the discrepancy of three permutations? In light of our results,
such a reduction would disprove the long-standing conjecture that OPT(I) is upper bounded by
OPTLP (I) + O(1).

1.3 Consequences of a disproof of Beck’s conjecture

Despite the fact that the approach of Eisenbrand et al. for proving a constant additive integrality
gap on the bin packing LP will not work, we show that our construction disproving Beck’s conjecture
nevertheless has some interesting implications for the bin packing problem: there are instances of
bin packing (instances of three partition, in fact) and corresponding optimal basic feasible solutions
for the Gilmore-Gomory LP relaxation, such that any packing that contains only patterns from the
support of its corresponding solution requires at least OPT(I) + Ω(log m) bins. This implication
is a lower bound on all algorithms that use patterns from the support of a basic feasible solution
to the LP.

The additive factor is tight for the three partition problem due to the Karmarkar-Karp algo-
rithm, which can be slightly modified to use only patterns from the LP support. Specifically, the
algorithm proceeds in iterations. At each iteration, it “discards” some items, uses the support
to pack some items, and recurses on the leftover items. In the case of three partition, the total
number of discarded items is O(log m). Thus, we can easily pack these items using an additional
O(log m) patterns, yielding a packing that uses a total of OPTLP (I)+O(log m) bins, each of which
corresponds to a pattern from the support.

We note that, independently, in an extended journal version of their paper, Eisenbrand et al.
use our construction to make a similar observation: Roughly speaking, they show that there are
instances of bin packing and corresponding optimal solutions (not necessarily basic) to the LP, for
which any set of at most OPT(I) patterns from the support of the LP solution leaves Ω(log2 m)
items uncovered [EPR, EPR10]. This matches the worst-case guarantee of the Karmarkar-Karp
algorithm for the general case of bin packing [KK82].

1.4 Consequences for discrepancy theory

Another consequence of our lower bound is that it provides an alternate solution to a question posed
by Sós, which asks how large is the discrepancy of a union of set systems when each set system
has constant hereditary discrepancy [LSV86, Spe87]. In Section 7, we discuss this and questions
related to other notions of discrepancy.

1.5 Organization

In Section 2, we give some basic definitions and notation. In Section 3, we define the construction
of three permutations that we will use to prove our main result. In Section 4 and Section 5, we state
and prove our main theorem: the set system associated with prefixes of the three permutations from
Section 3 has discrepancy Ω(log n). In Section 6, we present the implications that our construction
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has for the bin packing problem. Finally, in Section 7, we discuss applications of our construction
to other problems in discrepancy.

2 Basic definitions and notation

Recall that for a set system S = {S1, S2, S3, . . . SM}, the discrepancy of the set system is:

disc(S) = min
χ

max
j∈[M ]

|
∑

i∈Sj

χ(i)|. (1)

Let [n] denote the set of integers from 1 through n, and let [x, y] (where x < y) denote all integers
from x through y. For a coloring χ : [n] → {−1,+1}, if S ⊆ [n], let χ(S) =

∑

j∈S χ(j). We will use

n to denote the length of the permutations, i.e. n = 3k for some specified integer k > 0.

For some fixed k, the corresponding three permutations described in Section 3 will be denoted
by πk

1 , πk
2 and πk

3 . Let αk
i (x) denote the elements in positions 1 through x in the permutation πk

i ,
where x ∈ [0, n]. In other words, αk

i (x) is a prefix of πk
i of length x. Note that αk

i (0) represents
the empty set. Given the three permutations πk

1 , πk
2 and πk

3 , the set system Sk consists of all sets
αk

i (x) for x ∈ [3k]. In other words, Sk is the set system of all prefixes of the three permutations,
πk

1 , πk
2 and πk

3 . Note that if we prove a lower bound on the set system Sk, the same lower bound
holds on the set system containing all intervals of each of the permutations.

We will also use the notion of sets corresponding to suffixes of the permutations, even though
these sets do not appear in our set systems. Let ωk

i (x) denote the elements in positions x through
3k in the permutation πk

i , where x ∈ [3k + 1]. In other words, ωk
i (x) is a suffix of πk

i of length
3k − x + 1. We define ωk

i (3k + 1) to be the empty suffix.

3 Recursive construction

We give a construction for three permutations on the integers 1 through n, where n = 3k for some
integer k > 0. Consider the following recursive construction of three lists:

A B C
C A B
B C A,

where A represents the interval [1, n/3], B the interval [n/3+1, 2n/3], and C the interval[2n/3+1, n].
Each of the three copies of A (and B and C, respectively) is divided further into three equal sized
blocks of consecutive elements, and these three blocks are permuted as in the above construction.
This process of dividing the blocks into three equal sized blocks and permuting them according to
the above construction is iterated k times. To illustrate these actions, when n = 9, this construction
results in the following three permutations:

1 2 3 4 5 6 7 8 9
9 7 8 3 1 2 6 4 5
5 6 4 8 9 7 2 3 1.
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When n = 27, the three permutations are:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

27 25 26 21 19 20 24 22 23 9 7 8 3 1 2 6 4 5 18 16 17 12 10 11 15 13 14

14 15 13 17 18 16 11 12 10 23 24 22 26 27 25 20 21 19 5 6 4 8 9 7 2 3 1.

One useful observation about this construction pertains to the symmetry of these three permu-
tations. If we consider the set of permutations πk

1 , πk
2 and πk

3 , then the three permutations induced
by {πk

i } on the set of integers [1, 3k−1] are isomorphic to the permutations {πk−1
i }. This also holds

for the permutations induced by {πk
i } on [3k−1 + 1, 2 · 3k−1] and to the permutations induced by

{πk
i } on [2 · 3k−1 + 1, 3k].

Fact 1. Given permutations {πk
i }, the three permutations induced on [1, 3k−1] (and on [3k−1 +1, 2 ·

3k−1], [2 · 3k−1 + 1, 3k], respectively) are isomorphic to the permutations {πk−1
i }.

4 Main Theorem

Let Sk refer to the set system consisting of all prefixes of the three permutations, πk
1 , πk

2 and πk
3 ,

on n = 3k elements described in Section 3. Note that the set of all prefixes of the permutations
is a subset of all intervals of the permutations. Since we are proving a lower bound, it suffices to
consider the set system consisting only of prefixes. Our main theorem is:

Theorem 1. disc(Sk) ≥ ⌈k
3 + 1⌉ = ⌈ log3 n

3 + 1⌉.

5 Proof of Main Theorem

In our construction, as k increases by 1, it is not necessarily the case that the discrepancy increases
by 1. If this were true, then we could prove a lower bound of log3 n rather than log3 n/3. However,
one of our key ideas—roughly speaking—is that the sum of the discrepancies of the set systems,
each corresponding to one of the permutations, increases by 1 as k increases by 1. We will use the
following definitions, which denote the maximum/minimum sum of the prefixes of the set systems
corresponding to each permutation for a fixed coloring χ:

disck
L+(χ) := max

x,y,z∈[0,3k]

(

χ(αk
1(x)) + χ(αk

2(y)) + χ(αk
3(z))

)

,

disck
L−(χ) := min

x,y,z∈[0,3k]

(

χ(αk
1(x)) + χ(αk

2(y)) + χ(αk
3(z))

)

. (2)

Although our set systems do not contain suffixes, we will also use the following definitions:

disck
R+(χ) := max

x,y,z∈[1,3k+1]

(

χ(ωk
1(x)) + χ(ωk

2 (y)) + χ(ωk
3 (z))

)

,

disck
R−(χ) := min

x,y,z∈[1,3k+1]

(

χ(ωk
1(x)) + χ(ωk

2 (y)) + χ(ωk
3 (z))

)

. (3)
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For a coloring χ : [3k] → {−1,+1}, let Σ = χ([3k]). If Σ ≥ 1, then our goal is to show the following:

disck
L+(χ) ≥ k + 3. (4)

Alternatively, if Σ ≤ −1, then we want to show:

disck
L−(χ) ≤ −k − 3. (5)

If we can show the appropriate inequality for every coloring χ, then this would imply our main
theorem, as one of the three set systems must then have discrepancy at least ⌈|(k+3)/3|⌉. However,
we do not see how to directly use (4) and (5) as an inductive hypothesis. Thus, we need a stronger
inductive hypothesis, which is stated in the following lemma and corollary.

Lemma 1. Let Σ = χ([3k]). If Σ ≥ 1, then:

disck
L+(χ), disck

R+(χ) ≥ k + Σ + 2.

If Σ ≤ −1, then:
disck

L−(χ), disck
R−(χ) ≤ − k + Σ − 2.

Note that Lemma 1 implies our stated goal in (4) and (5) and, therefore, our Main Theorem.
Indeed, since 3k is odd, it must be the case for any coloring χ : [3k] → {−1,+1} that |Σ| ≥ 1
and the theorem follows. Before we prove Lemma 1, we show that Lemma 1 implies the following
corollary, which will be useful in our inductive proof.

Corollary 2. Let Σ = χ([3k]). If Σ ≤ −1, then:

disck
L+(χ), disck

R+(χ) ≥ k + 2Σ + 2.

If Σ ≥ 1,
disck

L−(χ), disck
R−(χ) ≤ −k + 2Σ − 2.

Proof: Let us first consider the case in which Σ ≤ −1. Note that for each πk
i , it is the case that

for each x ∈ [0, 3k], χ(αk
i (x)) + χ(ωk

i (x + 1)) = Σ. Therefore, for some coloring χ, consider an
x ∈ [0, 3k] that maximizes χ(αk

i (x)). Then y = x + 1 is a value of y ∈ [1, 3k + 1] that minimizes
χ(ωk

i (y)). Thus, we have:

disck
R−(χ) + disck

L+(χ) = 3Σ ⇒
disck

L+(χ) = 3Σ − disck
R−(χ).

By Lemma 1, we have:

disck
L+(χ) ≥ 3Σ + k − Σ + 2

= k + 2Σ + 2.

An analogous argument works to give the same lower bound on disck
R+ when Σ ≤ −1. Now consider

the case in which Σ ≥ 1. We have:

disck
R+(χ) + disck

L−(χ) = 3Σ ⇒
disck

L−(χ) = 3Σ − disck
R+(χ).
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By Lemma 1, we have:

disck
L−(χ) ≤ 3Σ − k − Σ − 2

= −k + 2Σ − 2.

The argument for the upper bound on disck
R− when Σ ≥ 1 is symmetric.

5.1 Proof of Lemma 1

Now we will prove Lemma 1 using induction. Note that in our inductive hypothesis, we will assume
Lemma 1 for k − 1. This will allow us to also assume the bounds stated in Corollary 2, since we
have shown that, for a given value of k, Lemma 1 implies Corollary 2.

Base Case: k = 1

Suppose that Σ = χ([3]) ≥ 1. Let π1
1 = (a, b, c), π1

2 = (c, a, b) and π1
3 = (b, c, a). Without loss of

generality, there are only two possibilities for such colorings:





χ(1) χ(2) χ(3)
χ(3) χ(1) χ(2)
χ(2) χ(3) χ(1)



 =





1 −1 1
1 1 −1
−1 1 1



 or





1 1 1
1 1 1
1 1 1



 .

Suppose Σ = χ([3]) = 1. The only way to achieve such a coloring is to have two of the elements be
colored ‘+1’ and one element be colored ‘−1’. Without loss of generality, in the above case, we have
assigned −1 to element 2. Then one of the permutations has a prefix (suffix) with value two, while
each of the other two permutations have prefixes (suffixes) with value one. Specifically, in this case,
π1

2 has a prefix of value two and both other permutations have prefixes with value one. Thus, we
have: disc1

L+(χ),disc1
R+(χ) = 4 ≥ k+Σ+2 = 4. Now suppose that Σ = χ([3]) = 3. In this case, each

permutation has a prefix (suffix) with value three. Thus, disc1
L+(χ),disc1

R+(χ) = 9 ≥ k +Σ+2 = 6.
Thus, Lemma 1 holds for Σ ≥ 1 when k = 1.

When Σ = χ([3]) = −1, the same arguments can be used to show that disc1
L−(χ),disc1

R−(χ) =

−4 ≤ −k − Σ − 2 = −4. Similarly, when Σ = χ([3]) = −3, disc1
L−(χ),disc1

R−(χ) = −9 ≤ −6. This
concludes the proof of the base case.

Inductive step

Now we assume that Lemma 1 and thus its Corollary 2 are true for k − 1 and prove the Lemma
(and thus, the Corollary) true for k.

For some fixed χ : [3k] → {−1,+1}, let Σ = χ([3k]). Let a, b and c denote the values of the
three blocks of 3k−1 consecutive integers in the recursive construction, i.e. χ([1, 3k−1]), χ([3k−1 +
1, 2 · 3k−1]) and χ([2 · 3k−1 + 1, 3k]), although not necessarily in this order. We always assume that
a ≥ b ≥ c, i.e. the value of the block with the largest value is denoted by a, etc. Note that a, b
and c are each odd numbers, because they always represent the values of intervals with odd length.
Each permutation in {πk

i } corresponds to some permutation of a, b and c and the elements within.
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Without changing the discrepancy, we can re-order or re-label the three permutations to form one
of the following two configurations, in which each row corresponds to one of the three permutations
in {πk

i }.

(I)





a b c
c a b
b c a



 =





b c a
a b c
c a b



 , (II)





a c b
b a c
c b a



 .

First we consider the case in which Σ = χ([3k]) ≥ 1. This implies that a + b + c ≥ 1. There are
two subcases:

(i) a ≥ b ≥ 1 (and c ≥ 1 or c ≤ −1),

(ii) a ≥ 1 and c ≤ b ≤ −1.

First, we consider case (i) and configuration (I). If we look at a permutation of the rows so
that the blocks with value b are on the diagonal (as shown), then in configuration (I), the value of
the blocks below the diagonal are positive (which is desirable). Thus, we can consider the three
prefixes corresponding to the permutations of the block with value b. Suppose, without loss of
generality (and for ease of notation) that the block with value b is [1, 3k−1]. In this case, the
permutations on the diagonal are πk−1

1 , πk−1
2 and πk−1

3 . By the inductive assumption, for any
χ : [3k−1] → {−1,+1}, there are three corresponding prefixes αk−1

1 (x1), α
k−1
2 (x2) and αk−1

3 (x3), for
some integers x1, x2, x3 ∈ [0, 3k−1], such that:

χ(αk−1
1 (x1)) + χ(αk−1

2 (x2)) + χ(αk−1
3 (x3)) = disck−1

L+ (χ)

≥ (k − 1) + b + 2. (6)

Note that if either the block [3k−1+1, 2·3k−1] or the block [2·3k−1 +1, 3k] had value b, and therefore
appeared on the diagonal of configuration (I), then by Fact 1, we see that these permutations are
isomorphic to {πk−1

i }. This allows us to use the inductive hypothesis in these cases as well, and to
draw the same conclusion as we drew in (6).

Now we consider some χ : [3k] → {−1,+1}. This coloring induces a coloring on [3k−1] for
which the above assumption in (6) holds. Suppose that πk−1

h , πk−1
j and πk−1

ℓ , for h, j, ℓ ∈ {1, 2, 3},
correspond to the permutations of block [3k−1] that appear in the first, second and third rows of
the configuration, respectively. For the fixed coloring χ on [3k], our goal is to show that there are
three prefixes of the three permutations {πk

i } such that we can lower bound the value of the sum of
these prefixes with respect to the fixed coloring χ. The prefix of the permutation corresponding to
the first row of the configuration is αk−1

h (xh). For the permutation corresponding to the second row

of the configuration, we add the block with value a to the front of αk−1
j (xj). For the permutation

corresponding to the third row of the configuration, we add the block with value a to the front of
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αk−1
ℓ (xℓ) preceded by the block with value c. Thus, by the inductive hypothesis, we have that:

disck
L+(χ) ≥ χ(αk−1

h (xh)) +
(

a + χ(αk−1
j (xj))

)

+
(

c + a + χ(αk−1
ℓ (xℓ))

)

= disck−1
L+ (χ) + 2a + c

≥ (k − 1) + b + 2 + 2a + c

≥ k + Σ + 1 + a

≥ k + Σ + 2.

The last inequality follows from the fact that in case (i), a ≥ 1. Thus, the inductive step holds for
case (i), configuration (I).

Now let us consider configuration (II). In this case, we consider a permutation of the rows so
that the blocks with value a occupy the diagonal. By the same reasoning as discussed previously
and by induction, we have:

disck
L+(χ) ≥ disck−1

L+ (χ) + 2b + c

≥ (k − 1) + a + 2 + 2b + c

≥ k + Σ + b + 1

≥ k + Σ + 2.

Since in case (i), b ≥ 1, the inductive step holds for case (i), configuration (II).

Now we consider case (ii), when a ≥ 1 and c ≤ b ≤ −1. In this case, we again have the above
two configurations:

(I)





a b c
c a b
b c a



 =





b c a
a b c
c a b



 , (II)





a c b
b a c
c b a



 =





c b a
a c b
b a c



 .

Note that in case (ii), for both configurations (I) and (II), we use Corollary 2. We consider config-
uration (I) first.

disck
L+(χ) ≥ disck−1

L+ (χ) + 2a + c

≥ (k − 1) + 2b + 2 + 2a + c

≥ k + Σ + a + b + 1

≥ k + Σ + 2.

Since we have a+ b+ c ≥ 1, it follows that a+ b ≥ 1− c ≥ 2. Thus, case (ii) holds for configuration
(I). Now let us consider configuration (II). We have:

disck
L+(χ) ≥ disck−1

L+ + 2a + b

≥ (k − 1) + 2c + 2 + 2a + b

≥ k + Σ + a + c + 1

≥ k + Σ + 2.
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Since we have a+ b+ c ≥ 1, it follows that a+ c ≥ 1− b ≥ 2. Thus, case (ii) holds for configuration
(II).

The proof of the lower bound on disck
R+(χ) is symmetric to the one we have just given for

disck
L+(χ). Instead of adding the blocks whose values lie in the lower left hand triangle to form the

new prefixes, we use the blocks whose values lie in the upper right hand triangle.

Finally, we need to show that if Σ = χ([3k]) ≤ −1, then:

disck
L−(χ), disck

R−(χ) ≤ − k + Σ − 2. (7)

Note that this follows from our proof of the first part of Lemma 1, namely that when Σ = χ([3k]) ≥
1, then:

disck
L+(χ), disck

R+(χ) ≥ k + Σ + 2. (8)

If we consider a coloring χ : [3k] → {−1,+1} such that χ([3k]) ≤ −1, and it is the case that (7)
does not hold, then consider χ− = −χ, i.e. the negation of χ. It follows that χ−([3k]) ≥ 1, but (8)
does not hold for coloring χ−, which is a contradiction.

6 Consequences for bin packing LP

The main result of this section is the following:

Theorem 3. For infinitely many integers m, there exists a bin packing instance I on m items, and
an optimal basic feasible solution x to (LP), such that any integral solution y to (LP) satisfying
supp(y) ⊆ supp(x) has value at least OPT(I) + Ω(log m).

We actually prove a slightly stronger statement in Remark 1. The replacement property allows
an algorithm to replace item of size s by any item of size s′ ≤ s in any legal pattern. We show
that our lower bound on the size of any integral solution y to (LP) with supp(y) ⊆ supp(x), holds
when allowing replacements. Using an observation made by [EPR], we can even allow the integral
solution to use the same pattern multiple times.

6.1 The Construction

The instance is very simple, in a sense that all the sizes are numbers in the interval [1/4, 1/3], so
that any pattern containing at most three items is legal. The more challenging part is to construct
a basic feasible solution with the required property.

Fix any integer k > 0, and recall that the three permutations πk
1 , πk

2 , πk
3 are permutations

on the first n = 3k positive integers (we omit the superscript when k is clear by the context).
We shall append the number 0 at the end of each permutation (that is, define πi(0) = n + 1
for i = 1, 2, 3). Let m = 3(n + 1)/2 and define an instance I = I(k) of m items. Each item
corresponds to a pair of consecutive numbers in one of the permutations, that is, for each i ∈ [3]
and j ∈ [(n+1)/2] we have an item (i, j), this item corresponds to the pair (πi(2j − 1), πi(2j)) and
has size 1/3− (i+2j/(n+1))/48. See Figure 1 for the definition of items in the case k = 2. Define
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π1 1 2 3 4 5 6 7 8 9 0
π2 9 7 8 3 1 2 6 4 5 0
π3 5 6 4 8 9 7 2 3 1 0

Figure 1: The construction of the bin packing instance for k = 2, each underlined pair corresponds
to an item. The items in p1 are in bold font.

1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1

0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 0
0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1

Figure 2: The incidence matrix A for the case k = 2. The rows correspond to items, in each block
of (n + 1)/2 = 5 rows are the items defined by one of the permutations. The n + 1 = 10 columns
correspond to the patterns.

a set P ⊆ P of n + 1 patterns P = {p0, p1, . . . , pn}, where the pattern pr contains the three items
that correspond to the number r. More formally, the pattern pr contains the items (1, j1), (2, j2),
(3, j3), where ji is such that π−1

i (r) ∈ {2ji −1, 2ji} for i ∈ [3]. See Figure 2 for the incidence matrix
of items and patterns for k = 2.

Observation 1. Each item is contained in exactly two patterns, and each pattern contains exactly
three items.

Observation 2. The item sizes are all in [1/4, 1/3] and are strictly decreasing (ordered lexico-
graphically by (i, j)).

6.2 The Proof

The proof of Theorem 3 will use the discrepancy of permutations established in the previous section.
A coloring χ : [n] → {−1, 1} naturally corresponds to an integral solution of the bin packing instance
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we defined, where pattern pr is taken if and only if χ(r) = 1 (pattern p0 does not correspond to
a coloring, but it changes the cost of the solution by at most additive 1, so we may assume it is
always taken).

Lemma 2. Let k ≥ 8 be an integer. Any feasible integral solution y ∈ {0, 1}n+1 to the instance
I(k) such that supp(y) ⊆ P , satisfies |supp(y)| ≥ n/2 + k/16.

Proof. Seeking contradiction, assume that |supp(y)| < n/2 + k/16, and we will show that y cannot
be feasible. Consider the coloring χ : [n] → {−1, 1} defined by χ(j) = 2yj − 1. Observe that
Σ = χ([n]) = |{j ∈ [n] : yj = 1}|−|{j ∈ [n] : yj = −1}| ≤ (n/2+k/16)−(n/2−k/16−1) = k/8+1.
Clearly we may assume |supp(y)| ≥ n/2 + 1 (since adding more patterns will make it more likely
that y is feasible), so that χ([n]) > 0. By Corollary 2,

disck
L−(χ) ≤ −k + 2Σ − 2 ≤ −3k/4 .

Recall the definition of disck
L−(χ) in (2), which suggests that there exists an i ∈ [3] and a prefix

w ∈ [n] for which
χ(αk

i (w)) ≤ −k/4 ≤ −2 . (9)

We conclude that there must be an item (i, j) for some integer 0 < j ≤ w/2 and i ∈ [3], such
that χ(πi(2j − 1)) = χ(πi(2j)) = −1, meaning the item is not covered by any pattern of y. This
contradicts the fact that y is a feasible solution.

Remark 1. The proof of Lemma 2 holds even when allowing replacements and using patterns
multiple times.

Proof. Observe that in (9) we have i ∈ [3] and a prefix w ∈ [n] for which the discrepancy is at
most −k/4, in other words |{j ∈ [w] : yπi(j) = 1}| ≤ ⌊w/2 − k/8⌋. There are ⌊w/2⌋ items
corresponding to this prefix, so in fact there are at least k/8 items that are not covered by any
pattern chosen by y. In a setting that allows replacements, we may place such an uncovered item
in available spots of other patterns, provided that the spot was intended for an item of greater
size. By Observation 2 we have that these items cannot take the place of items corresponding to
pairs (i′, j′) with (i′, j′) > (i, j) (lexicographically), and as these uncovered items correspond to a
prefix of πi, the only option is to take the place of items corresponding to pairs (i′, j′) with i′ < i.
However, by our assumption on y, that |supp(y)| < n/2 + k/16, there are less than k/16 available
spots in each permutation i′ (obviously taking out larger items to create space is not helpful). As
there are at most two values of i′ < i, we have that there is no sufficient place for all the k/8 items.

When allowing replacements, it is also natural to allow multiple uses of the same pattern in the
integral solution, that is, y ∈ N

n+1. Since in Lemma 2 we defined y ∈ {0, 1}n+1, this is inherently
not allowed. However, an observation made in [EPR], that the proof of Theorem 1 holds even for
coloring with odd integers, in fact enables multiple uses of the same pattern. This is because the
coloring is defined as χ(j) = 2yj − 1, which is always odd. Replacing |supp(y)| by

∑

j yj in the
proof of Lemma 2, we will still have a prefix with large negative discrepancy, so the same argument
holds.
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Lemma 3. The solution xp = 1/2 for all p ∈ P , and xp = 0 otherwise, is an optimal basic feasible
solution of cost (n + 1)/2.

Proof. By Observation 1 x is a feasible solution, and its cost is (n + 1)/2 because there are n + 1
patterns in P . This is clearly an optimal solution, since any bin can contain at most 3 items, so
the number of required bins is at least m/3 = (n + 1)/2.

In order to prove that x is a basic solution, we need to exhibit |P| linearly independent tight
constraints. As |supp(x)| = n+1, there are |P|−(n+1) tight constraints of the form xp = 0, and it
remains to show that there are n + 1 linearly independent constraints of the form

∑

p∈P:i∈p xp = 1.
Since every item appears in exactly two patterns, all these constraints are in fact tight. The proof
will follow once we establish the fact that there are n+1 linearly independent such constraints. Let
A be the incidence matrix of the items in the patterns of P , which has m = 3(n+1)/2 rows and n+1
columns (see Figure 2). In what follows we prove that A has full rank. Abusing notation slightly,
let pr be the r-th column vector of A. Seeking contradiction, assume that there are coefficients
α0, α1 . . . , αn, not all equal to 0, such that

n
∑

r=0

αrpr = 0. (10)

We will prove the following claims.

Claim 1. If (10) holds, then there is some α > 0 such that |αr| = α for every 0 ≤ r ≤ n.

Claim 2. There are three numbers 1 ≤ i1 < i2 < i3 ≤ 9, such that there are three items corre-
sponding to the pairs (i1, i2), (i2, i3), (i1, i3).

Let us now conclude by showing a contradiction. By Claim 1 the absolute value of all coefficients
is α > 0. Let 1 ≤ i1 < i2 < i3 ≤ 9 be as in Claim 2. Note that at least two of the coefficients
of i1, i2, i3 must have the same sign, say w.l.o.g i1, i2. Since there is an item corresponding to
(i1, i2), the absolute value of the appropriate entry in the vector

∑n
r=0 αrpr will be 2α 6= 0, a

contradiction.

It remains to prove the claims stated above.

Proof of Claim 1. The basic idea is the following: By Observation 1 every item is contained in
exactly two patterns, so that if (10) is to hold, the two patterns containing the item must have
coefficients whose sum is 0. Roughly speaking, if we have a nonzero coefficient α for some pattern,
any item it contains appears in one more pattern, which must have coefficient −α. This pattern
contain more items, which will force coefficient α for yet other patterns, and so on. Finally, we will
have that all patterns have ±α coefficient. Next we prove this formally.

For the sake of analysis, we ignore the number 0 appended at each permutation end (if the
nonzero coefficient is α0, then the items containing 0 will also induce nonzero coefficients for some
pattern h > 0). As k grows, the position of blocks of numbers in some of the permutations may
shift, and thus affect the pairing of numbers into items. Since we aim at an inductive proof, we
need to consider all possible locations of a block, and in what follows we define the possible ways of
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pairing the numbers into items. Observe that there are two ways to create pairs from consecutive
numbers in each of the permutations: starting at the first or second position. For example when
k = 2, π2 can be paired into items as

9 7 8 3 1 2 6 4 5

or as
9 7 8 3 1 2 6 4 5

Consider the 8 possible pairing schemes of the three permutations. A pairing scheme may be defined
by the set C = {1, 2}3, where each symbol indicates from which position to start pairing in each
permutation. For example (122) means the following pairing scheme (for k = 2)

1 2 3 4 5 6 7 8 9 (11)

9 7 8 3 1 2 6 4 5

5 6 4 8 9 7 2 3 1

For every pairing scheme c ∈ C let G
(c)
k = (V,E) be a graph where V = [3k] and (u, v) ∈ E iff there

is an item corresponding to the pair of integers (u, v) in one of the πi with the pairing scheme c. An
edge (u, v) indicates that the patterns pu, pv must have opposite coefficients, so the connectivity of
the graph suggests that all coefficients are ±α, as required. We will prove by induction on k that

for any possible pairing scheme c ∈ C, G
(c)
k is connected. The base case when k = 1 holds,

1 2 3
3 1 2
2 3 1

because every permutation has one pair, and note that it cannot be that all the three pairs are the
same, thus we have one number which is connected to the other two. For the induction step, assume
the assertion holds for k, and prove for k +1. By Fact 1 we have that the permutations induced on
the three blocks [1, 3k], [3k +1, 2 ·3k ] and [2 ·3k +1, 3k+1] are isomorphic to the permutations of [3k].
Fix any pairing scheme of the three permutations, which induces a pairing scheme on each of the
three blocks. Let G1, G2, G3 be the three graphs induced by the pairing scheme of the permutations
of each block. By the induction hypothesis, all three graphs are connected. It remains to see that
these graphs are connected to each other. To see this, note that any block will be in the middle
section in one of the three permutations. Now, since it contains an odd number of elements, one
of its numbers will be paired with a number from another block, establishing the connection to the

graph of another block. Thus G
(c)
k is connected, which concludes the proof.

Proof of Claim 2. By Fact 1, the block [9] appears consecutively in each of the permutations, or-
dered exactly as depicted in Figure 1. As in the proof of Claim 1, we need to consider all the
possible pairing schemes of items in each permutation, and there are 8 cases to inspect1. By a sim-
ple case analysis one can check that there are three numbers satisfying the assertion of the claim,

1In fact there are less cases, because in π1 the block [9] never shifts.
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no matter which pairing scheme of C is chosen. For instance, in the pairing scheme (122) depicted
in (11), the numbers 4, 5, 6 satisfy the claim, in the pairing scheme (111) depicted in Figure 1,
the numbers 3, 4, 8 satisfy it. The following is a matching between the 8 possible pairings and the
numbers i1, i2, i3.

(111) ⇐⇒ 3, 4, 8

(112) ⇐⇒ 7, 8, 9

(121) ⇐⇒ 1, 2, 3

(122) ⇐⇒ 4, 5, 6

(211) ⇐⇒ 4, 5, 6

(212) ⇐⇒ 1, 2, 3

(221) ⇐⇒ 7, 8, 9

(222) ⇐⇒ 2, 6, 7

Proof of Theorem 3. Combining Lemmata 2, 3, and noting that k = log3 n = Ω(log m), yields the
proof of the theorem.

7 Consequences for discrepancy theory

A topic of interest in the field of combinatorial discrepancy theory is the worst-case relationships
between various definitions of discrepancy. In this section, we discuss how our lower bound may be
useful in studying the gaps between these different quantities.

7.1 Union of set systems with low hereditary discrepancy

Let S = {S1, . . . , SM} be a set system on [n]. Given a set W ⊆ [n], we define the trace of S on W
as the set system S|W = {S1 ∩ W, . . . , SM ∩ W}. The hereditary discrepancy of S is defined as

herdisc(S) = max
W⊆[n]

disc(S|W ). (12)

Hereditary discrepancy is in some sense a more robust measure of the complexity of a set system
than discrepancy. An intriguing question, raised by Sós [LSV86, Spe87], concerns quantifying the
robustness of hereditary discrepancy: given set systems T and U , each with hereditary discrepancy
one, how large can the hereditary discrepancy of T ∪ U be as a function of n? A clever example
due to Hoffmann shows that the hereditary discrepancy of T ∪ U is Ω(log n/ log log n) [Spe87].
More recently, Matous̆ek showed an upper bound of O(log (M · n)

√
log n) [Mat11]. Furthermore,

Matous̆ek presented a construction due to Pálvögyi, which improves on Hoffmann’s example: there
exist T and U each with hereditary discrepancy one, where herdiscT ∪ U is Ω(log n). Pálvögyi’s
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construction was originally presented geometrically in the context of cover-decomposable planar
sets [Pál10].

Here, we provide another example of two set systems with hereditary discrepancy one whose
union has discrepancy Ω(log n). Let S ′

k be the set system consisting of the prefix intervals {αk
1(x)}n

x=1

of πk
1 , and let S ′′

k be the set system consisting of the prefix intervals {αk
2(x)}n

x=1 ∪ {αk
3(x)}n

x=1 of
πk

2 , πk
3 . We have,

herdisc(S ′
k) = 1, (13)

herdisc(S ′′
k ) = 1, (14)

herdisc(S ′
k ∪ S ′′

k ) = herdisc(Sk) = Ω(log n). (15)

Equation (13) follows from the fact that the discrepancy of one permutation is one. Equation (14)
follows by the fact that any set system consisting of the prefix intervals of two permutations has
discrepancy at most one. Note that the discrepancy of the set system based on all intervals of two
permutations is at most two [Spe87]. Equation (15) follows from Theorem 1.

7.2 Vector discrepancy of permutations

Another notion that has proven useful in studying discrepancy, especially from an algorithmic
perspective is a relaxation of discrepancy called vector discrepancy. The vector discrepancy of a
set system S is defined as

vecdisc(S) = min
u1,...,un

max
Sj∈S

∥

∥

∥

∥

∥

∥

∑

i∈Sj

ui

∥

∥

∥

∥

∥

∥

2

, (16)

where u1, . . . ,un ranges over unit length vectors in R
n. We define hereditary vector discrepancy

analogously to hereditary discrepancy:

hervecdisc(S) = max
W⊆[n]

vecdisc(S|W ). (17)

The best currently known upper bound on the gap between the discrepancy and the hereditary
vector discrepancy is O(log M · n), due to Bansal [Ban10].

Via the determinant lower bound of Lovasz, Spencer, and Vesztergombi [LSV86], Matous̆ek re-
cently proved that if T and U are set systems with constant hereditary discrepancy, then hervecdisc(T ∪
U) ≤ O(

√
log n) [Mat11]. Combining this theorem with our observations in Section 7.1, we see that

the hereditary vector discrepancy of the set system consisting of the intervals of any three permu-
tations is O(

√
log n). In light of our lower bound on the discrepancy of three permutations, an

improved upper bound on the hereditary vector discrepancy of three permutations would disprove
a conjecture of Matous̆ek that hereditary discrepancy is at most a factor of O(

√
log n) higher than

hereditary vector discrepancy [Mat11].

Thus, we conclude with an open problem. Let ω0, ω1 and ω2 be the third roots of unity. In our
construction, we can assign the vector ωi to each element equivalent to i (mod 3). This coloring
suffices to show that vecdisc (Sk) ≤ 1. What is the value of hervecdisc (Sk)? More generally, what
is the worst-case vector discrepancy of three permutations?
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[Mat11] Jiŕı Matoušek. The determinant bound for discrepancy is almost tight. Arxiv preprint
arXiv:1101.0767, 2011.

17



[Pál10] Dömötör Pálvölgyi. Indecomposable coverings with concave polygons. Discrete & Com-
putational Geometry, 44(3):577–588, 2010.

[Spe85] Joel Spencer. Six standard deviations suffice. Trans. Amer. Math. Soc., 289:679–706,
1985.

[Spe87] Joel Spencer. Ten Lectures on the Probabilistic Method. Society for Industrial and Applied
Mathematics, 1987.

[SST01] J. H. Spencer, A. Srinivasan, and P. Tetali. The discrepancy of permutation families,
2001.

18




