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Can science reveal the secrets of music? This article addresses the question with a short

introduction to Helmholtz’s theory of musical harmony. It begins by discussing what

happens when tones are played at the same time, which introduces us to the idea of beats.

Next, the difference between a pure tone and a note played on an instrument is explained,

which provides the insight needed to form Helmholtz’s theory. This allows us to explain

why a perfect fifth sounds consonant yet a diminished fifth is dissonant.

When sitting through a performance of Beethoven’s Fifth

Symphony, we are interpreting the complex sound wave

which propagates through the air from the orchestra to our

ears. We say that we are ‘listening to music’ and be it

classical, rock or rap, music is considered a form of art. But

a sound wave is something we study in physics. So just how

much science is there behind the music? Can we use physics

to explain why Ludwig’s harmony is harmonious? And

does a complete ‘Theory of Music’ exist which explains our

enjoyment of every movement, phrase, bar and note we

hear?

To start with, we need to look at the fundamental

building blocks of music: these are the pure tones. If you

strike a tuning fork, you will set it vibrating in simple

harmonic motion. The sound that results is the simplest

musical sound—a pure note all on its own (imagine an

electronic ‘beep’ from an alarm clock). The number of

vibrations the fork makes per second gives its frequency. In

music this is called the pitch of the note. For example, any

object which vibrates 261.6 times per second will sound a

middle C. If it had a frequency of 392 Hz instead, then we

would hear the G just above. Objects vibrating at higher

frequencies sound at a higher pitch and, importantly, if the

frequency of a note is doubled, then the pitch increases by

an octave. Thus, if something vibrates at 523.3 Hz we

would hear the note C an octave above middle C (this note

is denoted C^, the note two octaves up C^^ and so on—see

figure 1).

So what happens when we hear more than one pure tone

at the same time? The two sound waves combine, obeying

the Principle of Superposition and the resultant wave is as

in figure 2. The maximum amplitude is contained within an

‘envelope’ having frequency equal to the frequency

difference of the two pure tones. This is the phenomenon

of beating—the periodic rise and fall in loudness of the

note, creating a ‘fluttering’ sound. Beats are important

when it comes to our enjoyment of music for they can make

the interval between the two pure tones sound unpleasant.

The amount of irritation they cause our ear depends on

how many flutters we hear per second (see figure 3). A slow

rise and fall in amplitude does not annoy and is even

employed in Hammond organs to create their distinctive

trembling sound. A fast beating means our ears cannot

distinguish the individual beats and so the effect blurs itself

out in much the same way as the 25 images a second on a

television set do. Provided this beating is fast enough, again

we do not encounter any unpleasantness. It is when there

are around 30 beats per second that the sound becomes
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irksome, just as 4 images every second on a TV screen

would be maddening to the eye. A difference of 30 Hz is

close to the interval of a semitone and indeed, playing a C

and a C# at the same time creates a jarring, dissonant

sound. This idea of beats affecting the nature of the sound

we hear is an important aspect of Helmholtz’s theory of

harmony, which is discussed later on.

To proceed further we need to observe that Beethoven

did not compose any symphonies for large numbers of

tuning forks. Instead he used orchestras of instruments. To

exemplify what is so ‘musical’ about instruments we take

the example of a stretched string. Figure 4 shows the result

of solving the wave equation on this string. In physics we

call the solutions normal modes. In music we call them

harmonics and, being simple harmonic waves, they are all

pure tones. We call the normal mode with wavelength twice

that of the string’s length the fundamental pure tone. This

is the first harmonic of the series. The second harmonic has

half this wavelength, the third one three times smaller and

so on (figure 5). So if the fundamental pure tone is C

(261.6 Hz), then it is also possible for this string to vibrate

in such a way as to produce pure tones of frequencies which

are integer multiples of 261.6 Hz. Thus, the second

harmonic is C^, the third a fifth higher than this (G^)

and so on.

Now, when a ‘stringed’ instrument is played, whether it

be struck by a hammer, plucked, bowed or strummed, the

string is set into a complicated motion. However, using the

technique of Fourier analysis, we can break down this

vibration, no matter how complicated, into a superposition

of the normal mode vibrations. The amplitude of each

normal mode is chosen so that when they are all

superimposed, the resulting motion of the string is exactly

that after the strumming, plucking etc. has been performed.

Musically then, it is not only the fundamental pure tone

being sounded, but the harmonics are also set into action

and we hear these as well. This is the origin of the richness

in sound we hear when an instrument is played. Almost

always, the fundamental tone has much larger amplitude

than the harmonics and the higher harmonics have rapidly

Figure 2. The red wave shows the amplitude resulting from

the superposition of two pure tones with different

frequencies seen below (black waves). The overall

amplitude is contained within an envelope (dashed line)

which creates the beating.

Figure 3. Around 30 beats per second creates the maximum

amount of unpleasantness. The above graph represents the

fall in unpleasantness at high and low beat frequencies.

Figure 1. Notes of the keyboard with the corresponding

frequency. Note that a doubling in frequency corresponds

to a pitch rise of an octave.
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dwindling amplitudes. So, although in theory the number

of harmonics can be infinite, we normally only hear up to

the eleventh one layered faintly on top of the fundamental.

Which of the harmonics are present and their relative

amplitudes gives one of the main contributions to the

timbre of a musical note—what makes a violin C sound

different to a trumpet C. Musical instruments also

emphasize certain harmonics differently through resonance

effects—the cavity inside a violin will reinforce different

harmonics to that of the guitar.

Some of the harmonics will be tones which ‘clash’ with

the fundamental tone. Normally this isn’t a problem since

the amplitude of the high harmonics is usually very small.

However, the seventh harmonic, for example, can have

large enough amplitude to worry about (for a fundamental

tone of C the seventh harmonic is the B flat three octaves

higher). This B flat creeping into the note will create a

dissonant sound. It is for this reason that piano strings are

stuck around one seventh of the way down, hitting near a

node of the seventh normal mode. Because this is the point

at which the mode does not vibrate, it is not set into motion

and the note is not heard. Conversely, it is in the interest of

the instrument maker to reinforce the harmonics which

create a consonant sound when heard alongside the

fundamental, such as the second, third and fourth (in our

example C^, G^ and C^^).

Now that we understand how an instrument is different

to a tuning fork, we can build up a theory of harmony,

originally devised by Helmholtz. The graph in figure 3

doesn’t explain why intervals larger than a semitone sound

dissonant. A diminished fifth (e.g. C and F#) sounded on

two tuning forks creates so many beats per second that they

cannot be distinguished by the ear and no dissonant sound

is heard. However, on a keyboard things are very different:

the interval sounds quite different than that of a perfect

fifth (C and G), which is a consonant sound. The difference

is that we are now dealing with rich, musical notes, full of

harmonics and it is the harmonics which are clashing with

each other a semitone apart, creating the beats which are so

displeasing. Figure 6 shows a diminished fifth and a perfect

fifth with all the harmonics which would be heard above the

fundamental notes. For the diminished fifth, the second

Figure 4. Solving the wave equation on a fixed string results in normal modes, known in music as harmonics.
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and third harmonics are clashing a semitone apart, creating

those 30 beats per second and thus producing an uncom-

fortable sound. In contrast, it is only when we get to the

fifth harmonic of the perfect fifth that the 30 beats are

formed. Since the fifth harmonic is much quieter, the beats

are almost inaudible and the lack of them forms the

consonant sound.

By looking for unpleasant beating in the harmonics as

well as the fundamental tone of a note, we can analyse any

number of notes played at the same time and discover how

discordant or harmonious the sound will be. This is

obviously an important method which can be used to

examine whole pieces of music—if we wanted to, we could

do this for the entire score of Beethoven’s Fifth and would

mostly find it to consist of consonant chords.

We are now closer to answering the questions posed at

the start of this article. Firstly, it is clear that the science

of music is an extensive and complex subject. Here, we

have focused only on the physical characteristics of the

‘musical’ sound wave. Many other effects have not been

mentioned: for example the modification of the sound

wave by the physical dimensions of the concert hall. This

area of acoustics is fascinating and its study has enabled

buildings such as the Sydney Opera House to be

constructed.

What of our all encompassing ‘Theory of Music’? We

have seen how any piece of music can be built out of pure

tones—sine waves of all frequencies combine to create the

final sound wave which reaches our ears. Beethoven really

did compose a ‘Sine’-phony. And Helmholtz’s theory

explains the pleasantness of harmony, so the scientist

knows why the symphony does not consist entirely of

diminished fifths. When Beethoven chose his chords, for the

most part he spared his listeners the discomfort of ‘beating’

notes. But this is the limit of our scientific theory. Why a

particular sequence of notes one after the other creates a

beautiful melody or why varying the length of them makes

for a foot-stomping rhythm is something which, for now,

requires an artistic mind.

So what is the difference between the sound wave of a

composed melody and a sound wave of randomly played

notes? The understanding of why only the former is

musical must lie in the understanding of the biological

mechanisms which begin in the workings of the ear and

finish in the brain. We all have an intuitive ‘feel’ for the

musical melody, but the physical distinction is extremely

subtle. Clearly something quite profound is at work. It is

humbling that although science can delve deep into the

heart of an atom and explore the furthest reaches of the

universe, it is at a loss when trying to describe more than

the very basics of musical enjoyment. Maybe this is an

area science will never be able to conquer. The secrets of

the finer aspects of music could stay forever locked away

in the mind of the musician.

Figure 5. The displacement of the vibrating string is shown

for the first seven harmonics, along with corresponding

frequencies for a fundamental note of C.

Figure 6. We hear the harmonics as well as the two

fundamental notes (boxed in red) when an interval is played

on an instrument. For a perfect fifth, the first harmonics to

be around 30 beats apart are the 4th and 5th ones which are

very quiet. Therefore, it is a consonant interval. For the

diminished fifth, louder harmonics beat with each other

creating a dissonant sound.
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