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Abstract. Beetle antennae search (BAS) is an efficient meta-heuristic algorithm inspired by foraging
behaviors of beetles. This algorithm includes several parameters for tuning and the existing results are
limited to solve single objective optimization. This work pushes forward the research on BAS by providing
one variant that releases the tuning parameters and is able to handle multi-objective optimization. This new
approach applies normalization to simplify the original algorithm and uses a penalty function to exploit
infeasible solutions with low constraint violation to solve the constraint optimization problem. Extensive
experimental studies are carried out and the results reveal efficacy of the proposed approach to constraint
handling.

1. Introduction

Nature-inspired algorithms have giant potential to solve optimization problems and have been success-
fully implemented in various scientific and engineering domains [1]. main challenges of meta-heuristic
algorithms lie in how to handle various constraints imposed on variables and how to simplify the parameter
tuning of algorithms.

Because of the presence of constraints, the feasible space may be largely reduced, making the searching
process to be a challenging task compared with non-constrained optimization to a single objective. To
solve the aforementioned optimization problem, Tessema and Yen [2] propose an adaptive penalty function
to exploit infeasible solutions with appropriate fitness value and low constraint violation. And then,
they extend the constraint-handling results to multi-objective evolutionary optimization problem based
on adaptive penalty function and distance measure [3]. Using a multi-objective formulation, Runarsson
and Yao [4] propose a common approach to apply a penalty function to bias the search towards a feasible
solution.

In terms of parameter tuning, we further develop our previous work, named as the beetle antennae
search (BAS) algorithm, which is inspired by the searching and detecting behavior of longhorn beetles.
In this paper, we improve the result in [5] to be a simple implementation and need no parameter tuning.
As the original BAS in [5] does not consider constraint, we also modify the original BAS to be capable of
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solving constrained optimization problem simultaneously. The main contributions of the paper are stated
as below:

1 Normalization method is used to extend the original BAS algorithm to be a general form without
parameter tuning, which makes the algorithm implement simply.

2 Based on the improved BAS algorithm without parameter tuning (BAS-WPT), constraint optimization
problems are formulated a multi-objective optimization problem and further handled by penalty
function method.

The rest of the paper is organized as follows. In Section 2, improved BAS algorithm is proposed.
In Section 3, BAS-WPT are used in constraint optimization problem. In Section 4, numerical results are
presented and compared. In Section 5, a concluding remark is drawn.

2. Optimization Design of The Proposed Approach

In this section, by considering the original BAS, an improved BAS is presented without parameter
tuning to simply the application for user. The algorithm is basically an original implementation except for
the normalization of input data.

2.1. the Original BAS
For clear illustration, the original BAS is included in Algorithm 1, which is capable of searching global

optimum of both convex and non-convex problem in a general function:

Minimize
Maximize

f (x), x = [x1, x2, · · · , xN]T

where f is the fitness function and x ∈ RN denotes the input data in N dimensions. The main formula of
the natural-inspired BAS consist of two aspect: searching behavior and detecting behavior. The searching
behavior is used to explore the optimal point of the fitness function by introducing a normalized random
unit vector

−→
b to enhance the searching ability,

xr = xt + dt−→b ,

xl = xt
− dt−→b , (1)

and the detecting behavior is used to exploit in an iterative form,

xt = xt−1 + δt−→b sign( f (xr) − f (xl)), (2)

where d represents the distance between two antennae of a longhorn beetle and δ represents the step size
of each iteration.

Evidently, the presetting of parameters such as d and δ influences performance of BSA seriously. Thus,
we attempt to develop a much effective and robust improvement.

2.2. the Proposed BAS-WPT Approach
Fig. 1 demonstrates the iterative optimization precess of BAS-WPT which can be seen as a variable scale

algorithm from the figure obviously.
For the sake of simplicity, we use normalization method to tune parameters of BAS adaptively. Assume

that xi, the ith element of x, lies in the rang from xmin
i to xmax

i , and then x satisfied xi ∈ [xmin
i , xmax

i ], where xmin
i

is lower bound and xmax
i is the upper bound. The input data used in fitness function could be formulated

in the following expression at each iteration:

x̃i = xi(xmax
i − xmin

i ) + xmin
i . (3)
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Figure 1: The iterative optimization process of BAS-WPT in 5 steps. The dotted line in red color denotes the trajectory of fitness
function. The triangle represents a beetle, on both sides of which two solid circles denote antennae of the beetle, d is the distance
between two antennae and δ, corresponding to the dotted line in black color, is the step size of searching.

Finally, we obtain the global optimum f (x̃)bst corresponding to the position x̃bst by BAS-WPT algorithm
with normalized variant xbst.

To simplify the parameter tuning further more, we also construct the relationship between searching
distance d and step size δ as follows:

δt = c1δ
t−1 + δ0, dt = δt/c2, (4)

where c1 and c2 are constants to be adjusted by designers.

3. Constraint Handling by BAS-WPT

In this section, we extend the BAS-WPT algorithm into constrained optimization problem with penalty
function method.

3.1. Problem Formulation
A constraint optimization problem can be formulated as

Minimize
Maximize

f (x),

s.t. 1 j(x) ≤ 0, j = 1, · · · ,K,

xmax
i ≤ xi ≤ xmin

i , i = 1, · · · ,N, (5)

There are K inequality function constraints required to be satisfied by the optimal solution. The presence
of constraints of both inequality functions and variants restrict the searching area to be a interest region,
where suitable solution could be found.
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3.2. Penalty Function Method

To solve the constrained optimization problem, we present penalty function method to deal with
inequality function constraint.

In penalty functions, infeasible solutions are penalized for the violation of the inequality constraint by
putting penalty terms on the original fitness function, which will reduce the probability of selecting an
infeasible solution. Specially, penalty function in our study is formulated in the following form:

F(x) = f (x) + λ
K∑

j=1

h j(x)1 j(x), (6)

where F(x) is the improved fitness function, f (x) is the original fitness function, λ is the penalty parameter
usually predefined as a large enough value (e.g. 1010), and the constraint violation h j(x) is defined as

h j(x) =

{
1, 1 j(x) > 0
0, 1 j(x) ≤ 0 (7)

When anyone of the inequality constraints 1 j(x) > 0 satisfies accompanying with a large value λ, the second
term of (6) dominates the fitness function, which makes F(x) → ∞. Otherwise, all h j(x) = 0 are satisfied,
and thus F(x) = f (x).

Algorithm 1 corresponding to BAS-WPT algorithm demonstrates the improvement based on BAS
adopted in the research to design a more feasible approach to solve the constraint optimization problem.

Algorithm 1: BAS-WPT algorithm for constrained optimization

Input: Initialize the input data x0 at 0 time instance in standard normalization form
x0

i = (rnd(·) − xmin
i )/(xmax

i − xmin
i ) for each element , and initialize the parameters c1, c2, δ0.

Output: xbst, fbst.
while (t < Tmax) or (stop criterion) do

Search in variable space with two kinds of antennae according to (1);
Update the state variable xt according to (2);
Generate the normalized vector x̃ according to (4);
Construct the improved fitness function according to (6) and (7);
if F(xt) satisfies optimum condition then

Fbst = F(xt), xbst = xt.
Update parameters according to (4). Calculate the best potion x̃bst by xbst similarly to (3).

return xbst, fbst.

4. Experimental Study

In this section, we present two examples from optimization literatures to demonstrate the performance
of the proposed BAS-WPT algorithm for constrained optimization.
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4.1. Pressure Vessel Function

There are four variables in pressure vessel problem which aims at minimizing the fitness function below:

minimize f (x) = 0.6224x1x3x4 + 1.7781x2x2
3

+3.1661x2
1x4 + 19.84x2

1x3,

s.t. 11(x) = −x1 + 0.0193x3 ≤ 0,
12(x) = −x2 + 0.00954x3 ≤ 0,

13(x) = −πx2
3x4 −

4
3
πx3

3 + 1296000 ≤ 0,

14(x) = x4 − 240 ≤ 0,
x1 ∈ {1, 2, 3, · · · , 99} × 0.0625,
x2 ∈ {1, 2, 3, · · · , 99} × 0.0625,
x3 ∈ [10, 200],
x4 ∈ [10, 200].

Table 1 illustrates the best results obtained by the proposed BAS-WPT algorithm using only 150 iterations
and other various existing algorithms need much more iterations to solve the pressure vessel optimization
problem. It is worth pointing out that the best result from the proposed BAS-WPT algorithm is better than
most of the existing ones and has the fastest convergence simultaneously.

Table 1: Comparisons of results for Pressure Vessel Function
x1 x2 x3 x4 11(x) 12(x) 13(x) 14(x) f∗

[6] 0.8125 0.4375 42.0984 176.6378 -8.8000e-7 -0.0359 -3.5586 -63.3622 6059.7258
[7] 1 0.625 51.2519 90.9913 -1.011 -0.136 -18759.75 -149.009 7172.300
[8] 0.8125 0.4375 42.0870 176.7791 -2.210e-4 -0.03599 -3.51084 -63.2208 6061.1229
[9] 1.000 0.625 51.000 91.000 -0.0157 -0.1385 -3233.916 -149 7079.037
[10] 0.8125 0.4375 41.9768 182.2845 -0.0023 -0.0370 -22888.07 -57.7155 6171.000
[11] 1.125 0.625 58.291 43.690 0.000016 -0.0689 -21.2201 -196.3100 7198.0428
[12] 0.9375 0.5000 48.3290 112.6790 -0.0048 -0.0389 -3652.877 -127.3210 6410.3811
[13] 0.8125 0.4375 40.3239 200.0000 -0.034324 -0.05285 -27.10585 -40.0000 6288.7445
[14] 1.125 0.625 58.1978 44.2930 -0.00178 -0.06979 -974.3 -195.707 7207.494
[15] 1.125 0.625 48.97 106.72 -0.1799 -0.1578 97.760 -132.28 7980.894
[16] 1.125 0.625 58.2789 43.7549 -0.0002 -0.06902 -3.71629 -196.245 7198.433
[17] 0.7782 0.3846 40.3196 200.000 -3.172e-5 4.8984e-5� 1.3312� -40 5885.33

BAS-WPT 0.8125 0.4375 42.09355 176.7715 -9.43E-05 -0.03592 -413.6252 -63.2285 6062.04676

� denotes the violation of the corresponding constraint.

4.2. Himmelblau Function

We also consider the Himmelblau’ nonlinear optimization problem which is a famous benchmark used
used for several evolutionary algorithm before. The problem consists of 5 variables, 6 inequality constraints
and 10 boundary conditions and could be further stated as follows:
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Table 2: Comparisons of results for Himmelblau function
x1 x2 x3 x4 x5 11(x) 12(x) 13(x) f∗

[18] 78.00 33.00 29.995256 45.00 36.775813 92 98.8405 20 -30665.54
[19] 78.6200 33.4400 31.0700 44.1800 35.2200 90.5208 98.8929 20.1316 -30373.949
[20] 81.4900 34.0900 31.2400 42.2000 34.3700 90.5225 99.3188 20.0604 -30183.576
[21] 78.00 33.00 29.995 45.00 36.776 90.7147 98.8405 19.9999� -30665.6088

BAS-WPT 78.00 33.00 27.1131 45.00 45.00 91.9997 100.4170 20.02056 -31011.3244

� denotes the violation of the corresponding constraint.

minimize f (x) = 5.3578547x2
3 + 0.8356891x1x5

+37.29329x1 − 40792.141,
s.t. 11(x) = 85.334407 + 0.0056858x2x5

+0.00026x1x4 − 0.0022053x3x5,

12(x) = 80.51249 + 0.0071317x2x5

+0.0029955x1x2 + 0.0021813x2
3,

13(x) = 9.300961 + 0.0047026x3x5

+0.0012547x1x3 + 0.0019085x3x4,

0 ≤ 11(x) ≤ 92,
90 ≤ 12(x) ≤ 110,
20 ≤ 13(x) ≤ 25,
78 ≤ x1 ≤ 102,
33 ≤ x2 ≤ 45,
27 ≤ x3 ≤ 45,
27 ≤ x4 ≤ 45,
27 ≤ x5 ≤ 45,

The results are listed in Table 2 whose corresponding experiments for the BAS-WPT algorithm just
need only one beetle to run 200 instance. Evidently, the best result generated from the BAS-WPT shows
the most excellent performance among all the results listed in Table 2. The above experiments justify that
the proposed BAS-WPT algorithm is effective to handle constraint optimum problem and could alchieve a
good performance with high convergence rate.

5. Conclusion

This paper extends nature-inspired BAS algorithm to solve multi-objective optimization problem and
releases it to be a new version without parameter tuning. Two typical benchmarks are considered to validate
performances of the algorithm, whose numerical results justify the efficacy of the proposed algorithm.
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