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Abstract—Beehive is a parallel programming framework de-
signed for cluster-based computing environments in cloud data
centers. It is specifically targeted for graph data analysis
problems. The Beehive framework provides the abstraction of
key-value based global object storage, which is maintainedin
memory of the cluster nodes. Its computation model is based
on optimistic concurrency control in executing concurrent tasks
as atomic transactions for harnessing amorphous parallelism
in graph analysis problems. We describe here the architecture
and the programming abstractions provided by this framework,
and present the performance of the Beehive framework for
several graph problems such as maximum flow, minimum weight
spanning tree, graph coloring, and the PageRank algorithm.

I. I NTRODUCTION

Recent years have seen emergence of cloud computing
platforms which can be used as utility infrastructures for
performing large-scale data analytics. Many data analytics
applications require processing of large-scale graph data.
Analysis of such large-scale data requires parallel processing
utilizing a large number of computing resources. This requires
suitable parallel programming frameworks that can efficiently
utilize a large pool of computing resources in a reliable and
scalable manner. Parallel processing of graph computation
raises several issues due to the unique nature of graph prob-
lems. In many graph problems, parallelism generally tends to
have irregular structure [16], and such problems do not exhibit
coarse-grain parallelism. In such graph problems it is difficult
to extract parallelism through data partitioning. Such issues
and challenges in parallel processing of graph problems are
discussed in [21]. To harness the irregular parallelism inherent
in such problems, also calledamorphous parallelism[16],
techniques based on optimistic parallel execution of concurrent
tasks have been considered more attractive [16], [27].

For parallel processing of large data sets on cluster-based
computing environments, the MapReduce [9] programming
model is widely used in many applications. However, this
model cannot be easily utilized in graph data analytics prob-
lems where it is difficult to partition the data for parallel
processing. Moreover, this model does not expose intermediate
data of computations which is often needed in many graph
algorithms [26]. In recent years, several other frameworks[22],
[26], [20] have been developed specifically for performing
large-scale graph data analytics using a cluster of distributed
computing resources. Dryad [15] is targeted for data-flow

based parallel computing. The Pregel [22] framework is specif-
ically intended for graph data analysis. The computing model
of Pregel is based on the message-passing paradigm and
utilizes the Bulk-Synchronous Parallel (BSP) model [30]. This
requires programmers to adapt their algorithms to utilize the
BSP model. Moreover, the BSP model may not be suitable for
all types of graph processing problems. Utilizing the Pregel
model also requires suitable partitioning of the graph. It is
noted in [20] that it is difficult in the Pregel model to express
certain dynamic parallel iterative computations, such as the
dynamic PageRank computation. Distributed GraphLab [20] is
another recent system which is specifically aimed at supporting
parallel computing of graph problems, utilizing the notionof
transactional task execution, but it does not support dynamic
graph structures.

We present here our ongoing work on the design and
development of the Beehive system for parallel programming
of graph problems on cluster-based computing environments.
The design of the Beehive framework is based on speculative
computing approach, using optimistic concurrency control
techniques, for harnessing amorphous parallelism in graph
problems. The design of this framework is being driven by the
following goals: (1) a programming model which simplifies
programming of graph algorithms; (2) a computation model
which can efficiently harness amorphous parallelism in graph
problems; (3) efficient models and mechanisms for fault-
tolerance and recovery. The computation model of Beehive is
based on two central elements. The first provides a distributed
globally shared object storage system for maintaining data
structures in the memory of the cluster nodes. This global
storage provides key-value based primitives for data storage
and access of information based on vertices and edges in
graph structures. This relieves the programmer from the burden
of explicitly using message-passing primitives. The second
element supports transactional execution of computation tasks
to speculatively harness amorphous parallelism in graph prob-
lems using the optimistic concurrency control techniques.
The motivations for adopting this approach is to provide a
simple model for programming graph processing algorithms
as compared to the message-passing model.

The next section presents a discussion of the related work
on parallel programming frameworks for graph problems.
Section III presents an overview of the Beehive computation
model. Section IV gives an overview of the architecture of the



Beehive framework. In Section V we describe our experience
in designing the Beehive framework and programming several
graph applications with it. The last section presents our
conclusions and future directions of this project.

II. RELATED WORK

The Beehive programming model is based on optimistic
execution of concurrent tasks. The speculative execution tech-
niques for extracting parallelism in an application have been
widely investigated in the context of multi-core and multi-
threaded architectures [4], [1], [27], [23]. Such techniques
have utilized the notion ofsoftware transactional memory[14],
[18], [28] to guarantee the atomicity and isolation properties
of concurrently executed threads to ensure that the result of the
speculatively executed parallel computations is equivalent to
a serial execution of the threads. In contrast, our work on the
Beehive framework investigates transaction-based speculative
models of parallel computing in cluster-based computing envi-
ronments. Distributed GraphLab [20] is another recent system
which is specifically aimed at supporting parallel computing of
graph problems, utilizing the notion of transaction-basedtask
execution. The approach underlying the Beehive framework
differs from that in Distributed GraphLab in several distinct
ways. It is based on optimistic concurrency control model [17]
for task execution as opposed to the locking based approach.
Moreover, Distributed GraphLab does not support dynamic
graph structures.

In developing the transaction management model for spec-
ulative execution in Beehive, we utilized the transaction man-
agement techniques we developed for key-value stores [25].
Alternatively, instead of using the speculative task execu-
tion model, one may perform conflict-free task scheduling.
For example, one may avoid scheduling two or more tasks
which are likely to modify common data. This scheduling
scheme eliminates the need of conflict-checking, however,
this approach can potentially limit parallelism because itis
conservative and requires considering all potential conflicts.
Furthermore, this approach requires having prior knowledge
of the data items that would be accessed by a task, which
may not be possible in some graph problems.

The Beehive model of parallel programming is based on
a key-value based global data store and transaction-based
task execution. The storage system model provides higher
level of abstractions than a distributed shared memory (DSM)
systems [19] and tuple-spaces[7]. A parallel program using
a distributed shared memory system needs to incorporate
suitable higher level synchronization mechanisms beyond the
page-level memory coherency provided by such systems.
Moreover, with DSM it is difficult to optimize for performance
because of issues related to false-sharing and data locality. The
Piccolo [26] system has provided a programming model based
on the abstraction of a shared data store. However, it does not
provide transactional task execution model, limiting the atomic
operations and concurrent combining operations to a single
key-based data item in the storage. This system is also based
on the BSP model [30], requiring the parallel computations

to be structured in phases and synchronizing them using the
barrier primitive. This disallows purely asynchronous task
execution models of parallel computing.

Parallel BGL [13] is a C++ library for parallel programming
of graph algorithms on distributed memory multiprocessor
systems. The steps involved in parallelizing a sequential
graph algorithm for distributed memory systems are described
in [13]. This library provides primitives for accessing andup-
dating remote data, and provides synchronization mechanisms
for distributed processes to execute in BSP-like phases. A
parallel programming model for graph problems based on the
notion of active messagesis presented in [10]. The delivery
of an active message at its destination results in execution
of a designated message handler. This facilitates parallel
programs with asynchronous message passing. In contrast to
these approaches, the Beehive model is based on providing a
distributed global storage for graph data, which is accessed
using the Java RMI mechanism.

In our initial work on Beehive we investigated use of the
Hadoop/HBase [2] system for key-value based global storage
system. We found the HBase system unsuitable for use in
the Beehive framework. First, the HBase system was found
to be quite slow to provide any acceptable performance.
Second, the HBase system does not provide easy control
over dynamic placement of data items on HBase Region-
Servers [2], [12]. Such control over data locality is desired
from performance considerations in many graph algorithms.
This lack of control in HBase becomes another major obstacle
to achieve any acceptable performance. We also considered
using the Memcached system [24], but it does not provide
support for transactions, data persistence and recovery, data
locality management, and multi-version data management.
This motivated us to custom design and build a distributed in-
memory key-value storage service in the Beehive framework.

III. C OMPUTATION MODEL OF BEEHIVE

The computation model of Beehive is based on three core
abstractions: First, it provides a distributed global object
storage system maintained in memory of the nodes of the
computing cluster. The graph data structures required for
computation are stored in this global storage system and
are managed using a key-value based access model. Second,
it uses the task-pool paradigm [6]. A distributed pool of
tasks is maintained in the system. Each task represents some
computation to be performed on the data in the shared object
storage system. Third, it provides a pool of worker threads.
These threads execute tasks in parallel on different nodes in the
cluster computing environment. A worker thread picks a task
from the task-pool and executes it as an atomic transaction,in
isolation with other concurrently executed tasks, Any worker
thread can pick and execute any task from the pool. The
execution and commitment of a task as a transaction may result
in modifying some data in the global storage and creation
of new tasks, which are then added to the task-pool. The
task specification includes the necessary information for task
execution, such as the computation to be performed and the



parameters for the computation. A parallel program for an
application can define concurrent tasks performing different
kinds of computations. In this sense, the Beehive model is
more general than the existing programming models [20], [22],
[26], where a single kernel function is executed on all vertices.

To harness irregular parallelism, the Beehive computation
model is based on the approach of speculative parallel exe-
cution of tasks. The parallel execution of tasks is performed
by the worker threads. Each task is executed as a transaction,
and the transaction model is based on optimistic concurrency
control [17]. However, in the speculative execution approach
it is possible that two or more tasks running concurrently
may access or modify some common data items. This requires
concurrent tasks to be executed as transactions satisfyingthe
properties ofatomicity and isolation to ensure that the final
state of the computation is equivalent to the one produced
by some sequential execution of the tasks. Therefore, a
transactional task is committed only if it does not conflict
with any of the concurrently committed transactions. The
conflicts are defined based on the notion of read-write or
write-write conflicts, as in traditional database systems [3].
The rationale in adopting the optimistic execution approach is
to exploit latent parallelism present in many graph problems
by performing parallel execution of tasks on different parts of
the input data assuming that the probability of conflicts among
concurrently executed tasks would be low.

Following the optimistic execution model [17], the transac-
tional task execution by a worker thread involves the follow-
ing four phases: read phase, compute phase, validation, and
writing to the global storage on transaction commitment. The
task execution begins by first obtaining a timestamp for the
transaction. This reflects the timestamp of the latest committed
transaction such that the updates of all committed transactions
with timestamps up to this value have been written to the
global storage. The worker thread then reads the required data
items from the global storage in its local memory buffers. In
the compute phase, all updates are written to the buffered data.
After the compute phase, the transaction is assigned a commit
timestamp and a validation is performed to ensure that none of
the items in its read-set or write-set have been modified by any
concurrently committed transaction. On successful validation,
the buffered updates are written to the global storage and any
new task created by the computation are added to the task-
pool.

In the Beehive programming model, a parallel program for
a graph problem is composed of a set of functions that can
be executed in parallel on different parts of the input graph
data. We illustrate this parallel programming model using
the preflow-pushalgorithm for the max-flow problem [8]. In
this problem, a parallel program involves execution of two
functions,push, andlift , on a vertex. When a vertex has some
excessflow, i.e. its in-flow exceeds out-flow, thepushoperation
is executed on that vertex to push the excess flow on out-going
edges that have available capacity and are directed to vertices
at lower levels. This push operation can cause some other
vertices to have excess flow, making them candidates for the

public class Worker extends Thread {
public void run() {
while(true) {
Task task = getTask();
BeginTransaction();

newTaskSet = doTask(task);
reportCompletion(task, newTaskSet);

EndTransaction();
}
}
abstract public TaskSet doTask(Task t) {
// Application defined method

}
}

Base Worker Thread Structure

public class MaxFlow extends Worker {
public TaskSet doTask(Task task) {

TaskSet newTasks = new TaskSet();
vrtxId = task.getVertexId();
Vertex u = storage.getVertex(vrtxId);
while (u.hasExcessFlow()) {

boolean pushed;
pushed = pushFlow(u, newTasks);
if (not pushed)

lift(u);
}
return newTasks;

}
}

Task Definition for the Max-Flow Problem

Fig. 1. An illustration of programming the max-flow problem using Beehive

application of thepushoperation. If thepushoperation cannot
be performed on a vertex because all edges with available
capacity are directed to vertices at the same or higher level,
then thelift operation is performed on that vertex to increase
its level. A task for this problem represents the execution of
these functions on a vertex that has some excess flow. As noted
above, the execution of such a task can result in creation of
some other vertices with excess flow, thus resulting in creation
of new tasks. A task is removed from the task-pool upon its
successful execution by a worker thread, and a task execution
may result in creation of new tasks, which are then added to
the task-pool.

Figure 1 shows the example code for programming this
problem in the Beehive model. The Beehive framework pro-
vides the abstractWorker thread class which fetches a task
from the local task-pool by calling thegetTaskmethod. It
then executes, as a part of a transaction, thedoTaskmethod to
execute that task. After task execution, the worker contacts the
Transaction Validation Service to validate the transaction. On
commitment, the task is removed from the task-pool and any
newly created tasks are distributed among different Beehive
nodes according to the load distribution policies. With the
optimistic execution model for tasks, it is possible for such a
transaction to abort due to conflicts with some other concurrent
tasks. In such a case, the worker thread re-executes the task
as a new transaction.

The Beehive model does not enforce the use of the trans-
action semantics for task execution. In a parallel program,if



Task Pool

Worker Pool
Threads

Storage Server

Beehive Node 1 Beehive Node N

Local

Transaction Validation Service

Transaction  Management  Facility

Beehive Process

Local
Task Pool

Worker Pool
Threads

Storage Server

Beehive Process

Distributed Global  Key−Value Store

Fig. 2. Beehive Architecture

concurrently executed tasks are known to be non-conflicting,
then such tasks can be programmed to be executed without
using the transaction semantics. Furthermore, Beehive also
provides higher level synchronization mechanisms for barrier-
based phase execution model. For example, problems such as
PageRank can be implemented using barrier-based model to
execute tasks which do not use transactional semantics. We
illustrate this model in Section V. It also does not enforce
that the entire computation of a task to be performed as one
single transaction. A task may be executed as a sequence of
multiple transactions.

IV. B EEHIVE ARCHITECTURE

We describe here the various components and mechanisms
of the Beehive architecture. Figure 2 shows the architecture of
the Beehive framework. The basic building-block for parallel
computing in this framework is the Beehive process. This pro-
cess implements all the three abstractions noted above. A col-
lection of Beehive processes form the execution environment
for parallel execution of a graph data analytics application. We
refer to such processes as the Beehive nodes of the application
execution environment. A Beehive node represents a logical
entity. A global transaction validation service is used to check
for update conflicts among concurrent transactions, following
the optimistic concurrency control approach.

A Beehive process implements a storage server, which
contains the data items for a subset of the keys in the global
key-space. A Beehive process also contains a local pool of
pending tasks, and a pool of worker threads. A task is placed
in the local task pool of a Beehive process based on the
locality considerations. A task defines certain computations
to be performed on a set of vertices in the graph. In many
graph problems, typically a task performs computations on a
given vertex and possibly on its neighbor vertices.

The Beehive storage system abstraction provides a simple
model for managing graph data. The data related to a vertex

and its edges to other vertices are stored as a single storage-
level item accessed by the vertex id as the access key. The
framework supports graph analytics problems where the graph
structure may be modified dynamically by the computation.
For this purpose, the storage model supports dynamic addition
and deletion of vertices and edges in the graph structure. The
storage model provides location-transparent data access to the
parallel programs. However, a process may notice difference
in latency while accessing a remote data item. In this regard,
the architectural design of the Beehive node is driven by data
locality considerations. The local storage server component
along with Worker threads is embedded within the Beehive
process implementing a Beehive node. The Beehive storage
system supports mechanisms for dynamic relocation of data
items, which can be utilized to improve data locality for tasks.
The unit of data relocation is all the data related to a vertex.

A. Distributed Data Store

Beehive framework provides the abstraction of a shared
storage implemented as a distributed key-value based object
store. The storage system interface is extensible which goes
beyond simple put/get interface and provides interfaces for
executing methods on remote objects. The distributed store
is implemented by the set of storage servers embedded in
the Beehive nodes. The data items are distributed across the
storage servers. The location of a data item is determined using
a hash-based scheme, which identifies the default location for
an item, referred to as thehome siteof the item. The data
items can be relocated at runtime from their default location
to any other node. Dynamic relocation raises the issue of
finding the current location of a data item when a worker
thread wants to access the item. For this purpose, we use a
simple forwarding scheme as described below. When accessing
an item, a Beehive process first contacts the current known
storage server responsible for that item. If that server no longer
holds the item, it responds with the address of the new location
for the item. If the new location is not known, the home site
is contacted, which always records the current location of the
item. The Beehive process caches the location information
for future references. This mechanism can be used by an
application for clustering of graph data.

B. Transaction Model

We use timestamp-based optimistic concurrency con-
trol [17] approach. In this approach, a transaction optimisti-
cally performs its read/write operations without acquiring
locks, and the writes are buffered in the local memory of
the transaction until the commit point. At the commit point,a
validation is performed to determine if the transaction conflicts
with any concurrently committed transaction. A transaction is
allowed to commit only if it does not conflict with any other
committed concurrent transaction. This validation is performed
by the Transaction Validation Service shown in Figure 2. The
validation service can be scaled using appropriate replication
schemes, as we have shown in [25]. We have been able to



achieve validation throughput of close to 24000 requests per
second with 8 service replicas.

When a transaction starts, it obtains astart timestampfrom
Transaction Validation Service which indicates the commit
timestamp value such that the updates of all transactions
with commit timestamp up to this value are present in the
shared storage. At the time of validation the Transaction
Validation Service checks for read-write conflicts with any
of the concurrently committed transactions. If no conflictsare
found, the transaction is assigned a commit timestamp usinga
monotonically increasing counter and commit response is sent
to the task. The task then writes the modified data to the shared
storage and reports itscompletionto the validation service. The
validation service keeps track of the completed transactions
and maintains a counter called STS (stable timestamp) which
reflects the largest commit timestamp value up to which all
committed transactions have completed. The STS value is used
for assigning the start timestamp for new transactions. For
efficient validation we use a hierarchical scheme in which a
task is first validated by a local validator at a node to check
for conflicts with any local tasks, and a validation request is
sent to the global validator only if no local conflicts are found.
In our experiments using the max-flow problem we found that
this scheme reduced the load on the global validator by more
than 60%.

C. Task Distribution and Placement

The execution of a task may result in creation of new
tasks, and such tasks are added to the task-pool when the
task is completed. We describe below the task distribution
and placement schemes supported in the Beehive framework.
The first aspect is the distribution of tasks among Beehive
nodes for proper balancing of load and the second aspect is
the placement of tasks on a node on the basis of the locality of
data. For load distribution we implemented different policies
based onsender-initiatedandreceiver-initiatedload balancing
approaches [29]. In Beehive, with the sender-initiated load
balancing scheme, newly created tasks are distributed tok

nodes selected using the following policies: random selection,
k least loaded nodes, and round robin selection. In our
experiments, we observed that the random selection and load-
aware selection policies perform equally well.

Another important aspect is the placement of a task on a
node based on its affinity. The affinity is determined typically
based on the data locality considerations. It is desirable to
schedule a task on a node which stores the data required for
task computation. We define three task affinity levels based on
data locality considerations: (1)strong affinity, which indicates
that the task must always be executed at its desired node, (2)
weak affinity, which indicates that it is preferred to execute
the task on its desired node, however it can be executed
at any other nodes, (3)no affinity, which indicates that the
task can be executed at any node. Apart from data locality
considerations, the affinity can also be specified if certain
special tasks are required to be executed on specific nodes,
for example certain initialization tasks to be executed at a

node. Moreover, different tasks may have different affinity
levels. The affinity levels are considered together with theload
distribution policies discussed above while distributingtasks
among Beehive nodes. The affinity level of a task takes priority
while distributing that task to a node. Thus, if a task has strong
affinity level, it is executed on its desired node irrespective of
load balancing considerations. In our experiments using the
max-flow problem we found that setting the strong affinity
level for all tasks does not perform well, and therefore setting
weak affinity or no affinity is desirable. Another option is to
set strong affinity level only for the tasks that have all or most
of their data located at a single node.

V. PROGRAMMING WITH BEEHIVE

In this section we describe our initial experience in pro-
gramming with the Beehive framework and the insights that
we gained through these experiments. During the course of
the framework development, we experimented with several
graph problems. The insights gained through this helped us
in understanding and improving the performance of different
components of the framework. This initial experience also
helped us in understanding how to write parallel programs
efficiently using this framework. We describe here the results
of our experiments in programming the following four graph
problems.

We programmed maximum-flow analysis problem using
preflow-pushalgorithm using the programming model de-
scribed above. We also developed parallel programs formin-
imum spanning treeand the graph coloring problem. For
the spanning tree problem, we use the method described
in [11]. We implemented the PageRank algorithm to experi-
ment with the barrier-based synchronization model of Beehive.
Our program for PageRank utilizes the non-transactional task
execution mode.

We conducted experiments using the cluster provided by
the Minnesota Supercomputing Institute (MSI). Each cluster
node has 8 CPU cores with 2.8 GHz capacity and 22 GB main
memory, connected with 40-gigabit network.

A. Maximum Flow

The maximum-flow problem is a classical example of
problems in which parallelism tends to be amorphous, making
it difficult to explicitly parallelize the computation. Moreover,
in this problem the degree of parallelism can vary quite sig-
nificantly across different graphs depending on their structure
and link capacities. It is also difficult to assess the degreeof
parallelism through static analysis of the graph. We used this
problem as a case study during the initial phase of the design
and development of the Beehive framework. Programming of
this problem demonstrated how Beehive model simplifies the
task of writing a parallel program. In case of the max-flow
problem, we transcribed the push-lift operations of the sequen-
tial preflow-push program as transactional tasks in the Beehive
model. Programming this problem also gave us useful insights
such as the impact of the task granularity on performance. The
task granularity is the amount of computation performed by



Vertices Edges Beehive Nodes Time (secs)
1600 4760 10 336
2500 7450 10 622
5000 14900 10 2254
10000 29800 20 5878

TABLE I
EXECUTION TIMES FORMAX -FLOW

a task. We also used this problem to evaluate the benefit of
hierarchical validation scheme.

We generated the test graphs using Washington-Graph-
Generator1. We generatedrandom level graphsof different
sizes and capacities for our experiments. For these graphs,we
performed clustering of vertices using the object relocation
mechanisms of Beehive, prior to executing the max-flow
computation. In our initial implementation of the preflow al-
gorithm, the task involved performing push and lift operations
on a single vertex. We then experimented with increasing the
granularity of a task to perform push/lift operations on a vertex
as well as on all of its neighbors with excess flow. We found
that increasing the granularity provides better performance.
For example, for a 1600-vertices graph, the computation time
reduced from 471 secs to 379 secs with increase in granularity.
We also investigated the impact of setting different affinity lev-
els for task placement. We found that the use of weak affinity
performed better than strong affinity. For the 1600-vertices
graph, setting strong affinity level led to execution time of
964 seconds whereas with weak or no affinity it reduced to
471 seconds on our research lab cluster. In Table I, we show
the execution times for the max-flow problem for graphs of
various sizes, using the MSI cluster. In these experiments,
we used weak affinity level and higher task granularity as
described above.

B. Minimum Spanning Tree

We implemented the minimum spanning tree (MST) algo-
rithm [11] in Beehive. In our implementation of the MST
algorithm initially a task is created for each vertex. The task
computation involves finding the nearest neighbor of the task’s
vertex and merging them to form a cluster. The task vertex
that forms the cluster becomes thecluster head. Each cluster
formation operation is executed as a transaction. When two
clusters are merged the information for the two cluster head
vertices is modified. The transaction semantics ensure thatin
case of concurrent merge operations on a cluster, only one
would succeed. The task then iteratively performs merging
operations to form a larger cluster until it does not have any
neighbors or the task vertex is no longer a cluster head because
it has been merged into another cluster. This algorithm also
detects connected component in the graph, finding spanning
tree for each connected component. The computation time for
randomly generated graphs of different sizes are presentedin

1http://www.informatik.uni-trier.de/ñaeher/Professur/research
/generators/maxflow/wash/

Vertices Edges Beehive nodes Time(in secs)
1000 16827 10 16
2000 65971 10 24
5000 84679 10 32
10000 337,482 10 96
20000 672,725 10 728
50000 1,682,659 10 7138

TABLE II
EXECUTION TIMES FORMST

Vertices Edges Beehive nodes Time(in secs)
100,000 3,373,321 10 110
200,000 6,724,266 10 208
300,000 10,089,422 10 308
400,000 13,459,419 10 425
500,000 16,818,073 10 541

1,000,000 33,642,660 10 1253
2,000,000 67,265,322 10 4304
2,000,000 67,265,322 20 1462
2,000,000 67,265,322 30 1406

TABLE III
EXECUTION TIMES FORGRAPH COLORING

Table II. For graphs with 1000 and 5000 vertices, the number
of neighbors for a vertex was randomly selected between 1 to
50. For all other graphs the number of neighbors was randomly
selected between 1 to 100. The program was run with 10
Beehive processes located at different computing nodes of the
cluster. Each Beehive process had 10 worker threads.

C. Graph Coloring

In this problem, we create coloring tasks for each vertex.
Initially all the vertices are uncolored. A coloring task for a
vertex involves selecting the smallest unused color among its
colored neighbors and assigning that color to the vertex. A
coloring task for a vertex is executed as a transaction. The
neighbors of the vertex form the read-set and the task vertex
forms the write-set of the transaction. A task is aborted in case
of any read-write conflict with any concurrent tasks and the
coloring operation is re-executed.

We generated random graphs of different sizes and mea-
sured the computation time for executing the coloring algo-
rithm. The number of neighbors for a vertex was uniformly
distributed between 1 to 100. We also measured the speedup
achieved by increasing the number of Beehive nodes. We
observe that for 2 million vertices graph increasing the cluster
size from 10 nodes to 20, resulted in performance improve-
ment by a factor of more than 2. However, increasing it further
to 30 nodes provided marginal improvement.

D. PageRank

We implemented PageRank [5] algorithm to experiment
with barrier-synchronization based phased execution model.
In this problem, transaction semantics in task execution is
not required. PageRank algorithm involves multiple iterations



Vertices Edges Beehive Nodes Time(in secs)
100,000 3,373,321 10 93
200,000 6,724,266 10 181

1,000,000 33,642,660 10 1746
1,000,000 33,642,660 20 721
1,000,000 33,642,660 30 635
2,000,000 67,265,322 20 2072

TABLE IV
EXECUTION TIMES FORPAGERANK

of page-rank computation and, in each iteration, page rank
of a web-page (vertex) is calculated based on the previous
ranks of the web pages that have links to this page. In our
implementation, each barrier phase corresponds to a single
iteration of the page-rank algorithm. For each vertex/web-page
we maintained two rank values corresponding to the current
and previous iteration. Each iteration involved creating tasks
for each vertex to calculate page-rank for that web-page forthe
given iteration. A task for a vertex requires reading ranks of
all the vertices that have links pointing to it, and updatingthe
rank value for the vertex in the global storage. To synchronize
phases we designated one of the processes ascoordinator
which was responsible for initiating tasks for a phase and
detecting termination of a phase across all Beehive nodes.
We evaluated PageRank algorithm in Beehive using random
graphs of various sizes. Table IV shows the execution times
for PageRank on various graphs for performing 50 iterations
of the algorithm.

VI. D ISCUSSION ANDFUTURE WORK

Our experience in parallel programming with the Beehive
framework validates the simplicity of its programming model.
For example, in case of the max-flow and the graph coloring
problem, we essentially transcribed the computation performed
in the sequential algorithms for these two problems into trans-
action tasks. Thus, in contrast to the message-passing model,
the Beehive model does not require significant conceptual
redesign of the algorithm. However, the implementation of
the algorithm needs be driven towards amortizing or reducing
remote data access cost. For example, in case of the max-flow
problem, we observed that increasing the task granularity pro-
vides significant performance improvements. In this problem,
larger granularity meant performing flow balancing for more
than one vertex in a transactional task. Similarly, in case of the
MST problem, we had to focus on reducing the data access
cost in identifying cluster-head nodes.

Based on the results of our experiments described above
we make the following observations. The parallelism in a
graph problem can vary significantly based on the nature of
the problem and the structure of the graph. The number of
aborts of speculatively executed tasks is one indicator of the
amount of parallelism in the given problem. A high abort rate
for tasks indicates low degree of parallelism. We illustrate this
by observing the number of aborts for the max-flow and graph
coloring problems for a graph of 10000 vertices. This data is

Problem Completed Aborts Time
Tasks (secs)

Max-Flow 9716609 71685675 5878
Graph Coloring 10003 299 19.6

TABLE V
ABORT STATISTICS

shown in Table V. The ratio of abort to commit for the max-
flow problem is significantly higher (close to 7.3) than that
for the graph coloring problem (close to 0.03). The high abort
rate in the max-flow problem for this graph is indicative of
low amount of parallelism.

Our experiments also indicate that for a given problem,
scaling-out beyond certain cluster size has marginal perfor-
mance benefits. Typically, this occurs because the remote
data access latencies start dominating the execution times.
This indicates that for a given problem there is typically an
optimal cluster size for the best performance. Another critical
aspect is the time required for initial loading of data. For
large problems, we had to devise efficient methods for parallel
loading of data.

There are several aspects that need further investigation.
One area that needs further investigation is data clustering
for improving data locality. Another important area for future
work is the investigation of fault tolerance and recovery
mechanisms. Currently all data is maintained in the memory
of the cluster nodes. Appropriate checkpointing and recovery
mechanisms need to be developed in the Beehive framework
to deal with node crashes. Unlike MapReduce applications, re-
covery mechanisms in graph problems are even more complex
as it is not simple data partition but a state of graph that needs
to be restored to avoid a complete rerun of the algorithm. That
too in a optimistic-task execution model, a complete snapshot
of the graph has to be maintained and recovery always involves
additional computation.

Another area of future work is to investigate adaptive
methods for scheduling tasks based on the observed abort
rate. Adaptive methods can be used to control the degree
of optimistic execution, i.e. the number of tasks executed
optimistically in parallel. Another direction to explore is the
use of a hybrid of optimistic and conflict-free scheduling
methods, where the framework would dynamically shift from
optimistic to conflict-free scheduling when the parallelism
drops below a certain threshold. The amount of parallelism
can be measured by the commit rate.

VII. C ONCLUSION

The work presented here describes our initial experience
with the Beehive framework. We have presented here the
optimistic execution model and the system architecture of
the Beehive framework. Our experiments and experience in
programming with the Beehive framework show that the
model of transaction-based optimistic execution of tasks can
be effectively utilized for harnessing amorphous parallelism



in graph problems. This model also provides a conceptually
simple model for the programmers to develop parallel pro-
grams because it relieves the programmer from the burden
of explicit message-passing and synchronization operations.
Our future work will focus on the integration of checkpointing
and recovery mechanisms in this framework to deal with node
crashes. We also plan to further investigate different scheduling
strategies which can adapt the degree of optimistic execution
based on the observed abort rates.
Acknowledgement: This work was carried out in part using
computing resources at the University of Minnesota Super-
computing Institute. This work was partially supported by
NSF Award 1319333. Specifically, the optimistic techniques
for transaction management developed for key-value based
storage system under this award were utilized in the Beehive
framework.

REFERENCES

[1] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,B. Saha,
and T. Shpeisman, “Compiler and runtime support for efficient software
transactional memory,” inProceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’06, 2006, pp. 26–37.

[2] Apache, “Hbase, http://hbase.apache.org/.” [Online]. Available: http:
//hbase.apache.org/

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman,Concurrency control
and recovery in database systems. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1987.

[4] A. Bhowmik and M. Franklin, “A general compiler framework for
speculative multithreading,” inProceedings of the Fourteenth Annual
ACM Symposium on Parallel Algorithms and Architectures, ser. SPAA
’02, 2002, pp. 99–108.

[5] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” inProc. of WWW’98, 1998.

[6] N. Carriero and D. Gelernter, “How to write parallel programs: a guide
to the perplexed,”ACM Comput. Surv., vol. 21, pp. 323–357, September
1989.

[7] ——, “Linda in context,” Communcations of the ACM, vol. 32, no. 4,
pp. 444–458, Apr. 1989.

[8] T. Cormen, C. Leiserson, and R. Rivest,Introduction to Algorithms.
The MIT Press, 1999.

[9] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” inProc. of OSDI’04. Berkeley, CA, USA: USENIX
Association, 2004, pp. 137–150.

[10] N. Edmonds, J. Willcock, and A. Lumsdaine, “Expressinggraph al-
gorithms using generalized active messages,” inProceedings of the
27th International ACM Conference on International Conference on
Supercomputing, ser. ICS ’13, 2013, pp. 283–292.

[11] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A Distributed Algorithm
for Minimum-Weight Spanning Trees,”ACM Trans. Program. Lang.
Syst., vol. 5, pp. 66–77, January 1983.

[12] L. George,HBase - the Definitive Guide. O’Reilly, 2011.
[13] D. Gregor and A. Lumsdaine, “Lifting sequential graph algorithms for

distributed-memory parallel computation,” inProceedings of the 20th
Annual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA ’05, 2005, pp.
423–437.

[14] M. Herlihy and J. E. B. Moss, “Transactional memory: architectural
support for lock-free data structures,” inProceedings of the 20th Annual
International Symposium on Computer Architecture, ser. ISCA ’93.
New York, NY, USA: ACM, 1993, pp. 289–300.

[15] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, ser. EuroSys ’07. ACM, 2007, pp. 59–72.

[16] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C.Casçaval, “How
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