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_ Abstract—Beehive is a parallel programming framework de- based parallel computing. The Pregel [22] framework is §pec
signed for cluster-based computing environments in cloud ata jcally intended for graph data analysis. The computing rhode
centers. It is specifically targeted for graph data analysis of Pregel is based on the message-passing paradigm and

roblems. The Beehive framework provides the abstraction D - -
Eey-value based global object stora%e, which is maintaineih utilizes the Bulk-Synchronous Parallel (BSP) model [30jisT

memory of the cluster nodes. Its computation model is based requires programmers to adapt their algorithms to utiltee t
on optimistic concurrency control in executing concurrenttasks BSP model. Moreover, the BSP model may not be suitable for

as atomic transactions for harnessing amorphous paralledim a|l types of graph processing problems. Utilizing the Prege
in graph analysis problems. We describe here the architecte ,q4e| glso requires suitable partitioning of the graph.slt i

and the programming abstractions provided by this framewoik, . . .
and present the performance of the Beehive framework for noted in [20] that it is difficult in the Pregel model to expses

several graph problems such as maximum flow, minimum weight certain dynamic parallel iterative computations, suchtes t
spanning tree, graph coloring, and the PageRank algorithm. dynamic PageRank computation. Distributed GraphLab [20] i

another recent system which is specifically aimed at supyprt
parallel computing of graph problems, utilizing the notioin
transactional task execution, but it does not support dymam
Recent years have seen emergence of cloud computirgph structures.
platforms which can be used as utility infrastructures for We present here our ongoing work on the design and
performing large-scale data analytics. Many data analytidevelopment of the Beehive system for parallel programming
applications require processing of large-scale graph.daté graph problems on cluster-based computing environments
Analysis of such large-scale data requires parallel psiegs The design of the Beehive framework is based on speculative
utilizing a large number of computing resources. This reggli computing approach, using optimistic concurrency control
suitable parallel programming frameworks that can effityen techniques, for harnessing amorphous parallelism in graph
utilize a large pool of computing resources in a reliable argtoblems. The design of this framework is being driven by the
scalable manner. Parallel processing of graph computatiatiowing goals: (1) a programming model which simplifies
raises several issues due to the unique nature of graph prplmgramming of graph algorithms; (2) a computation model
lems. In many graph problems, parallelism generally tendswhich can efficiently harness amorphous parallelism in lgrap
have irregular structure [16], and such problems do notlehiproblems; (3) efficient models and mechanisms for fault-
coarse-grain parallelism. In such graph problems it isaliffi tolerance and recovery. The computation model of Beehive is
to extract parallelism through data partitioning. Suchuéss based on two central elements. The first provides a disttbut
and challenges in parallel processing of graph problems aflebally shared object storage system for maintaining data
discussed in [21]. To harness the irregular parallelisnetieht = structures in the memory of the cluster nodes. This global
in such problems, also calledmorphous parallelisfi6], storage provides key-value based primitives for data gra
techniques based on optimistic parallel execution of coecti  and access of information based on vertices and edges in
tasks have been considered more attractive [16], [27]. graph structures. This relieves the programmer from thddour
For parallel processing of large data sets on cluster-bas#dexplicitly using message-passing primitives. The secon
computing environments, the MapReduce [9] programmirgdement supports transactional execution of computagiskst
model is widely used in many applications. However, thi® speculatively harness amorphous parallelism in graph-pr
model cannot be easily utilized in graph data analytics prolems using the optimistic concurrency control techniques.
lems where it is difficult to partition the data for parallelThe motivations for adopting this approach is to provide a
processing. Moreover, this model does not expose inteatedisimple model for programming graph processing algorithms
data of computations which is often needed in many grapls compared to the message-passing model.
algorithms [26]. In recent years, several other framew{2R§ The next section presents a discussion of the related work
[26], [20] have been developed specifically for performingn parallel programming frameworks for graph problems.
large-scale graph data analytics using a cluster of digib Section Il presents an overview of the Beehive computation
computing resources. Dryad [15] is targeted for data-flomodel. Section IV gives an overview of the architecture ef th
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Beehive framework. In Section V we describe our experient@ be structured in phases and synchronizing them using the
in designing the Beehive framework and programming sevetarrier primitive. This disallows purely asynchronousktas
graph applications with it. The last section presents oexecution models of parallel computing.
conclusions and future directions of this project. Parallel BGL [13] is a C++ library for parallel programming
of graph algorithms on distributed memory multiprocessor
systems. The steps involved in parallelizing a sequential
The Beehive programming model is based on optimistgraph algorithm for distributed memory systems are desdrib
execution of concurrent tasks. The speculative execudion-t in [13]. This library provides primitives for accessing ampt
niques for extracting parallelism in an application haverbe dating remote data, and provides synchronization mecimanis
widely investigated in the context of multi-core and multifor distributed processes to execute in BSP-like phases. A
threaded architectures [4], [1], [27], [23]. Such techmigu parallel programming model for graph problems based on the
have utilized the notion coftware transactional memof$4], notion of active messageis presented in [10]. The delivery
[18], [28] to guarantee the atomicity and isolation projart of an active message at its destination results in execution
of concurrently executed threads to ensure that the rektileo of a designated message handler. This facilitates parallel
speculatively executed parallel computations is equitale programs with asynchronous message passing. In contrast to
a serial execution of the threads. In contrast, our work @n tthese approaches, the Beehive model is based on providing a
Beehive framework investigates transaction-based satel distributed global storage for graph data, which is acaksse
models of parallel computing in cluster-based computing-en using the Java RMI mechanism.
ronments. Distributed GraphLab [20] is another recentesyst  In our initial work on Beehive we investigated use of the
which is specifically aimed at supporting parallel compgitii Hadoop/HBase [2] system for key-value based global storage
graph problems, utilizing the notion of transaction-batsesk system. We found the HBase system unsuitable for use in
execution. The approach underlying the Beehive framewattke Beehive framework. First, the HBase system was found
differs from that in Distributed GraphLab in several distin to be quite slow to provide any acceptable performance.
ways. It is based on optimistic concurrency control mod@] [1 Second, the HBase system does not provide easy control
for task execution as opposed to the locking based approaster dynamic placement of data items on HBase Region-
Moreover, Distributed GraphLab does not support dynam&ervers [2], [12]. Such control over data locality is dedire
graph structures. from performance considerations in many graph algorithms.
In developing the transaction management model for spélthis lack of control in HBase becomes another major obstacle
ulative execution in Beehive, we utilized the transacticanm to achieve any acceptable performance. We also considered
agement techniques we developed for key-value stores [28$ing the Memcached system [24], but it does not provide
Alternatively, instead of using the speculative task execsupport for transactions, data persistence and recovatg, d
tion model, one may perform conflict-free task schedulingpcality management, and multi-version data management.
For example, one may avoid scheduling two or more task&is motivated us to custom design and build a distributed in
which are likely to modify common data. This schedulingnemory key-value storage service in the Beehive framework.
scheme eliminates the need of conflict-checking, however,
this approach can potentially limit parallelism becausés it
conservative and requires considering all potential casfli  The computation model of Beehive is based on three core
Furthermore, this approach requires having prior knowdedgbstractions: First, it provides a distributed global abje
of the data items that would be accessed by a task, whistorage system maintained in memory of the nodes of the
may not be possible in some graph problems. computing cluster. The graph data structures required for
The Beehive model of parallel programming is based a@omputation are stored in this global storage system and
a key-value based global data store and transaction-baaeel managed using a key-value based access model. Second,
task execution. The storage system model provides highitemuses the task-pool paradigm [6]. A distributed pool of
level of abstractions than a distributed shared memory (DSkasks is maintained in the system. Each task represents some
systems [19] and tuple-spaces[7]. A parallel program usitgmputation to be performed on the data in the shared object
a distributed shared memory system needs to incorporaterage system. Third, it provides a pool of worker threads.
suitable higher level synchronization mechanisms beybed t{These threads execute tasks in parallel on different nodégi
page-level memory coherency provided by such systencduster computing environment. A worker thread picks a task
Moreover, with DSM it is difficult to optimize for performarc from the task-pool and executes it as an atomic transadtion,
because of issues related to false-sharing and data joddlié isolation with other concurrently executed tasks, Any veork
Piccolo [26] system has provided a programming model basttslead can pick and execute any task from the pool. The
on the abstraction of a shared data store. However, it daes execution and commitment of a task as a transaction maytresul
provide transactional task execution model, limiting ttengic  in modifying some data in the global storage and creation
operations and concurrent combining operations to a sin@ge new tasks, which are then added to the task-pool. The
key-based data item in the storage. This system is also batask specification includes the necessary informationdek t
on the BSP model [30], requiring the parallel computatiorexecution, such as the computation to be performed and the
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. 6{)ubl ic class Wrrker extends Thread {
parameters for the computation. A parallel program for amhypiic void run() {

application can define concurrent tasks performing differe  while(true) {

kinds of computations. In this sense, the Beehive model is ggs:‘ntT?Zﬁsaz“gf);(T??k()?

more general than the existing programming models [20], [22 gnewTaskSet = doTask(task):

[26], where a single kernel function is executed on all vei report Conpl eti on(task, newTaskSet);
To harness irregular parallelism, the Beehive computation, EndTransaction();

model is based on the approach of speculative parallel exg-

cution of tasks. The parallel execution of tasks is perfameabstract public TaskSet doTask(Task t) {

by the worker threads. Each task is executed as a transactign// Application defined method

and the transaction model is based on optimistic concwrer}g

control [17]. However, in the speculative execution apploa

it is possible that two or more tasks running concurrent

may access or modify some common data items. This requiP¥§! i ¢ class MaxFl ow extends Verker {

. s public TaskSet doTask(Task task) {
concurrent tasks to be executed as transactions satisttying TaskSet newTasks = new TaskSet ()

properties ofatomicity and isolation to ensure that the final vrtxld = task.getVertexld();

; ; ; Vertex u = storage. getVertex(vrtxld);
state of the computation is equivalent to the one produced while (u.hasExcessFiow()) {

Base Worker Thread Structure

by some sequential execution of the tasks. Therefore, a bool ean pushed:
transactional task is committed only if it does not conflict pushed = pushFl ow(u, newTasks);
with any of the concurrently committed transactions. The it (not pushed)
. ' . : lift(u);
conflicts are defined based on the notion of read-write or
write-write conflicts, as in traditional database syster8k [ return newTasks;

The rationale in adopting the optimistic execution apphoiac }
to exploit latent parallelism present in many graph prokﬂenﬁ
by performing parallel execution of tasks on different part Task Definition for the Max-Flow Problem
the input data assuming that the probability of conflicts agno
concurrently executed tasks would be low.

Following the optimistic execution model [17], the transac

tional task execution by a worker thread involves the folow = ] ]
ing four phases: read phase, compute phase, validation, ZRRlication of thepushoperation. If thepushoperation cannot

writing to the global storage on transaction commitmene TH€ Performed on a vertex because all edges with available
task execution begins by first obtaining a timestamp for tis@pacity are dlrec_ted _to vertices at the same or h|g_her,level
transaction. This reflects the timestamp of the latest catachi then thelift operation is performed on that vertex to increase
transaction such that the updates of all committed trauset its level. A_task for this problem represents the executibn o
with timestamps up to this value have been written to tf@ese functions ona vertex that has some excess_flow. As_ noted
global storage. The worker thread then reads the requiried dabove, the exe(_:utlon _of such a task can result_m (_:re_atlon of
items from the global storage in its local memory buffers. IROMe other vertices W_lth excess flow, thus resulting in uJBat_
the compute phase, all updates are written to the buffered d@f New tasks. A task is removed from the task-pool upon its
After the compute phase, the transaction is assigned a domfhiccessful execution by a worker thread, and a task executio
timestamp and a validation is performed to ensure that nbne Y result in creation of new tasks, which are then added to
the items in its read-set or write-set have been modified fyy aifi€ task-pool.
concurrently committed transaction. On successful véiida  Figure 1 shows the example code for programming this
the buffered updates are written to the global storage apd dioblem in the Beehive model. The Beehive framework pro-
new task created by the computation are added to the taviges the abstractVorker thread class which fetches a task
pool. from the local task-pool by calling thgetTaskmethod. It

In the Beehive programming model, a parallel program fdRen executes, as a part of a transactiondiitaskmethod to
a graph problem is composed of a set of functions that c&xecute that task. After task execution, the worker coatiet
be executed in parallel on different parts of the input grapiansaction Validation Service to validate the transaction
data. We illustrate this parallel programming model usingommitment, the task is removed from the task-pool and any
the preflow-pushalgorithm for the max-flow problem [8]. In newly created tasks are distributed among different Beehiv
this problem, a parallel program involves execution of twpodes according to the load distribution policies. With the
functions,push andlift, on a vertex. When a vertex has somé@ptimistic execution model for tasks, it is possible for swc
excesdlow, i.e. its in-flow exceeds out-flow, thishoperation transaction to abort due to conflicts with some other coreurr
is executed on that vertex to push the excess flow on Out-gotﬁgks. In such a case, the worker thread re-executes the task
edges that have available capacity and are directed tagsrtias & new transaction.
at lower levels This push operation can cause some other The Beehive model does not enforce the use of the trans-
vertices to have excess flow, making them candidates for thetion semantics for task execution. In a parallel progriam,

Fig. 1. Anillustration of programming the max-flow problersing Beehive



Transaction Validation Service and its edges to other vertices are stored as a single storage
level item accessed by the vertex id as the access key. The

e A framework supports graph analytics problems where thehgrap
structure may be modified dynamically by the computation.
Local > Local For this purpose, the storage model supports dynamic additi
Task Pool Task Pool and deletion of vertices and edges in the graph structure. Th
Worker Pool oo Worker Pool storage model provides location-transparent data acodbe t
Threads Threads parallel programs. However, a process may notice diffexenc
in latency while accessing a remote data item. In this regard
Transaction Management Facility the architectural design of the Beehive node is driven bg dat
! ! locality considerations. The local storage server compbne
Distributed Global Key-Value Store along with Worker threads is embedded within the Beehive
process implementing a Beehive node. The Beehive storage
 [Storage Server Storage Servef . system supports mechanisms for dynamic relocation of data
: _ . items, which can be utilized to improve data locality forkas
Beehive Process Beehive Process The unit of data relocation is all the data related to a vertex
Beehive Node 1 Beehive Node N

Fig. 2. Beehive Architecture A. Distributed Data Store

Beehive framework provides the abstraction of a shared

~storage implemented as a distributed key-value based tobjec
concurrently executed tasks are known to be non-conflictingore, The storage system interface is extensible whicls goe

then such tasks can be programmed to be executed withge{,ond simple put/get interface and provides interfaces fo
using the transaction semantics. Furthermore, Beehiv@ afscecuting methods on remote objects. The distributed store
provides higher level synchronization mechanisms foriearr g implemented by the set of storage servers embedded in
based phase execution model. For example, problems such@SBeehive nodes. The data items are distributed across the
PageRank can be implemented using barrier-based modek{grage servers. The location of a data item is determinied us
execute tasks which do not use transactional semantics. Ygash-based scheme, which identifies the default location f
illustrate this model in Section V. It also does not enforcgy jtem, referred to as theome siteof the item. The data
that the entire computation of a task to be performed as Oféms can be relocated at runtime from their default locatio
single transaction. A task may be executed as a sequencg,Chny other node. Dynamic relocation raises the issue of
multiple transactions. finding the current location of a data item when a worker
IV. BEEHIVE ARCHITECTURE thread wants to access the item. For this purpose, we use a

. : . simple forwarding scheme as described below. When acegssin
We describe here the various components and mechamsms.p 9 &

of the Beehive architecture. Figure 2 shows the architeatfir anitem, a Beehive process first (;ontacts the current known
) . o storage server responsible for that item. If that serveongér
the Beehive framework. The basic building-block for pasiall . . . .
S . . . holds the item, it responds with the address of the new locati
computing in this framework is the Beehive process. This pr

: : for the item. If the new location is not known, the home site
cess implements all the three abstractions noted abovel-A cQ ; )
. iS contacted, which always records the current locatiorhef t

i ) : §&m. The Beehive process caches the location information
for parallel execution of a graph data analytics applicatite ; .
or future references. This mechanism can be used by an

refer to such processes as the Beehive nodes of the arxp]ﬁcaL Co :
execution environment. A Beehive node represents a Iogigﬁphcatlon for clustering of graph data.
entity. A global transaction validation service is used heak
for update conflicts among concurrent transactions, faligw
the optimistic concurrency control approach. We use timestamp-based optimistic concurrency con-
A Beehive process implements a storage server, whitiel [17] approach. In this approach, a transaction optimis
contains the data items for a subset of the keys in the glolsally performs its read/write operations without acqugrin
key-space. A Beehive process also contains a local poollo€ks, and the writes are buffered in the local memory of
pending tasks, and a pool of worker threads. A task is plactiwe transaction until the commit point. At the commit poat,
in the local task pool of a Beehive process based on thalidation is performed to determine if the transactionfticts
locality considerations. A task defines certain computetiowith any concurrently committed transaction. A transaci®
to be performed on a set of vertices in the graph. In maajlowed to commit only if it does not conflict with any other
graph problems, typically a task performs computations oncammitted concurrent transaction. This validation is perfed
given vertex and possibly on its neighbor vertices. by the Transaction Validation Service shown in Figure 2. The
The Beehive storage system abstraction provides a simp#didation service can be scaled using appropriate rejgita
model for managing graph data. The data related to a versohemes, as we have shown in [25]. We have been able to

B. Transaction Model



achieve validation throughput of close to 24000 requests pewde. Moreover, different tasks may have different affinity
second with 8 service replicas. levels. The affinity levels are considered together withldtae
When a transaction starts, it obtainstart timestamgrom distribution policies discussed above while distributiagks
Transaction Validation Service which indicates the commidmong Beehive nodes. The affinity level of a task takes pyiori
timestamp value such that the updates of all transactionkile distributing that task to a node. Thus, if a task hasrsir
with commit timestamp up to this value are present in thaffinity level, it is executed on its desired node irrespectf
shared storage. At the time of validation the Transactidoad balancing considerations. In our experiments usirg th
Validation Service checks for read-write conflicts with anynax-flow problem we found that setting the strong affinity
of the concurrently committed transactions. If no conflate level for all tasks does not perform well, and thereforeisgtt
found, the transaction is assigned a commit timestamp wsingveak affinity or no affinity is desirable. Another option is to
monotonically increasing counter and commit responseris seet strong affinity level only for the tasks that have all orstno
to the task. The task then writes the modified data to the dhacd their data located at a single node.
storage and reports itbmpletiorto the validation service. The
validation service keeps track of the completed transastio
and maintains a counter called STS (stable timestamp) whicHn this section we describe our initial experience in pro-
reflects the largest commit timestamp value up to which agfamming with the Beehive framework and the insights that
committed transactions have completed. The STS value & use gained through these experiments. During the course of
for assigning the start timestamp for new transactions. Ftre framework development, we experimented with several
efficient validation we use a hierarchical scheme in whichgraph problems. The insights gained through this helped us
task is first validated by a local validator at a node to chedk understanding and improving the performance of differen
for conflicts with any local tasks, and a validation requsst tcomponents of the framework. This initial experience also
sent to the global validator only if no local conflicts arefidu helped us in understanding how to write parallel programs
In our experiments using the max-flow problem we found thafficiently using this framework. We describe here the tssul
this scheme reduced the load on the global validator by mareour experiments in programming the following four graph
than 60%. problems.
We programmed maximum-flow analysis problem using
preflow-pushalgorithm using the programming model de-
The execution of a task may result in creation of newcribed above. We also developed parallel programsnfior
tasks, and such tasks are added to the task-pool when ithem spanning treeand the graph coloring problem. For
task is completed. We describe below the task distributithe spanning tree problem, we use the method described
and placement schemes supported in the Beehive framewdnk[11]. We implemented the PageRank algorithm to experi-
The first aspect is the distribution of tasks among Beehiveent with the barrier-based synchronization model of Bezhi
nodes for proper balancing of load and the second aspecOisr program for PageRank utilizes the non-transactiorsil ta
the placement of tasks on a node on the basis of the localityesfecution mode.
data. For load distribution we implemented different peic ~ We conducted experiments using the cluster provided by
based orsender-initiatecandreceiver-initiatedoad balancing the Minnesota Supercomputing Institute (MSI). Each cluste
approaches [29]. In Beehive, with the sender-initiatedd lomode has 8 CPU cores with 2.8 GHz capacity and 22 GB main
balancing scheme, newly created tasks are distributedl tanemory, connected with 40-gigabit network.
nodes selected using the following policies: random sielect ]
k least loaded nodes, and round robin selection. In ofyy Maximum Flow
experiments, we observed that the random selection and loadThe maximum-flow problem is a classical example of
aware selection policies perform equally well. problems in which parallelism tends to be amorphous, making
Another important aspect is the placement of a task onitadifficult to explicitly parallelize the computation. Meover,
node based on its affinity. The affinity is determined typical in this problem the degree of parallelism can vary quite sig-
based on the data locality considerations. It is desirable nificantly across different graphs depending on their $tmec
schedule a task on a node which stores the data requireddad link capacities. It is also difficult to assess the degfee
task computation. We define three task affinity levels based parallelism through static analysis of the graph. We uséd th
data locality considerations: ($jrong affinity which indicates problem as a case study during the initial phase of the design
that the task must always be executed at its desired node, 48} development of the Beehive framework. Programming of
weak affinity which indicates that it is preferred to execut¢his problem demonstrated how Beehive model simplifies the
the task on its desired node, however it can be executedk of writing a parallel program. In case of the max-flow
at any other nodes, (3)o affinity which indicates that the problem, we transcribed the push-lift operations of thauseg
task can be executed at any node. Apart from data localitgl preflow-push program as transactional tasks in the Beeh
considerations, the affinity can also be specified if certamodel. Programming this problem also gave us useful insight
special tasks are required to be executed on specific nodegh as the impact of the task granularity on performance. Th
for example certain initialization tasks to be executed attask granularity is the amount of computation performed by

V. PROGRAMMING WITH BEEHIVE
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Vertices | Edges || Beehive Nodes|| Time (secs) Vertices Edges Beehive nodes|| Time(in secs)
1600 4760 10 336 1000 16827 10 16
2500 7450 10 622 2000 65971 10 24
5000 14900 10 2254 5000 84679 10 32
10000 | 29800 20 5878 10000 337,482 10 96

20000 672,725 10 728
50000 | 1,682,659 10 7138
TABLE |

EXECUTION TIMES FORMAX-FLOW
TABLE I
EXECUTION TIMES FORMST

a task. We also used this problem to evaluate the benefit of

. . . . Vertices Edges Beehive nodes|| Time(in secs)
hierarchical validation scheme. _ _ 100,000 | 3373321 10 110

We generated the test graphs using Washington-Graph- [ 200,000 | 6,724,266 10 208
Generator. We generatedandom level graphf different 288'888 ig’ﬁgg‘ﬁg 18 igg
sizes and capacm_es for our gxpenmgnts. For these graphg £00.000 | 16.818.073 10 54T
performed clustering of vertices using the object relarati 1,000,000 | 33,642,660 10 1553
mechanisms of Beehive, prior to executing the max-flow 2,000,000| 67,265,322 10 4304
computation. In our initial implementation of the preflow al 2,000,000] 67,265,322 20 1462

) . ) : . 2,000,000 67,265,322 30 1406

gorithm, the task involved performing push and lift opesas
on a single vertex. We then experimented with increasing the TABLE I

granularity of a task to perform push/lift operations on eexe
as well as on all of its neighbors with excess flow. We found
that increasing the granularity provides better perforoean
For example, for a 1600-vertices graph, the computatioe tim
duced f 471 to 379 ith i i larj . .
\r/?/el;;}o ir:\(;(ransti g atgs(ii e(?mpacsteoﬁ‘ss\évtltin éngirf?;ieng%rw a”ltable [I. For graphs with 1000 and 5000 vertices, the number
els for task placement. We found that the use of weak affing}c neighbors for a vertex was randomly ;elected between 1 to
performed better than strong affinity. For the 1600-vestic 2{;&?lb(;tg,veéfgafh;tq%gurgﬁgr 0:onerla?r?1b\?v§swijsnra\l/rv]i(tjr? n;l())/
graph, setting strong affinity level led to execution time Oéeehive orocesses located a;t diﬁergntgcomputing nod ft

964 seconds whereas with weak or no affinity it reduced :
471 seconds on our research lab cluster. In Table I, we shSTHSter' Each Beehive process had 10 worker threads.

the execution times for the max-flow problem for graphs a. Graph Coloring
various sizes, using the MSI cluster. In these experiments,In this problem, we create coloring tasks for each vertex.

we used weak affinity level and higher task granularity 6}ﬁitially all the vertices are uncolored. A coloring task fa

described above. vertex involves selecting the smallest unused color amt:ng i
B. Minimum Spanning Tree colored neighbors and assigning that color to the vertex. A
We implemented the minimum spanning tree (MST) algct;_oloring task for a vertex is executed as a transaction. The
rithm [11] in Beehive. In our implementation of the IVIS.I.neighbors of the vertex form the read-set and the task vertex
algorithm initially a task is created for each vertex. Thekta forms the write-set of the transaction. A task is abortedagec

computation involves finding the nearest neighbor of thk'tas of Ian_y read-wrtl_te C.(mﬂ'Ct W'tht a(;ly concurrent tasks and the
vertex and merging them to form a cluster. The task vertggv?/rmg oper? 'gn IS (;e-execui : ¢ dife tsi q
that forms the cluster becomes ttleister head Each cluster © generated random graphs ot diterent sizes and mea-

formation operation is executed as a transaction. When ) red the computation time for executing the coloring algo-

clusters are merged the information for the two cluster he ' tmb T[hs tr:u;”nber cf:efggo\;s forl a vertex W%St#mformlg
vertices is modified. The transaction semantics ensureithaf'>''Puted between 1 10 - VW& alSo measure € Speedup

case of concurrent merge operations on a cluster, only o leved by Increasing the _number Of. Beehlye nodes. We
would succeed. The task then iteratively performs mergir? serve that for 2 million vertices graph Increasing th_estdu
operations to form a larger cluster until it does not have a e from 10 nodes to 20, resuited in pefforman.ce Improve-
neighbors or the task vertex is no longer a cluster head keca ent by a factor o_f more tha?” 2._However, increasing it furthe
it has been merged into another cluster. This algorithm al® 30 nodes provided marginal improvement.

detects connected component in the graph, finding spanning pageRank

tree for each connected component. The computation time fo
randomly generated graphs of different sizes are presénmteqm

EXECUTION TIMES FORGRAPH COLORING

We implemented PageRank [5] algorithm to experiment

th barrier-synchronization based phased execution mode
Ihttp://www.informatik.uni-trier.de/Aaeher/Professasearch In this p_rOblem' transaction ;ema_ntlcs in taSk. ex?FUt'on IS

Igenerators/maxflow/wash/ not required. PageRank algorithm involves multiple iterad



Vertices Edges Beehive Nodes|| Time(in secs) Problem Completed| Aborts Time
100,000 3,373,321 10 93 Tasks (secs)
200,000 6,724,266 10 181 Max-Flow 9716609 | 71685675| 5878
1,000,000 | 33,642,660 10 1746 Graph Coloring 10003 299 19.6
1,000,000 | 33,642,660 20 721

1,000,000 | 33,642,660 30 635

2,000,000| 67,265,322 20 2072 TABLE V

ABORT STATISTICS

TABLE IV
EXECUTION TIMES FORPAGERANK

shown in Table V. The ratio of abort to commit for the max-
flow problem is significantly higher (close to 7.3) than that

of page-rank computation and, in each iteration, page raffif the graph coloring problem (close to 0.03). The high abor
of a web-page (vertex) is calculated based on the previdt%e in the max-flow problem for this graph is indicative of
ranks of the web pages that have links to this page. In ogW amount of parallelism. _
implementation, each barrier phase corresponds to a singl@Ur experiments also indicate that for a given problem,
iteration of the page-rank algorithm. For each vertex/iwage Scaling-out beyond certain cluster size has marginal perfo
we maintained two rank values corresponding to the curréR@nce benefits. Typically, this occurs because the remote
and previous iteration. Each iteration involved creatiagks data access latencies start dominating the execution .times
for each vertex to calculate page-rank for that web-pagthfer This indicates that for a given problem there is typically an
given iteration. A task for a vertex requires reading ranks @Ptimal cluster size for the best performance. Anotheroit

all the vertices that have links pointing to it, and updating @sPect is the time required f_or |n|t_|a_l loading of data. For
rank value for the vertex in the global storage. To synctmeni!@rge problems, we had to devise efficient methods for perall
phases we designated one of the processesoagdinator loading of data.

which was responsible for initiating tasks for a phase and There are several aspects that need further investigation.
detecting termination of a phase across all Beehive nod&¥)€ area that needs further investigation is data clusterin
We evaluated PageRank algorithm in Beehive using randdf improving data locality. Another important area for e
graphs of various sizes. Table IV shows the execution tim@@rk is the investigation of fault tolerance and recovery
for PageRank on various graphs for performing 50 iteratiomdechanisms. Currently all data is maintained in the memory

of the algorithm. of the cluster nodes. Appropriate checkpointing and regove
mechanisms need to be developed in the Beehive framework
VI. DISCUSSION ANDFUTURE WORK to deal with node crashes. Unlike MapReduce applicati@ns, r

Our experience in parallel programming with the Beehiveovery mechanisms in graph problems are even more complex
framework validates the simplicity of its programming mbdeas it is not simple data partition but a state of graph thatisee
For example, in case of the max-flow and the graph coloring be restored to avoid a complete rerun of the algorithmt Tha
problem, we essentially transcribed the computation peréal  too in a optimistic-task execution model, a complete snapsh
in the sequential algorithms for these two problems intogra of the graph has to be maintained and recovery always ingolve
action tasks. Thus, in contrast to the message-passinglmoddditional computation.
the Beehive model does not require significant conceptualAnother area of future work is to investigate adaptive
redesign of the algorithm. However, the implementation ehethods for scheduling tasks based on the observed abort
the algorithm needs be driven towards amortizing or redycinate. Adaptive methods can be used to control the degree
remote data access cost. For example, in case of the max-flifwoptimistic execution, i.e. the number of tasks executed
problem, we observed that increasing the task granularity poptimistically in parallel. Another direction to explore the
vides significant performance improvements. In this pnoble use of a hybrid of optimistic and conflict-free scheduling
larger granularity meant performing flow balancing for mormethods, where the framework would dynamically shift from
than one vertex in a transactional task. Similarly, in cddb® optimistic to conflict-free scheduling when the parallelis
MST problem, we had to focus on reducing the data acced®ps below a certain threshold. The amount of parallelism
cost in identifying cluster-head nodes. can be measured by the commit rate.

Based on the results of our experiments described above
we make the following observations. The parallelism in a VIl. CONCLUSION
graph problem can vary significantly based on the nature ofThe work presented here describes our initial experience
the problem and the structure of the graph. The number with the Beehive framework. We have presented here the
aborts of speculatively executed tasks is one indicatohef toptimistic execution model and the system architecture of
amount of parallelism in the given problem. A high abort ratdhe Beehive framework. Our experiments and experience in
for tasks indicates low degree of parallelism. We illugtriditis programming with the Beehive framework show that the
by observing the number of aborts for the max-flow and graphodel of transaction-based optimistic execution of tasks c
coloring problems for a graph of 10000 vertices. This data e effectively utilized for harnessing amorphous parasihel



in graph problems. This model also provides a conceptually] H. T. Kung and J. T. Robinson, “On optimistic methods éoncurrency

simple model for the programmers to develop parallel p
grams because it relieves the programmer from the bur

it

of explicit message-passing and synchronization opeérsitio[19]
Our future work will focus on the integration of checkpoinrgi
and recovery mechanisms in this framework to deal with no%]
crashes. We also plan to further investigate differentdaliveg
strategies which can adapt the degree of optimistic exatuti
based on the observed abort rates.
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