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Abstract

A fundamental goal of systems neuroscience is to understand the relationship
between neural activity and behavior. Behavior has traditionally been characterized
by low-dimensional, task-related variables such as movement speed or response
times. More recently, there has been a growing interest in automated analysis of
high-dimensional video data collected during experiments. Here we introduce a
probabilistic framework for the analysis of behavioral video and neural activity.
This framework provides tools for compression, segmentation, generation, and
decoding of behavioral videos. Compression is performed using a convolutional
autoencoder (CAE), which yields a low-dimensional continuous representation
of behavior. We then use an autoregressive hidden Markov model (ARHMM) to
segment the CAE representation into discrete “behavioral syllables.” The resulting
generative model can be used to simulate behavioral video data. Finally, based on
this generative model, we develop a novel Bayesian decoding approach that takes in
neural activity and outputs probabilistic estimates of the full-resolution behavioral
video. We demonstrate this framework on two different experimental paradigms
using distinct behavioral and neural recording technologies.

Understanding the complex relationship between neural activity and behavior requires a thorough
characterization of behavior across multiple timescales. Behavior has traditionally been characterized
by low-dimensional, task-related variables such as reaction times, or the position of a joystick, or the
speed of a wheel turn. These require specialized sensors set up by the experimenter, necessitating
laborious testing and calibration.

Of course, behavior is in reality potentially very high-dimensional, and there is a growing appreciation
that to understand neural activity we need to monitor behavior in a less simplistic (and labor-intensive)
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way [1, 2, 3, 4]. There has recently been a growing interest in automated analysis of video data collected
during experiments, aimed at extracting richer, higher-dimensional representations of behavior. For
example, the last couple years have seen dramatic improvements in markerless tracking of body parts
[5, 6, 7]. These tracking methods have opened up a range of exciting new studies, but come with some
drawbacks. Tracking methods are supervised, and therefore require user effort to label training images.
Furthermore, simply tracking a few body parts may not capture all of the useful information in the
video. For example, subtle changes of facial expression or body pose may be difficult to track with a
few markers. Moreover, the tracked landmarks are chosen by the experimenter, and as such, important
variables may potentially be missed. Another drawback to tracking methods is that occlusion or
movement out of frame may cause markers to be dropped; if downstream analyses do not properly
handle missing data these frames must be excluded from analysis.

In a separate thread of work, fully-unsupervised linear dimensionality reduction methods such as
Singular Value Decomposition (SVD) have been used to analyze behavioral videos [8, 9], but these
approaches require a large number of dimensions to represent behavioral videos (typically, >200
dimensions are chosen), potentially hampering downstream analyses. In fact, we have no reason to
expect that images of a moving animal can be represented in a low-dimensional linear vector space,
as required for SVD to be an effective model.

Once low-dimensional time series corresponding to behavior have been obtained — whether through
supervised or unsupervised methods — we would like to model the dependence of neural activity
on these behavioral signals, after characterizing this behavior at different timescales. Most previous
approaches have focused on directly mapping the extracted signals into neural activity, i.e., fitting
“encoding models” that predict neural responses from the observed behavioral signals [8, 9]. However,
a number of alternative analysis approaches are possible [10, 11], including unsupervised modeling of
the full behavioral video [12], decoding behavior directly from neural signals [13, 14, 15], or jointly
modeling both the behavior and neural signals [16, 17].

Here we introduce a probabilistic framework for the unsupervised analysis of behavioral video,
with semi-supervised decoding of neural activity. This framework provides tools for compression,
segmentation, generation, and decoding of behavioral videos. Compression is performed using
CAEs, which yield a low-dimensional, continuous representation of behavior that requires fewer
dimensions than linear methods (e.g., SVD) to obtain the same video reconstruction error. We
then use an ARHMM to segment the CAE representation into discrete “behavioral syllables.” The
resulting generative model can be used to simulate behavioral video data. Finally, we exploit this
generative model to construct Bayesian decoders which take in neural activity and output probabilistic
estimates of the full-resolution behavioral video. We demonstrate the use of this framework using two
popular experimental paradigms and neural recording technologies: Neuropixel multielectrode array
recordings during spontaneous behavior in head-fixed mice [9, 18], and widefield calcium imaging
from task-engaged head-fixed mice [8, 19].

Related work. We build upon a rich literature of behavioral analysis. Stephens et al. [20] showed that
the posture of the nematode C. elegans is captured by a low dimensional subspace of “eigenworms.”
Studies have been performed on pose and posture estimation in other model organisms with similar
results [21, 22, 23]. Our work is inspired by Wiltschko et al. [24] on characterizing mouse behav-
ior. In this work, behavioral videos of freely behaving mice are compressed using PCA, followed
by segmentation via ARHMMs. Using these models, the authors identify behavioral syllables in
mouse behavior such as rearing and grooming. Extending this work, Johnson et al. [12] combined
compression and time series modeling in a structured variational autoencoder. Related models have
been developed for other model organisms, including C. elegans [25, 26] and larval zebrafish [27].
Recently, Markowitz et al. [28] has used these methods to identify specific neural representations of
behavioral syllables.

Parallel advances have been made in the analysis of neural time series. Sequential variational
autoencoders [29, 30] and recurrent state space models [31, 32, 33] capture low dimensional structure
in neural activity and relate it to sensory inputs and motor outputs. These build on a long line of
work decoding movement from neural activity which we do not have room to adequately review here
[13, 14, 15]. Most of these approaches have a low-dimensional output that consists of either the
electromyography (EMG) of a handful of muscles in the limb, or the kinematics of the end-effector,
or both. They do not capture the high-dimensional facial movements or bimanual arm poses that are
the focus of this study.
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Figure 1: Graphical model showing the architecture we use for the neural decoding of continuous and discrete
states estimated directly from the behavior. Example neural and behavior data shown for the WFCI dataset, as
detailed in the text.

Finally, outside of the motor decoding literature, a couple threads of work on image and speech
decoding from neural signals are particularly relevant: Parthasarathy et al. [34] developed approximate
neural network Bayesian decoding methods to decode high-dimensional natural images directly from
populations of retinal ganglion cells, while Akbari et al. [35] and Anumanchipalli et al. [36] used
structured neural network approaches to decode high-resolution speech signals from neural activity.

Methods

We begin by describing the datasets used in this work (data splits are described in Appendix A). Then
we describe the methods used for compression, segmentation, and decoding.

Widefield Calcium Imaging (WFCI) dataset [8, 19]. A head-fixed mouse performed a visual decision-
making task while neural activity across dorsal cortex was optically recorded using widefield calcium
imaging. We used the LocaNMF decomposition approach to extract signals from the calcium imaging
video [37]. Behavioral data was recorded using two cameras (one side view and one bottom view;
Fig. 2B, left); grayscale video frames were downsampled to 128x128 pixels. Data consists of 1126
trials across two sessions, with 189 frames per trial (30 Hz framerate). Neural activity was acquired
at the same frame rate.

Neuropixels (NP) dataset [9, 18]. A head-fixed mouse behaved freely (including spontaneous ma-
nipulation of a wheel with its forelimbs) while neural activity across multiple brain structures was
electrically recorded using eight Neuropixels probes [38]. Behavioral data was recorded using a
single camera (Fig. 2B, center); grayscale video frames were downsampled to 112x192 pixels. Data
consists of 96k frames (40 Hz framerate), and “trials” were arbitrarily defined as blocks of 1000
frames. Neural activity was binned at the video frame rate.

Neuropixels-zoom (NP-zoom) dataset. We cropped the behavioral videos in the NP dataset in order
to analyze the fine-grained facial movements of the mouse (Fig. 2B, right); grayscale video frames
were downsampled to 128x128 pixels after cropping, and the bottom corners were masked to occlude
forelimb movements near the face.
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Figure 2: The CAE obtains good reconstructions at high compression rates. A) Reconstruction MSE on held-out
test data as a function of latent dimension. The nonlinear CAE consistently outperforms the linear autoencoder.
Plotted values are means over test trials, and errorbars represent 95% bootstrapped confidence intervals. B)
Reconstruction quality is good even when the latent dimensionality is three orders of magnitude smaller than the
original number of pixels per frame. Top row shows example original frames from held-out test data in each
dataset using 8 CAE dimensions; middle and bottom rows show corresponding linear autoencoder and CAE
output frames, respectively. In the WFCI bottom view we have enhanced the contrast and clipped high pixel
values in all figures for better visibility. Also see Supplementary Videos C.1 for full reconstruction videos.

Nonlinear dimensionality reduction of behavioral videos. We compress the behavioral videos
with a convolutional autoencoder (CAE), yielding a low-dimensional continuous representation of
behavior that is useful for downstream analyses. The CAE architecture is fixed for all datasets, except
for the number of latents (Fig. 2; see Appendix A for architecture details). We train the autoencoders
by minimizing the mean squared error (MSE) between original and reconstructed frames using the
Adam optimizer [39] with a learning rate of 10−4. Models are trained for a minimum of 500 epochs
and a maximum of 1000 epochs. Training terminates when MSE on held-out validation data, averaged
over the previous 10 epochs, begins to increase. As a baseline comparison we also fit a linear SVD
model1.

Segmentation of behavior. The CAE outputs a low-dimensional nonlinear embedding of the be-
havioral video frames, but does not capture temporal dependencies between frames. Next we train a
simple class of nonlinear dynamical systems to approximate dynamics within this embedded space.

Let x ∈ R
T×D denote the sequence of continuous latents obtained by embedding the video frames

with the CAE. Each latent xt corresponds to the embedding of the corresponding video frame at
timestep t; T is the video length and D is the embedding dimension (D is of order 10 in the examples
here). Building on previous work [24, 28, 40, 41, 42], we model the sequence of continuous latents as
a stochastic process that switches between a small number K of discrete regimes, each characterized
by linear-Gaussian dynamics. These discrete regimes are specified by an additional layer of discrete

1Direct SVD was too slow due to the large matrices involved here, and randomized SVD approaches led
to suboptimal results in our hands; instead, we simply used Adam to minimize the reconstruction MSE of a
linear autoencoder (the same optimization problem solved by SVD/PCA), which uses a single dense layer for
the encoder (images to latents) and a single dense layer for the decoder (latents to images), with encoding and
decoding weights tied and a linear transfer function (with the same learning rate used for the nonlinear CAE).
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state variables z ∈ {1, . . . ,K}T , and they too may exhibit temporal dependencies; the discrete
state at time t may depend on its preceding value. These modeling assumptions are captured by an
autoregressive hidden Markov model (ARHMM), which specifies a joint distribution over continuous
and discrete state sequences,

p(x, z; θ) = p(z1) p(x1)
T∏

t=2

p(zt | zt−1; θ) p(xt | xt−1, zt; θ)

= πz1 N (x1 | µ1,Σ1)

T∏

t=2

Pzt−1,zt N (xt | Aztxt−1 + bzt , Qzt), (1)

where π ∈ ∆K specifies the initial distribution over discrete states, (µ1,Σ1) parameterize a Gaussian
initial distribution over continuous states, P ∈ [0, 1]K×K is a row-stochastic transition matrix, and
the parameters {Ak, bk, Qk}

K
k=1 specify the linear dynamics associated with each of the K discrete

states. These parameters are combined in the set θ = {π, µ,Σ, P, {Ak, bk, Qk}
K
k=1}.

We fit the ARHMM with expectation-maximization (EM). As in standard hidden Markov models
[43], the posterior expectations in the E-step are obtained via message passing in the chain-structured
discrete graphical model. The optimal dynamics parameters are found via weighted least squares
regression. We present results with ARHMMs with a single autoregressive lag.

The fitted ARHMM produces a discrete segmentation of the sequence of continuous latents out-
put by the CAE. We estimate the discrete states with the maximum a posteriori (MAP) state se-
quence z∗ = argmaxz p(z | x, θ∗), which we obtain via the Viterbi algorithm. The estimated state
sequence serves multiple purposes. As we will see, the discrete states may offer useful interpretations
of behavior as a sequence of discrete “syllables,” patterns of behavior identified by similar temporal
dynamics. Moreover, different discrete states may correspond to different patterns of neural activity,
and different mappings from neural activity to continuous latent states. We will leverage this feature
of the discrete segmentation when developing the Bayesian decoders next.

Decoding behavior from neural activity. Our ultimate goal is to develop a clearer understanding of
how neural activity maps to observed behavior (and vice versa). Probabilistic models of behavior offer
a useful means to that end. Specifically, probabilistic models like the ARHMM offer a set of latent
states that summarize behavioral time series, and thus a low-dimensional target for neural decoding.
We develop a nonlinear Bayesian decoder that combines neural recordings with the ARHMM prior to
yield a posterior distribution over behavioral videos given neural activity.

Ideally, we would learn the likelihood of the observed neural activity u ∈ R
T×N , where N is the

number of neurons, given the underlying discrete states z and continuous states x. With a good likeli-
hood model, we could combine it with the ARHMM prior to obtain a posterior distribution p(x, z | u)
for our Bayesian decoder. Unfortunately, learning a good likelihood model is challenging, so we take
an alternative approach in order to sidestep this problem.

Inspired by Burkhart et al. [44], we instead train feedforward neural networks to output conditional
distributions p(zt | ut−∆:t+∆) and p(xt | ut−∆:t+∆) over the discrete and continuous states, respec-
tively, given a window of neural activity. These are trained discriminatively, using the latent states
inferred from the behavioral data. Details of the architecture, training procedure, and hyperparameter
searches are in Appendix A.

We use Bayes’ rule to write p(ut−∆:t+∆ | zt) ∝ p(zt | ut−∆:t+∆)/p(zt), where the proportionality
constant p(ut−∆:t+∆) is constant with respect to zt. The numerator is given by the feedforward
networks and the denominator is the marginal distribution under a Markov chain, which for long
sequences is well-approximated by the stationary distribution. We plug in this ratio as a substitute for
the likelihood in a hidden Markov model, and then use standard message passing routines to sample
and compute expectations of z under the posterior p(z | u). Of course, this is the posterior distribution
under an approximate model of p(u | z); nevertheless, it suffices for combining the ARHMM prior
and the neural data in a Bayesian way.

We use the same technique to obtain posterior samples of the continuous states x, but here we condition
on both the neural data and a sample z ∼ p(z | u). Here, we need the marginal distribution p(xt | z),
which we obtain from a simple Kalman filter with time-varying dynamics parameters determined
by z. Given the marginal distribution and the conditional distribution output by the neural network,
we use the Kalman smoother to compute posterior expectations of the continuous latent states. In
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Figure 3: Segmenting behavioral traces and sampling new traces and videos from the generative model. A)
CAE latents are shown on held out test data over time, with background colors indicating the discrete state (K=4)
inferred for that time step using the ARHMM (colors are chosen to maximally differentiate states; colors do not
indicate the same states across different datasets). Transitions from rest to movement are easily detectable based
on the assigned colors. B) Similar to A) but the latents and states are generated by sampling from the ARHMM;
resulting traces are qualitatively similar to real traces, with similarly strong heterogeneity in smoothness in
different temporal segments. C) Discrete states are shown for 19 trials of the WFCI dataset, aligned to a right
lever grab in the behavioral task. The same states (labeled by the same colors as in A) and B) above) frequently
occur at similar points in each trial, indicating trial-locked state structure. Trial specific time points such as
the levers moving in and stimulus onset are overlaid. D) Two random frames from videos sampled from the
full generative model learned for each dataset; in each case the generated frames resemble real frames. See
Supplementary Videos C.4 for full generated videos.

doing so, we obtain a Bayesian estimate of the discrete and continuous states given the neural data.
Finally, given sample sequences x1:T we can again map these sequences through the CAE decoder to
obtain full videos y1:T sampled from the posterior.

Results

Nonlinear dimensionality reduction. We begin by quantifying the performance of the CAE. The
critical result here is that the behavioral videos can be embedded in a low-dimensional space (Fig. 2):
an embedding dimension D < 20 suffices to capture much of the structure visible in the mouse’s
behavior (though unsurprisingly very high-resolution details such as the tips of the whiskers are
blurred at this level of compression). Even linear autoencoders achieve decent compression, though
the nonlinear CAE outperforms the linear model consistently, particularly in frames where large paw
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Figure 4: Summary of decoding results. A) Confusion matrices of predicted vs actual inferred discrete states
for each dataset for the Bayesian decoder. A diagonal matrix corresponds to perfect decoding. States ordered
by usage in training data. The Bayesian decoder and feedforward decoder (not shown) perform similarly, both
outperforming chance. B) Both the Bayesian decoder and the feedforward decoder outperform baseline for CAE
latent predictions from neural activity. The percent improvement over baseline is shown as a function of the
number of discrete states used by the ARHMM prior for the Bayesian decoder.

motions occur (see Supplementary Videos C.1 for reconstructions). Importantly, for the WFCI dataset,
the CAE operates on both camera views simultaneously, allowing us to combine information from
multiple sources into one low-dimensional representation. Throughout the rest of the paper, we will
use CAEs with an 8-dimensional latent space for each dataset.

Segmentation of behavioral video. We fit ARHMMs to segment the behavior based on the dynamics
of the CAE latents. The segmentation corresponds to visible changes in the CAE latents (Fig. 3A).
With two ARHMM states, we segment the behavior roughly into moving vs still for all datasets (see
Supplementary Videos C.2 with K=2). With an increased number of ARHMM states, we see more
nuanced segmentation. We examined the reproducibility of these segmentations across trials in the
WFCI dataset; clear trial-locked state structure is visible in Fig. 3C, indicating that these models are
capturing reproducible structure in the CAE latents. We also examined the reproducibility of these
segmentations across mice (Fig. A2), and find that a similar trial-locked state structure is shared
across multiple animals.

Sampling from the full generative model. The ARHMM fit to data serves as a generative model
of behavioral videos. First, we sample forward from the ARHMM with learned parameters θ∗

and most likely state sequence z∗ to obtain continuous state sequences x1:T (Fig. 3B). We then
feed the sequence of continuous latents into the CAE decoder to obtain novel synthetic behavioral
videos y1:T (see Supplementary Videos C.4). The resulting generative process is clearly not perfect;
there are occasional distorted frames, and given enough viewing time it is easy for human observers to
distinguish real versus sampled movies. Nevertheless, many generated frames qualitatively resemble
real frames (Fig. 3D) and we can see the mouse transitioning between still and moving in a fairly
natural way in the sampled videos, indicating that the generative model places significant probability
mass near the space of real behavioral videos.

Bayesian decoding of behavioral states, latents, and full videos. We use this generative ARHMM
model as the basis of a fully Bayesian decoder that operates on neural activity to reconstruct mouse
behavior. We first fit separate feedforward neural network decoders to predict discrete states and CAE
latents, and then incorporate these decoders into a fully Bayesian decoder (see Methods). We choose
the number of states for the ARHMM based on Bayesian CAE mean squared error on validation data
(WFCI: 16 states, NP: 8, NP-zoom: 4). We compare decoding performance to baseline predictions
which are defined as the most common state (discrete decoder) and the mean value of the CAE latents
(continuous decoder) on training data.

Decoder predictions of both continuous CAE latents and discrete ARHMM states are above chance
across datasets (Fig. 4). Consistent with previous work [8, 9], we find that the neural signals recorded
in these experiments contain rich information about behavior. For discrete states, the confusion
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Figure 5: Example decoded ARHMM states and CAE latents for a held out WFCI test trial. A) Discrete state
probabilities inferred by the ARHMM for the behavioral data (top row); predictions from a feedforward model
operating on neural data (middle row); output of the Bayesian decoding model (bottom row). B) CAE latents
(black) are compared to predicted latents from a feedforward decoder (blue) and the Bayesian decoder (green).
The shaded region indicates ±3 posterior SDs, output by the Bayesian posterior. C) Example frames of the real
behavioral video (top row) compared to the Bayesian decoded frames (bottom row); see Supplementary Videos
C.3 for full details.

matrices of actual vs predicted states (Fig. 4A), sorted by usage of the actual states in the training
data, show a diagonal structure, reflecting above-chance performance (WFCI: 53% correct vs 19%
baseline for 16 states, NP: 53% correct vs 32% baseline for 8 states, NP-zoom: 67% correct vs 37%
baseline for 4 states; feedforward decoding accuracy is comparable to Bayesian).
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For the continuous latents, the Bayesian decoder improves over baseline MSE for latent trace predic-
tion by 77% for WFCI and 67% in the NP-zoom dataset (Fig. 4B). The Bayesian decoder slightly
outperformed feedforward decoders; feedforward decoders in turn outperformed simple linear de-
coders (results not shown). The Bayesian decoder offers less improvement (37%) in the NP dataset,
which may seem surprising since the NP-zoom behavioral video is simply a crop of the NP video.
Our interpretation is that the variance in the CAE latents extracted from the NP video are dominated
by the location of the mouse’s paws in space, and the brain regions recorded from in this experiment
carried much more information about the discrete states and the facial pose than absolute paw location.
Future work analyzing data from a richer variety of brain regions will further test this hypothesis.

Finally, Fig. 5 shows the feedforward and Bayesian decoder predictions for discrete states and CAE
latents for an example test trial from the WFCI dataset. See Supplementary Figs. A5 and A6 for
example trials for NP-zoom and NP datasets. The Bayesian decoder also provides valuable information
at each time step about the uncertainty of the CAE latents — this information is not directly available
from the feedforward decoder. In Supplementary Videos C.3 we show several samples of the full
decoded video next to the real video, to provide a more detailed illustration of the posterior variability.

Discussion

We have introduced a framework for the compression, segmentation, generation, and decoding of
behavioral videos. Our approach builds on previous work that used ARHMMs to segment behavioral
videos [24, 28]. We extend these methods by incorporating nonlinear autoencoders (providing more
accurate and compact representations of the video signal) and introducing a novel Bayesian decoding
approach that exploits this ARHMM prior backbone; the resulting generative model and decoder can
output accurate full-resolution behavioral videos, to our knowledge for the first time. We demonstrate
the application of this framework to multiple behavioral paradigms and neural recording technologies.

A few exciting directions for future work are clear. First, for simplicity, in this work we decomposed
our approach into individual compression, segmentation, and decoding steps. In principle it is possible
to train the graphical model in Fig. 1 in an end-to-end fashion. This approach may lead to improved
performance on compression and decoding metrics. Second, the ability to segment animal behavior
into reproducible syllables opens up new possibilities for neural data analysis, for example, novel
switching encoding models triggered by the segmentation output of the methods developed here [45];
these methods could also in principle be directly applied to the coordinates of tracked body parts from
pose tracking algorithms. Finally, our unsupervised compression approach does not allow us to easily
disentangle factors of variation in the behavior. For example, changes in arm position are generally
represented across all latent factors, hindering our ability to connect neural activity with particular
behaviors. Hybrid approaches that create a more interpretable representation of behavior, through
the incorporation of labeled data from pose tracking algorithms, or from the timing of task-related
variables (e.g., stimulus onset), seem particularly promising.

We hope to facilitate the application of these methods to a variety of behavioral datasets. A python
implementation of our pipeline is available at https://github.com/ebatty/behavenet, which is
based on the PyTorch [46], ssm [47], and Test Tube [48] libraries.

Acknowledgments We thank N. Steinmetz, M. Carandini, and K. Harris for generously making their data pub-

licly available. This work was supported by the Simons Foundation and the Gatsby Charitable Foundation, by NSF

NeuroNex Award DBI-1707398, and by NIH awards 5U19NS107613, 5U19NS104649, and 1U19NS113201.

Table 1: Author contributions.
EB MW SS DB TA SM WG JM AC JC SD SL LP

Conceptualization
Data collection

Data analysis
Code development

Writing
Editing

Funding acquisition

9

https://github.com/ebatty/behavenet


References

[1] Alex Gomez-Marin, Joseph J Paton, Adam R Kampff, Rui M Costa, and Zachary F Mainen. Big
behavioral data: psychology, ethology and the foundations of neuroscience. Nature neuroscience,
17(11):1455, 2014.

[2] Adam J Calhoun and Mala Murthy. Quantifying behavior to solve sensorimotor transformations:
advances from worms and flies. Current opinion in neurobiology, 46:90–98, 2017.

[3] John W Krakauer, Asif A Ghazanfar, Alex Gomez-Marin, Malcolm A MacIver, and David
Poeppel. Neuroscience needs behavior: correcting a reductionist bias. Neuron, 93(3):480–490,
2017.

[4] Gordon J Berman. Measuring behavior across scales. BMC biology, 16(1):23, 2018.

[5] Alexander Mathis, Pranav Mamidanna, Kevin M Cury, Taiga Abe, Venkatesh N Murthy, Macken-
zie Weygandt Mathis, and Matthias Bethge. Deeplabcut: markerless pose estimation of user-
defined body parts with deep learning. Technical report, Nature Publishing Group, 2018.

[6] Talmo D Pereira, Diego E Aldarondo, Lindsay Willmore, Mikhail Kislin, Samuel S-H Wang,
Mala Murthy, and Joshua W Shaevitz. Fast animal pose estimation using deep neural networks.
Nature methods, 16(1):117, 2019.

[7] Jacob M Graving, Daniel Chae, Hemal Naik, Liang Li, Benjamin Koger, Blair R Costelloe, and
Iain D Couzin. Fast and robust animal pose estimation. bioRxiv, page 620245, 2019.

[8] Simon Musall, Matthew T Kaufman, Steven Gluf, and Anne K Churchland. Movement-related
activity dominates cortex during sensory-guided decision making. BioRxiv, page 308288, 2018.

[9] Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Charu Bai Reddy, Matteo Carandini,
and Kenneth D. Harris. Spontaneous behaviors drive multidimensional, brainwide activity.
Science, 364(6437), 2019. ISSN 0036-8075. doi: 10.1126/science.aav7893. URL https:

//science.sciencemag.org/content/364/6437/eaav7893.

[10] Liam Paninski and JP Cunningham. Neural data science: accelerating the experiment-analysis-
theory cycle in large-scale neuroscience. Current opinion in neurobiology, 50:232–241, 2018.

[11] Shreya Saxena and John P Cunningham. Towards the neural population doctrine. Current
opinion in neurobiology, 55:103–111, 2019.

[12] Matthew Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and Sandeep R Datta.
Composing graphical models with neural networks for structured representations and fast
inference. In Advances in neural information processing systems, pages 2946–2954, 2016.

[13] Mijail D Serruya, Nicholas G Hatsopoulos, Liam Paninski, Matthew R Fellows, and John P
Donoghue. Brain-machine interface: Instant neural control of a movement signal. Nature, 416
(6877):141, 2002.

[14] David Sussillo, Paul Nuyujukian, Joline M Fan, Jonathan C Kao, Sergey D Stavisky, Stephen Ryu,
and Krishna Shenoy. A recurrent neural network for closed-loop intracortical brain–machine
interface decoders. Journal of neural engineering, 9(2):026027, 2012.

[15] Joshua I Glaser, Raeed H Chowdhury, Matthew G Perich, Lee E Miller, and Konrad P Kording.
Machine learning for neural decoding. arXiv preprint arXiv:1708.00909, 2017.

[16] Omid G Sani, Bijan Pesaran, and Maryam M Shanechi. Modeling behaviorally relevant neural
dynamics enabled by preferential subspace identification (psid). bioRxiv, page 808154, 2019.

[17] Matthew D. Golub, Chandramouli Chandrasekaran, William T Newsome, Krishna Shenoy, and
David Sussillo. Joint neural-behavioral models of perceptual decision making. Computational
and Systems Neuroscience (Cosyne), 2019.

[18] Nick Steinmetz, Marius Pachitariu, Carsen Stringer, Matteo Carandini, and Kenneth Har-
ris. Eight-probe Neuropixels recordings during spontaneous behaviors. 3 2019. doi: 10.
25378/janelia.7739750.v4. URL https://janelia.figshare.com/articles/Eight-probe_

Neuropixels_recordings_during_spontaneous_behaviors/7739750.

[19] Anne K Churchland, Simon Musall, Matthew T Kaufmann, Ashley L Juavinett, and Steven
Gluf. Single-trial neural dynamics are dominated by richly varied movements:dataset. 10 2019.
doi: https://dx.doi.org/10.14224/1.38599. URL http://repository.cshl.edu/38599/.

10

https://science.sciencemag.org/content/364/6437/eaav7893
https://science.sciencemag.org/content/364/6437/eaav7893
https://janelia.figshare.com/articles/Eight-probe_Neuropixels_recordings_during_spontaneous_behaviors/7739750
https://janelia.figshare.com/articles/Eight-probe_Neuropixels_recordings_during_spontaneous_behaviors/7739750
http://repository.cshl.edu/38599/


[20] Greg J Stephens, Bethany Johnson-Kerner, William Bialek, and William S Ryu. Dimensionality
and dynamics in the behavior of c. elegans. PLoS computational biology, 4(4):e1000028, 2008.

[21] Gordon J Berman, Daniel M Choi, William Bialek, and Joshua W Shaevitz. Mapping the
stereotyped behaviour of freely moving fruit flies. Journal of The Royal Society Interface, 11
(99):20140672, 2014.

[22] Michael B Orger and Gonzalo G de Polavieja. Zebrafish behavior: opportunities and challenges.
Annual review of neuroscience, 40:125–147, 2017.

[23] Semih Gunel, Helge Rhodin, Daniel Morales, João Compagnolo, Pavan Ramdya, and Pascal Fua.
Deepfly3d: A deep learning-based approach for 3d limb and appendage tracking in tethered,
adult drosophila. In bioRxiv, 2019.

[24] Alexander B Wiltschko, Matthew J Johnson, Giuliano Iurilli, Ralph E Peterson, Jesse M Katon,
Stan L Pashkovski, Victoria E Abraira, Ryan P Adams, and Sandeep Robert Datta. Mapping
sub-second structure in mouse behavior. Neuron, 88(6):1121–1135, 2015.

[25] E. Kelly Buchanan, Akiva Lipschitz, Scott W. Linderman, and Liam Paninski. Quantifying the
behavioral dynamics of C. elegans with autoregressive hidden Markov models. Workshop on
Worm’s Neural Information Processing at the 31st Conference on Neural Information Processing
Systems, 2017.

[26] Antonio C Costa, Tosif Ahamed, and Greg J Stephens. Adaptive, locally linear models of
complex dynamics. Proceedings of the National Academy of Sciences, 116(5):1501–1510, 2019.

[27] Anuj Sharma, Robert E. Johnson, Florian Engert, and Scott W. Linderman. Point process
latent variable models of freely swimming larval zebrafish. Advances in Neural Information
Processing Systems (NeurIPS), 2018.

[28] Jeffrey E Markowitz, Winthrop F Gillis, Celia C Beron, Shay Q Neufeld, Keiramarie Robertson,
Neha D Bhagat, Ralph E Peterson, Emalee Peterson, Minsuk Hyun, Scott W Linderman, et al.
The striatum organizes 3d behavior via moment-to-moment action selection. Cell, 174(1):44–58,
2018.

[29] Yuanjun Gao, Evan W Archer, Liam Paninski, and John P Cunningham. Linear dynamical
neural population models through nonlinear embeddings. In Advances in neural information
processing systems, pages 163–171, 2016.

[30] Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky,
Jonathan C Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg,
et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nature
methods, page 1, 2018.

[31] Scott W. Linderman*, Matthew J. Johnson*, Andrew C. Miller, Ryan P. Adams, David M. Blei,
and Liam Paninski. Bayesian learning and inference in recurrent switching linear dynamical
systems. In Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2017.

[32] Josue Nassar, Scott W. Linderman, Monica Bugallo, and Il Memming Park. Tree-structured recur-
rent switching linear dynamical systems for multi-scale modeling. In International Conference
on Learning Representations (ICLR), 2019.

[33] Scott W. Linderman, Annika L. A. Nichols, David M. Blei, Manuel Zimmer, and Liam Paninski.
Hierarchical recurrent state space models reveal discrete and continuous dynamics of neural
activity in C. elegans. bioRxiv, 2019. doi: 10.1101/621540.

[34] Nikhil Parthasarathy, Eleanor Batty, William Falcon, Thomas Rutten, Mohit Rajpal,
EJ Chichilnisky, and Liam Paninski. Neural networks for efficient bayesian decoding of natural
images from retinal neurons. In Advances in Neural Information Processing Systems, pages
6434–6445, 2017.

[35] Hassan Akbari, Bahar Khalighinejad, Jose L Herrero, Ashesh D Mehta, and Nima Mesgarani.
Towards reconstructing intelligible speech from the human auditory cortex. Scientific reports, 9
(1):874, 2019.

[36] Gopala K. Anumanchipalli, Josh Chartier, and Edward F. Chang. Speech synthesis from neural
decoding of spoken sentences. Nature, 568(7753):493–498, 2019.

11



[37] Shreya Saxena, Ian Kinsella, Simon Musall, Sharon H Kim, Jozsef Meszaros, David N Thi-
bodeaux, Carla Kim, John Cunningham, Elizabeth Hillman, Anne Churchland, et al. Localized
semi-nonnegative matrix factorization (locanmf) of widefield calcium imaging data. bioRxiv,
page 650093, 2019.

[38] James J Jun, Nicholas A Steinmetz, Joshua H Siegle, Daniel J Denman, Marius Bauza, Brian
Barbarits, Albert K Lee, Costas A Anastassiou, Alexandru Andrei, Çağatay Aydın, et al. Fully
integrated silicon probes for high-density recording of neural activity. Nature, 551(7679):232,
2017.

[39] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[40] E. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky. Bayesian nonparametric inference of
switching dynamic linear models. IEEE Transactions on Signal Processing, 59(4):1569–1585,
April 2011. ISSN 1053-587X. doi: 10.1109/TSP.2010.2102756.

[41] Samuel Ainsworth, Nicholas J. Foti, Adrian K. C. Lee, and Emily B. Fox. Interpretable vaes for
nonlinear group factor analysis. CoRR, abs/1802.06765, 2018.

[42] Drausin Wulsin, Emily Fox, and Brian Litt. Parsing epileptic events using a markov switching
process model for correlated time series. In Sanjoy Dasgupta and David McAllester, editors,
Proceedings of the 30th International Conference on Machine Learning, volume 28 of Proceed-
ings of Machine Learning Research, pages 356–364, Atlanta, Georgia, USA, 17–19 Jun 2013.
PMLR. URL http://proceedings.mlr.press/v28/wulsin13.html.

[43] Lawrence R Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[44] Michael C Burkhart, David M Brandman, Carlos E Vargas-Irwin, and Matthew T Harrison.
The discriminative Kalman filter for nonlinear and non-Gaussian sequential Bayesian filtering.
arXiv preprint arXiv:1608.06622, 2016.

[45] Ziqiang Wei, Hidehiko Inagaki, Nuo Li, Karel Svoboda, and Shaul Druckmann. An orderly
single-trial organization of population dynamics in premotor cortex predicts behavioral variabil-
ity. Nature Communications, 10, 2019.

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

[47] S Linderman. ssm. https://github.com/slinderman/ssm, 2019.

[48] W.A. Falcon. Test tube. https://github.com/williamfalcon/test-tube, 2017.

12

http://proceedings.mlr.press/v28/wulsin13.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/slinderman/ssm
https://github.com/williamfalcon/test-tube

