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Owing to production, usage, and disposal of nano-enabled products as well as

fragmentation of bulk materials, anthropogenic nanoscale particles (NPs) can enter the

natural environment and through different compartments (air, soil, and water) end up

into the sea. With the continuous increase in production and associated emissions and

discharges, they can reach concentrations able to exceed toxicity thresholds for living

species inhabiting marine coastal areas. Behavior and fate of NPs in marine waters

are driven by transformation processes occurring as a function of NP intrinsic and

extrinsic properties in the receiving seawaters. All those aspects have been overlooked

in ecological risk assessment. This review critically reports ecotoxicity studies in which

size distribution, surface charges and bio−nano interactions have been considered for

a more realistic risk assessment of NPs in marine environment. Two emerging and

relevant NPs, the metal-based titanium dioxide (TiO2), and polystyrene (PS), a proxy for

nanoplastics, are reviewed, and their impact on marine biota (from planktonic species

to invertebrates and fish) is discussed as a function of particle size and surface charges

(negative vs. positive), which affect their behavior and interaction with the biological

material. Uptake of NPs is related to their nanoscale size; however, in vivo studies clearly

demonstrated that transformation (agglomerates/aggregates) occurring in both artificial

and natural seawater drive to different exposure routes and biological responses at

cellular and organism level. Adsorption of single particles or agglomerates onto the body

surface or their internalization in feces can impair motility and affect sinking or floating

behavior with consequences on populations and ecological function. Particle complex

dynamics in natural seawater is almost unknown, although it determines the effective

exposure scenarios. Based on the latest predicted environmental concentrations for

TiO2 and PS NPs in the marine environment, current knowledge gaps and future

research challenges encompass the comprehensive study of bio−nano interactions.

As such, the analysis of NP biomolecular coronas can enable a better assessment

of particle uptake and related cellular pathways leading to toxic effects. Moreover, the

formation of an environmentally derived corona (i.e., eco-corona) in seawater accounts

for NP physical–chemical alterations, rebounding on interaction with living organisms

and toxicity.
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INTRODUCTION

Engineered nanoscale materials (NMs) and particles (NPs) are
used extensively in a wide range of emerging technologies and
commercial applications including biomedicine, pharmaceuticals
and personal care products, renewable energy, and electronic
devices (Nel et al., 2006). According to EU recommendations,
a nanomaterial is defined as “a material with one or more
dimensions in the size range 1–100 nm” (European Commission
[EU], 2011). Another commonly agreed definition is “any
organic, inorganic, or organometallic materials presenting
specific chemical, physical, and/or electrical properties that
vary as a function of the size and shape of the material”
(Hochella et al., 2019).

Owing to production, usage, and disposal of nano-
enabled products as well as fragmentation of bulk materials,
anthropogenic NPs can enter the natural environment, and
through different compartments (air, soil, and water), end up
into the sea (Corsi et al., 2014). With the continuous increase
in production and associated emissions and discharges as well
as due to weathering processes occurring during various stages
of the product life cycle, they can reach concentrations able to
exceed toxicity thresholds for living species inhabiting marine
coastal areas (Garner et al., 2017; Lebreton and Andrady, 2019).
Modeled predicted environmental concentrations (PECs) of
the most common inorganic and organic engineered NMs
in surface waters, based on production, usage, disposal, and
fragmentation, have been estimated in the range of <15 µg L−1

for nanoplastics, around µg L−1 for titanium dioxide (TiO2)
and zinc oxide (ZnO) NPs, and ng L−1 for silver (Ag) NPs,
fullerenes, carbon nanotubes (CNTs), and cerium oxide (CeO2)
(Gottschalk et al., 2013; Sun et al., 2014; Lenz et al., 2016; Renner
et al., 2018). PECs are likely to increase in the near future due to
the growing production and commercial applications of nano-
enabled products and fragmentation of larger particles already
present in the environment as for instance for nanoplastics
(Andrady, 2017).

Particles reaching the sea may substantially differ in size as
well as in physical chemical properties from primary particles
incorporated in commercial products (Lowry et al., 2012;
Mitrano et al., 2015; Nowack and Mitrano, 2018). During
synthesis, attributes as chemical composition, size, geometry,
crystallinity, porosity, roughness, hydrophobicity/hydrophilicity
and surface coating are tightly controlled, resulting in small
particles having unique chemical and physical properties. They
reach the sea following the same routes of legacy and emerging
chemical pollutants through domestic and industrial discharges
and mismanaged waste disposal from which they ultimately
are transported to wastewater treatment plants (WWTPs) and
released in sewage effluents (Baalousha et al., 2016; Garner
et al., 2017; Choi et al., 2018). Once reaching sea water,
being rarely homogeneous, they interact with high amounts
of ionic species (released by mineral salts) and inorganic and
organic colloidal particles [i.e., iron oxides and natural organic
matter (NOM)], which affect their fate and behavior (Keller
et al., 2010; Petosa et al., 2010; von der Kammer et al., 2012;
Praetorius et al., 2014).

Both heteroaggregation (i.e., the aggregation between non-
homologous particles) and homoaggregation (i.e., aggregation
of NPs among themselves) represent important processes
(Praetorius et al., 2020) that will occur in the presence of
relatively high pH (8) and ionic strength such as in sea water
[mainly due to chloride (Cl−), sodium (Na+), sulfate (SO2−),
magnesium (Mg2+), calcium (Ca2+), and potassium (K+)]
(Therezien et al., 2014).

Biopolymers produced by marine phytoplankton, known
as exopolymeric substances (EPS), can influence aggregation
and transformation of NPs in aqueous media. Indeed, they
can be present as dissolved organic matter (DOM) or as
colloidal particles [particulate organic matter (POM)], namely,
transparent exopolymer substances (TEP) (Long and Azam,
1996; Passow, 2002; Mari et al., 2017). Furthermore, NPs
can promote the transition of such DOM molecules into
suspended particles, thereby altering the DOM–POM balance
of organic matter in seawater (Chen et al., 2011; Shiu
et al., 2019). EPS can change their assembly kinetics in the
presence of NPs, following both hydrophobic and electrostatic
interactions, ultimately functioning as nucleation sites for
phytoplanktonic exudates (Chen et al., 2011; Adeleye and
Keller, 2014; Adeleye et al., 2014; Kadar et al., 2014). Given
the abundance of natural colloids in coastal and oceanic
waters, it is expected that heteroaggregation outclasses the
contribution of homoaggregation in determining NP aquatic
behavior and environmental fate. NP interplay with ubiquitous
organic and inorganic colloids takes shape in highly complex
heteroaggregation processes, whose outcomes were exhaustively
delineated by Praetorius et al. (2020). In particular, the behavior
of natural colloids will be more relevant in determining
the expected environmental fate of NP in heteroaggregates
than previsions based solely on homoaggregation processes.
In this regard, different heteroaggregation pathways can be
envisaged, starting with NP-colloid dimer formation and
evolving toward more complex arrangements. Ultimately,
however, natural colloid-attached NPs will generally follow the
transport dictated by the larger suspended particulate matter,
postulating consequences for interactions with living entities
and ecotoxicity.

Differently, interaction of NPs with dissolved biomolecules
can, in certain conditions, lead natural organic matter (NOM)
into the formation of a nanoscale coating analogous to
protein corona in mammalian systems, potentially affecting
aggregation/deposition and transport of the NPs in fluids,
but more importantly uptake and toxicity to marine species
(Lundqvist et al., 2008; Monopoli et al., 2011). Such new
extrinsic properties related to the formation of a protein corona
may affect consistently the biological activity of NPs in terms
of biodistribution, cellular uptake (biokinetics), and ultimate
toxicity (Marques-Santos et al., 2018; Grassi et al., 2019).

Overall, a deeper understanding of NP eco-interactions is
crucial for predicting their fate and ecotoxicity. Owing to
the complexity in predicting and modeling NP properties and
interactions in natural seawater (NSW), ecotoxicity could be
a valuable tool for both screening and categorizing NPs for
risk assessment purposes. On the other hand, more realistic
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exposure studies and the formulation of ad hoc guidance
protocols are required for a proper ecological risk assessment of
nanoscale particles (Corsi et al., 2014, 2018; Petersen et al., 2015;
Holden et al., 2016).

The lack of suitable analytical methods for a fast and
cost-efficient detection of anthropogenic particles in aquatic
matrices is one of the major constraints for the comprehensive
understanding of the biogeochemistry of anthropogenic NPs,
such as TiO2 and PS NPs (da Silva et al., 2011; Huvet et al., 2016;
Schwaferts et al., 2019).

In order to understand the potential effects and toxicity
mechanisms of these anthropogenic NPs to the marine biota
and provide methodologies for environmental risk assessment
purposes, several ecotoxicity studies have focused on acute
exposures of marine model organisms at the base of the food
webs, ranging from phytoplankton and zooplankton to benthic
filter feeders. Most of the studies reported are representative of
worst-case scenarios in coastal areas, where these anthropogenic
NPs have been predicted to reach high concentrations (Tovar-
Sánchez et al., 2013; Labille et al., 2020).

This review critically reports ecotoxicity studies in which
size distribution, surface charges, and bio–nano interactions
have been considered for a more realistic risk assessment of
anthropogenic NPs in marine environment. Two emerging and
relevant NPs, the metal-based TiO2 and polystyrene (PS) as
a proxy for nanoplastics, are reviewed, and their impact on
marine biota (from planktonic species to invertebrates and fish)
is discussed as a function of particle size and surface charges
(negative vs. positive), which affect their behavior and interaction
with the biological material.

TiO2 AND PS NANOPARTICLE
PROPERTIES

Titanium dioxide NPs have been largely included in several
commercial products (industrial, pharmaceutical, and food) due
to their brightness, high refractive index, and UV resistance
(Vance et al., 2015). Their photoelectronical properties allow
solar energy conversion and photocatalytic chemical degradation
piloting specific nanotechnological application as for instance
in solar cells and in water and wastewater treatment including
disinfection due to the generation of reactive species upon UV
irradiation (390 nm) (Carp et al., 2004; Chong et al., 2010).
Upon photoexcitation, nanoscale TiO2 produces an electron-
hole pair that may migrate to the particle surface where
it is involved in surface oxidation reactions or remove an
electron from hydroxide, producing the hydroxyl radical. Such
photochemical properties rebound on their safety once reaching
the natural environment both from direct application (e.g.,
water purification) or indirectly once released from commercial
products (e.g., sunscreen, paints, and textiles) (Robichaud
et al., 2009; Botta et al., 2011; Windler et al., 2012). Anionic
species, mainly carbonate and chloride, naturally occurring in
seawater media, have been shown to significantly reduce TiO2
NP photoreactivity and increase aggregation, thus, having a
strongest role in suppressing hydroxyl radical generation by

substituting hydroxyl ions. Haynes et al. (2017) recently reviewed
photocatalytic effects of TiO2 NPs on aquatic species underlining
how important it is to define environmental relevant factors in
water media able to affect NP physico-chemical properties and,
therefore, behavior and effects.

Polymeric-based NPs, such as PS NPs, may enter the
environment both from primary sources, when present as
newly synthesized nano-polymers, which are not retained by
WWTPs (Blair et al., 2017), and secondary sources, as nanoscale
polymers derived from the degradation of mismanaged products
(Lambert et al., 2013; Andrady, 2017). Polymeric NPs have
been used in several nanotechnology applications, ranging
from biosensors and photonics (Velev and Kaler, 1999) to
cosmetics (Guterres et al., 2007; Leslie, 2014; Hernandez et al.,
2017), food nanocomposites (Silvestre et al., 2011; Hernandez
et al., 2019), and drug nanocarriers (Jiménez-Fernández et al.,
2014). In nanomedicine, many in vitro studies in human cell
lines have been carried out using functionalized PS NPs to
provide insights into the specific mechanisms of cell recognition,
signaling cascade, and pathways of toxicity (e.g., Johnston et al.,
2010; Bexiga et al., 2011; Liu et al., 2011; Salvati et al., 2011;
Fröhlich et al., 2012; Wang et al., 2013; Loos et al., 2014).
The most common PS NPs are carboxylate (PS-COOH) and
amino-modified (PS-NH2), corresponding to a negative and
positive surface, charge respectively, usually associated to peculiar
cellular pathways (Bexiga et al., 2011, 2014; Salvati et al., 2011;
Wang et al., 2013).

From a wider environmental perspective, potential emissions
of PS NPs are also associated with the slow and inevitable
breakdown of large PS-based products once released in the
marine environment, due to mechanical processes (Zhang et al.,
2012; Kuo et al., 2014), weathering agents (e.g., UV radiation
and high temperature) (Lambert and Wagner, 2016), and biota
(Davidson, 2012).

An overwhelming part of the scientific research has
been dedicated to the study of the occurrence, distribution,
transformation, and impacts of marine litter. The continuous
degradation of plastic debris in the water column, down to
the nano-fraction, has been at first hypothesized (Cózar et al.,
2014) and then confirmed by laboratory (Zhang et al., 2012;
Gigault et al., 2016; Lambert and Wagner, 2016; Hernandez
et al., 2019; Zhu et al., 2020) and in situ studies (Ter Halle et al.,
2017; Schirinzi et al., 2019), raising concerns due to the potential
harm to the marine biota associated to the lower plastic size
(as reviewed by Chae and An, 2017). In this context, the term
nanoplastics usually refers to polymers with various colors and
shapes (e.g., fiber, film, spherule, and fragment), and sizes below
1 µm, thus, comprehensive of the sub-micron and nanometric
fraction (Hartmann et al., 2019).

NP FATE AND BEHAVIOR IN SEA WATER

Owing to their growing production and continuous inflow into
the environment (Gottschalk and Nowack, 2011; Garner et al.,
2017), anthropogenic NPs such as TiO2 and PS NPs are likely
to be incorporated in natural biogeochemical cycles, though
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it is difficult to determine their exact contribution alongside
naturally occurring NPs. Once in the marine environment,
anthropogenic NPs should not be conceived as single entities, but
as a dynamic system of particles interacting with the surrounding
ionic species and other colloids. To address these features, several
heteroaggregation studies have investigated the individual role
of monovalent (NaCl) and divalent salts (MgCl2, CaCl2) and
their valences on NP behavior and stability as well as NOM
model compounds such as fulvic acid (FA), tannic acid (TA), and
humic acid (HA) in simplified systems (Romanello and Fidalgo
de Cortalezzi, 2013; Cai et al., 2018; Danielsson et al., 2018;
Singh et al., 2019).

In order to describe these complex interactions, the
Derjaguin–Landau–Verwey–Overbeek (DLVO) theory is
commonly applied (Romanello and Fidalgo de Cortalezzi, 2013;
Cai et al., 2018), although it is restrictive to the balance between
electrostatic and van der Waals forces. Several extensions of
the DLVO theory have also been proposed to model inter-NP
interactions in suspensions, for example, considering surface
roughness, hydration forces, and steric effects (Wu et al., 1999;
Walsh et al., 2012; Cardellini et al., 2019; Praetorius et al., 2020).

As a result of the NP intrinsic (e.g., size, shape, roughness, and
crystallinity) and extrinsic (e.g., temperature, ionic strength and
composition, NOM) properties (Petosa et al., 2010; Baalousha,
2017), NPs may undergo rapid transformations in NSW, which
drive NP fate and determine the presence (or absence) of effects
on the marine biota (Matranga and Corsi, 2012; Corsi et al., 2014;
Blasco et al., 2015).

In order to ascertain NP features in natural exposure
media, light scattering [i.e., dynamic light scattering (DLS)]
and electrophoretic mobility (EM) analyses are among the most
common techniques employed, providing information about NP
hydrodynamic size, agglomeration kinetics, and surface charge
(da Silva et al., 2011; Ribeiro et al., 2017; Cai et al., 2018;
Mourdikoudis et al., 2018). Themeasurement of ζ-potential (mV)
by EM can be used as an indicator of the NP surface charge
and, thus, colloidal stability in the medium, with low absolute
values usually associated with the screening of NP surface charge
(Mourdikoudis et al., 2018). DLS and EM techniques are usually
coupled with scanning or transmission electron microscopy
(SEM/TEM), which allow to display the agglomeration state of
colloidal suspensions and also the specific interactions occurring
at the biological surfaces, such as bacteria (Gupta et al., 2016; Fu
et al., 2018), microalgae (e.g., Chen et al., 2011; Wang et al., 2016;
Bergami et al., 2017; González-Fernández et al., 2019; Seoane
et al., 2019), and invertebrate cells (e.g., Canesi et al., 2016a,b;
Ciacci et al., 2019). The limit of these techniques is the high
concentration of the sample required (usually in the range of µg
ml−1) (Ribeiro et al., 2017), which often do not reflect PECs for
the anthropogenic NPs, in the range of µg L−1 for TiO2NPs and
ng L−1 for PS NPs (da Silva et al., 2011; Gottschalk et al., 2013).

TiO2NP Behavior in Seawater Media
One of the most common TiO2 NPs tested in ecotoxicity studies
is the P25 powder, characterized by a spheroid irregular structure,
mostly containing anatase and with a primary size of 24 ± 7 nm
(Brunelli et al., 2013; Della Torre et al., 2015b). Under controlled

laboratory conditions, TiO2 stock suspensions are extensively
sonicated prior to use to ensure a good dispersion in the exposure
media, as described by Brunelli et al. (2013). Once in NSW,
TiO2 NPs have been shown to quickly agglomerate, reaching
micrometric sizes and wide size distribution within the first
minutes after the preparation of the colloidal suspensions (Della
Torre et al., 2015b; Hu et al., 2018; Ciacci et al., 2019). The same
behavior has been observed in standardmarine algal culture (F/2)
medium, characterized by high salt content (Morelli et al., 2018).
In solutions with high ionic strength, divalent cations (Ca2+ and
Mg2+) have a major role in TiO2 aggregation, since they can
adsorb onto NP surfaces, neutralizing the negative charge at pH
values greater than the point of zero charge (French et al., 2009;
Romanello and Fidalgo de Cortalezzi, 2013). On the contrary,
TiO2 nanoscale aggregates have been found soon after dispersion
inmedia characterized by lower ionic strength, such as freshwater
(Sillanpää et al., 2011), and absence of NOM, such as phosphate-
buffered saline (PBS) (Grimaldi et al., 2013) and artificial sea
water (ASW) (Brunelli et al., 2013). Both the agglomerate size
and rate in NSW have been found to increase with TiO2 NP
concentration, due to the enhanced collision among NPs (Hu
et al., 2018). The surface of TiO2 NPs is dominated by three
groups (i.e., TiO−4/3, TiO2

−2/3, and TiO3) (Bourikas et al.,
2001), displaying a point of zero charge at pH 6–8, depending
on the electrolytes present in solution (Romanello and Fidalgo
de Cortalezzi, 2013). In natural marine waters, TiO2 NPs usually
display a negative surface charge, which is strongly reduced
(in absolute values) in NSW, due to the ionic strength-induced
compression of NP electrical double layer (Brunelli et al., 2013;
Romanello and Fidalgo de Cortalezzi, 2013; Morelli et al., 2018).
Owing to their strong agglomeration behavior, TiO2 NPs have
been shown to settle in NSW in a concentration-dependent
manner, with the removal of 50% up to 80% of the suspended
NPs over 6 h observed at 10 and 50 µg ml−1, respectively (Della
Torre et al., 2015b). Doyle et al. (2015) observed that up to
97 ± 5.1% of TiO2 NPs were present as heteroaggregates in
NSW incorporated in the marine snow, with enhancing settling
rates over 72 h. Similarly, Morelli et al. (2018) reported an initial
constant sedimentation rate of TiO2 NPs in the F/2 medium,
with 58% of TiO2 settling at 6 h after dispersion, followed by
a 92% removal reached at 24 h. Although some nanoscale TiO2
aggregates (200 nm) may still remain in suspension, as shown by
DLS analysis of TiO2 NPs at 1 µg ml−1 after 24 h in NSW from
the Adriatic Sea (Ciacci et al., 2019), the complete sedimentation
of TiO2 NPs can be reached after 50 h, regardless of the presence
of NOM (Brunelli et al., 2013) or trace metals such as cadmium
at 100 µg L−1 (Della Torre et al., 2015b), indicating that high
ionic strength (i.e., salinity from 35h to 41h)mainly determines
the behavior of TiO2 NPs in the marine environment. On the
opposite, TiO2 suspensions in ultrapure water appear to be stable
over time (6 h) (Della Torre et al., 2015b).

Several studies have explored the effect of NOM on
TiO2 stability and behavior in aquatic environments to
correlate NOM–NP interactions to the toxicity observed in
aquatic species (reviewed in Grillo et al., 2015). However,
quantitative predictions are difficult due to the heterogeneity and
variability of colloidal interactions, which are usually assessed in
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simple systems with single ionic species and/or NOM analogs
(Praetorius et al., 2020). NOM model compounds, such as
FA, TA, and HA, generally exert a stabilizing effect of TiO2
suspensions via adsorption or hydrophobic interactions, with
an increase in NP ζ-potential toward more negative values
(Romanello and Fidalgo de Cortalezzi, 2013; Mwaanga et al.,
2014; Danielsson et al., 2018). For example, in the case of
Suwannee River FA, functional carboxylic and phenolic groups
may interact with TiO2 (anatase) active surface sites upon
adsorption, with consequent electrostatic repulsion and steric
hindrance (Danielsson et al., 2018). Such NOM sorption is
inversely pH dependent, with increasing electrostatic repulsion
at pH > 8, since NOM molecules become highly ionized and
thus negatively charged, similar to TiO2 NPs (Mwaanga et al.,
2014). Bioavailability (and toxicity) of TiO2 NPs may also depend
on the specific fraction of NOM, which preferentially sorb onto
TiO2 NPs. Mwaanga et al. (2014) reported a higher sorption
of NOM compounds characterized by high molecular weight to
TiO2 NPs, regardless of NOMconcentration. This is in agreement
with studies on other engineered NPs, showing that NP stability
increases in the presence of NOM with high molecular weight
(Louie et al., 2015). However, the stabilizing effect of NOM can be
masked in high ionic strength media, in which TiO2 aggregation
is favored by the interaction with divalent cations, which can
lead to specific ion–NOM bridges (Romanello and Fidalgo de
Cortalezzi, 2013; Luo et al., 2018).

The effect of ocean acidification on TiO2 agglomeration
dynamics in the marine environment has been evaluated by Shi
et al. (2019). With respect to nanoscale agglomerates (average
of 334.8 nm) formed in NSW at an ambient pH of 8.1,
the authors observed an increase in TiO2 NP size at lower
pH, reaching an average of 439.8 and 537.1 nm at pH of
7.8 and 7.4, respectively. These results suggest that, under
future ocean acidification scenarios, these anthropogenic NPs as
large agglomerates could further change their behavior and are
bioavailable to different species.

PS NP Behavior in Seawater Media
Several ecotoxicity studies reported the characterization of PS NP
behavior in filtered NSW in simplified enclosed systems under
controlled laboratory conditions, but with the attempt to mimic
natural environmental conditions. These studies indicate that
nanoplastic behavior and fate in temperate coastal regions mainly
depend on their size and surface functionalization, with major
differences observed between plain PS and PS-COOHvs. PS-NH2
NPs, as reported below.

Negatively charged PS NPs, such as PS-COOH NPs, are
usually prone to agglomerate in the range of 0.9–1.8 µm soon
after dispersion in aqueous media characterized by high ionic
strength (>38h), basic pH, and NOM. Such agglomeration
phenomena are largely supported by the DLVO theory and
related extensions (Cai et al., 2018; Singh et al., 2019; Wu et al.,
2019). Examples are represented by microalgae culture medium
(Bergami et al., 2017) and NSW (Della Torre et al., 2014; Bergami
et al., 2016; Manfra et al., 2017; Tallec et al., 2018; Grassi et al.,
2019), where slight differences in NP agglomerates and size
distribution are potentially related to the spatial and temporal

variability in seawater chemical composition (i.e., organic matter
and ions). In the studies mentioned above, large agglomerates
of PS-COOH NPs were related to a wide size distribution
and a reduced negative surface charge, as suggested by low
ζ-potential values, corresponding to about −10 mV, compared to
their values in ultrapure water, up to −66 mV (Bergami et al.,
2017). Contrary to these previous works, González-Fernández
et al. (2019) observed that PS-COOH NPs in seawater kept a
small hydrodynamic size, which was stable for 5 h. The authors
hypothesized that the different behavior in NSW was related to
complex NP–environmental interactions, although the variability
in PS NP intrinsic properties, such as particle density (1.03 g/cm3

vs. 1.05–1.06 g/cm3 in previous studies) or experimental
conditions (constant rotation vs. static test in previous studies),
might have dictated such different agglomeration.

Plain PS NPs with no functionalization typically exhibited a
negative surface charge and a behavior in NSW similar to PS-
COOH NPs, with a slight (Brandts et al., 2018) or pronounced
(Tallec et al., 2018; Ciacci et al., 2019) increase in the average
hydrodynamic size with respect to their optimal dispersion in
ultrapure water, as well as a decrease in absolute ζ-potential.
Stability of plain PS NPs in NSW has been reported in the
first hours after the preparation of the suspensions (Mishra
et al., 2019), though time-dependent agglomeration that occurred
later at 24 and 48 h (Brandts et al., 2018; Tallec et al., 2018;
Mishra et al., 2019). From DLS data, Brandts et al. (2018)
also suggested the sorption capacity of carbamazepine, one of
the most common pharmaceuticals found in the environment,
onto PS NPs, while NP interaction with heavy metals mostly
depends on their speciation in the aquatic environments (Singh
et al., 2019). Differently from plain and PS-COOH NPs, once
suspended in NSW, positively charged PS NPs usually display a
hydrodynamic size close to their nominal diameter (Wu et al.,
2019). For example, different batches of PS-NH2 NPs (50 nm)
from the Bangs Laboratories Inc., kept an average hydrodynamic
size ranging from 58 to 196 nm in different NSW media from
the Mediterranean region (Della Torre et al., 2014; Bergami
et al., 2016, 2017; Manfra et al., 2017; Pinsino et al., 2017;
Marques-Santos et al., 2018; Grassi et al., 2019), thus showing
no or slight agglomeration soon after dispersion. However, time-
resolved DLS measurements revealed a strong agglomeration
behavior of PS-NH2 in NSW after 48 and 72 h, with large
aggregates up to 5 µm, which were more prone to sedimentation
(Varó et al., 2019).

In terms of interaction with NOM, HA was found to stabilize
negatively charged PS-based nanoplastics (100 nm), such as plain
PS and PS-COOH NPs, due to electrostatic repulsion between
negative charges and steric effect (Wu et al., 2019). On the
contrary, once adsorbed onto positively charged PS-NH2 NPs,
HA was able to reverse the surface charge at HA concentrations
above 5 mg L−1, inducing PS-NH2 to agglomerate at 10 mg L−1

HA (Wu et al., 2019). Divalent cations (e.g., Ca2+ and Mg2+)
present in seawater can induce higher agglomeration of PS NPs,
compared tomonovalent ones (Na+) (Cai et al., 2018; Singh et al.,
2019). In a CaCl2 solution containing HA, high ionic valence was
found to facilitate bridging effect between nanoplastics and HA,
enhancing complexation (Singh et al., 2019). PS NPs (25 nm)
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with different surface functionalization have also been shown
to easily assemble with DOM in NSW due to hydrophobic
interactions, with potential repercussions on carbon dynamics in
marine environments even at low NP concentrations (10µg L−1)
(Chen et al., 2018).

In nano-ecotoxicity studies, the analysis of NP aggregation
kinetics and stability in aqueous suspensions over time is
crucial to correctly interpret the biological effects observed,
toward a more reliable environmental risk assessment. It is
important to underline that the considerations from the studies
reported are referred to temperate coastal regions and may
be extended to tropical regions, although more case studies
focusing on NP characterization under different environmental
conditions are needed.

In polar marine environments, additional factors, such as the
low sea surface temperature (below 0◦C) and the interaction with
sea ice may play an important role in determining the behavior
and fate of anthropogenic NPs, although they have been poorly
studied. Bergami et al. (2019) measured the size parameters of
functionalized PS NPs in NSW collected from a coastal region in
the maritime Antarctic. Secondary characterization in Antarctic
NSW (salinity 34h and pH 8.0) revealed the initial formation
of PS nano-scale agglomerates in NSW at 0◦C, increasing over
time until an average of 835 and 452 nm, for PS-COOH and PS-
NH2 NPs respectively. Additionally, when PS NP suspensions
were incubated at −20◦C for 12 h, broad size distributions
were found, with a higher effect observed for positively charged
PS-NH2 (Bergami et al., 2019). On the contrary, the same
batch of PS-COOH quickly reached micrometer agglomerates in
filtered NSW from the Tyrrhenian Sea (Mediterranean region,
salinity 38h and pH 8.3) at temperatures ranging from 18◦C
(Della Torre et al., 2014) to 25◦C (Bergami et al., 2016). An
explanation for this difference may be related to the increase
in kinetic energy at higher temperatures, resulting in higher
collision frequency and instability of the nanoplastics (Singh
et al., 2019), which are more prone to agglomerate. The first data
under Antarctic-like conditions suggest that low temperatures
and salinity may significantly affect nanoplastic behavior, calling
for further investigation.

INTERACTION WITH LIVING SYSTEMS:
THE CORONA CONCEPT

Recent experimental evidence points out that many variables
concur to determine the outcome of bio−nano interactions in
seawater, both with a physical–chemical and biological relevance,
and therefore delineating the ecotoxicity of NPs in such complex
water matrices (Figure 1). With decreasing dimension, the
surface area-to-volume ratio exponentially increases, leading to
the presence of a higher number of atoms at the surface compared
to the core of the NP. Interfacial properties are key determinants
of NP reactivity, given the high portion of material exposed
to the exterior and, hence, able to engage in chemical and
physical reactions with other nanoscale objects or molecules.
With such maximized exposure to the external environment,
the particle interface is where all the processes defining the

NP interaction with surrounding (biological) entities take place.
The high surface free energy that characterizes NPs drives their
interactions in order to lower such energy levels. Consequently,
NPs are naturally prone to interact with biological and abiotic
entities, which they encounter in the surrounding medium, as
a means to achieve a more energetically favorable configuration
(Petosa et al., 2010). The dynamics of protein adsorption onto
surfaces has first been described by the Vroman effect (Vroman,
1962), which can be used to explain the interfacial interactions
occurring when NPs are in biological milieus. On such basis,
the interactions of NPs with biological molecules took shape in
the biomolecule “corona” (also termed bio-corona) paradigm, as
initially described by the coating of NPs by a layer of adsorbed
proteins, derived from a biological environment (Cedervall et al.,
2007b). Although foundational corona studies tackled the protein
fraction, biomolecular coronas were shown to contain lipids
(Lara et al., 2017) and saccharides (Wan et al., 2015). Moreover,
as biomolecule adsorption onto NPs is a dynamic process, protein
corona is regarded as a continuously evolving entity. Different
protein species display distinct binding affinities for one specific
NP surface, and an evolution of corona composition over time is
usually observed. Generally, the most abundant proteins in the
incubation media rapidly bind on the NP surface, often being
displaced by species characterized by higher affinities (Cedervall
et al., 2007a), until a “mature” protein corona composition is
achieved (Casals et al., 2010; Monopoli et al., 2013). Commonly,
the biomolecular corona is viewed as a slowly exchanging
and tightly bound layer of biomolecules adsorbed on the NP
surface, also termed the “hard” corona, whose composition is in
equilibrium with the surrounding environment and sufficiently
long lived to provide theNPwith amolecular fingerprint, namely,
the biological identity of NPs. Additionally, an outermost cloud of
loosely bound molecules with lower binding affinities, called the
“soft corona,” is in rapid exchange with the environment (Milani
et al., 2012;Winzen et al., 2015). Quantitative analysis reveals that
only few protein species usually prevails in the overall corona
composition (Kokkinopoulou et al., 2017). On top of peculiar
molecule characteristics (e.g., isoelectric point, molecular weight,
tertiary structure, charge distribution), NP physical–chemical
features are key determinants of the biomolecular corona
composition. The NP surface charge has been proven to exert
a strong influence on the composition of biomolecular coronas
due to electrostatic effects (Lundqvist et al., 2008; Walkey
et al., 2012; Tenzer et al., 2013; Ritz et al., 2015). Moreover,
NP surface charge interacts with the peculiar local charge
distribution of proteins, determining their binding affinities
and orientation when adsorbed on the NP surface (Shang
and Nienhaus, 2017). NP size, determining the specific surface
curvature, influences the amount and type of proteins forming
the biomolecular corona, by spatial constraints and crowding
effects (Dobrovolskaia et al., 2009; Tenzer et al., 2011; Goy-López
et al., 2012; Piella et al., 2017). Accordingly, the peculiar NP
shape and topology greatly influence the biomolecular corona
qualitatively and quantitatively (Albanese et al., 2012; García-
Álvarez et al., 2018). Along with intrinsic and extrinsic NP
characteristics, factors defining the boundary conditions to NP–
biomolecule interactions are important in determining their
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FIGURE 1 | Schematic illustration of the bio–nano interactions taking place in the marine environment. Left: possible interactions between nanoscale particles (NPs)

dispersed in seawater and biomolecules making up the marine natural organic matter (NOM) pool, such as microalgal/cyanobacterial extracellular polymeric

substances (EPS). Right: the cellular processes following biomolecular corona formation in biological fluids of marine invertebrate organisms.

outcomes. For instance, protein abundance and the relative ratio
of NP surface area to the biological fluid volume can dictate
the quantity and quality of adsorbed proteins (Caracciolo et al.,
2011; Monopoli et al., 2011). Furthermore, exposure time (Casals
et al., 2010), temperature (Mahmoudi et al., 2013), and chemical
composition (Eigenheer et al., 2014) of the incubation medium
play an important role in the corona formation. Moreover, such
elements can determine the NP suspension stability and induce
aggregation of NPs in the biological milieu, in turn influencing
protein adsorption and organization within the aggregates, and
finally the biodistribution of NP–protein complexes (Mohr et al.,
2014; Kokkinopoulou et al., 2017; Lundqvist et al., 2017).

The Role of the Biomolecular Corona in
Nanoecotoxicology
The introduction of the biomolecular corona concept, upon
which has nowadays been reached a wide consensus among the
scientific community, has led to a change in paradigm regarding
how NPs are viewed in relation to biological systems. The rapid
adsorption of proteins and other biomolecules can confer to
NPs a new biological identity dictated by biomolecular species
at the NP surface, remarkably different from the intrinsic, well-
defined chemical one. By providing a first point of contact
with cells, the biomolecular corona functions as a bridge in
bio−nano interface. The fate of NPs in biological systems,
be they cells, organs, or whole organism, is mediated by
the adsorbed proteins species, which direct the NP toward
specific pathways, deeply affecting subsequent events at the
molecular level (Verma and Stellacci, 2010). Although the
primary importance of biomolecular coronas has long been
acknowledged in the biotechnological and biomedical fields, its
potential in understanding nano-(eco)toxicology has only been
recently recognized. Indeed, “traditional” ecotoxicity assessment,
when applied to NPs, often fails to provide a comprehensive
representation of toxicity, as objects at the nanoscale are

intrinsically different entities compared to classical toxicants. In
this regard, the protein corona paradigm can be incorporated
into the field of ecotoxicology (Lynch et al., 2014). As reported
in recent works, this concept has been fruitfully applied in
the ecotoxicological studies concerning different NP types. For
instance, the effect of protein adsorption on Ag NPs was found
to be an important molecular determinant of toxicity toward fish
gill cell lines in their physiological environment (Yue et al., 2015,
2016a). Moreover, the analysis of the protein corona formed in
the intracellular environment of rainbow trout (Oncorhynchus
mykiss) gill cells showed a fingerprint of the interactions of
Ag NPs with different subcellular compartments and provided
useful insight on mechanism of toxicity (Yue et al., 2016b).
The incubation of PVP-coated Ag NPs in the blood plasma of
male and female smallmouth bassMicropterus dolomieu resulted
in the formation of a gender-specific corona and allowed for
postulation of hypothetical distribution within different body
compartments (Gao et al., 2017). Also, invertebrate species
have been considered in ecotoxicity studies, encompassing the
formation and characterization of biomolecular coronas. Hayashi
and coworkers exposed SiO2 and Ag NPs to the native protein
repertoire of the earthworm Eisenia fetida demonstrating that
the resulting protein corona assists cellular interactions (Hayashi
et al., 2013). More recently, the importance of the study of
biomolecular coronas in the biological fluids of invertebrate
species as a means of understanding their environmental impact
was stressed (Canesi et al., 2017).

Marine invertebrates are primary targets of NPs entering
seawater coastal ecosystems and can provide insights in the
mode of action of NP toxicity. Therefore, marine invertebrate
species have been recommended and successfully employed in
ecotoxicity studies with different NP types (Matranga and Corsi,
2012; Canesi and Corsi, 2016; Canesi et al., 2016a). As such,
they provide an interesting platform to translate the study of
biomolecular coronas into a concrete understanding of NP
impact on the marine environment, advancing an ecological
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risk assessment. For instance, marine mussels have been largely
exploited in marine nano-ecotoxicology, and more recently, their
biological fluids have been used for biomolecular corona studies
(Canesi et al., 2015, 2017; Auguste et al., 2019). In the marine
mussel Mytilus galloprovincialis, it was demonstrated that the
presence of a biomolecular corona acquired in the organism
hemolymph, composed by the Cu, Zn-SOD protein, clearly
augmented toxicological responses in immune cells, compared
to the corona-free counterparts (Sendra et al., 2018). In another
study, cytotoxic effects toward M. galloprovincialis hemocytes,
triggered by the exposure to aminated PS NPs (PS-NH2), were
ascribed to the extrapallial protein (EP) precursor (MgC1q6) that
dominated the protein corona, which has known opsonization
functions and is envisaged to facilitate NP–cell interactions
(Canesi et al., 2016b). Marine mussels produce mucus as first
line of defense from environmental stressors, with the ability
to trap and sort exogenous particulate materials, as a means
to prevent possible noxious interactions (Beninger and St-Jean,
1997; Espinosa et al., 2010). Therefore, mucus represents an
important defense mechanism against NPs in seawater. It was
demonstrated that a panel of TiO2 NPs with different shapes,
sizes, ζ potentials, and crystal structures (anatase vs. rutile),
exposed to the same mucus protein repertoire of Mytilus edulis,
formed biomolecular coronas with different protein patterns,
depending on such characteristics (Bourgeault et al., 2017). In
particular, adsorption of proteins was quantitatively different
among TiO2 NP types, and the protein signatures revealed the
absence in the corona of the principal mucus component (the
EP protein), unable to adsorb due to stiffness of its structure
stemming from the high content of aromatic residues. On the
contrary, the presence of some stress-related protein species,
whose affinity for different TiO2 NPs appeared to be crystal
structure and shape dependent, suggested the acquisition of
a new biological identity. Moreover, larger particles readily
adsorbed higher protein amount per surface unit, suggesting that
quantitative aspects of the protein corona should be accounted
for in ecotoxicity studies.

Sea urchins have been largely employed in marine
ecotoxicological studies. In this regard, the sea urchin immune
system has been exploited in assessing the effect of various
toxicants in marine ecosystems, being regarded as an exploratory
tool for identifying the mechanism of immune response to
environmental stresses (Matranga et al., 2005; Pinsino and
Matranga, 2015). As to nano-ecotoxicology, sea urchin immune
cells were used for probing the toxicity of different NP types
(Falugi et al., 2012; Pinsino et al., 2015). The immunobiology of
sea urchin has been defined as among the most complex within
marine invertebrate species, qualifying the sea urchin as proxies
for the study of NP-triggered immune reactions preluding to
ecotoxic effects (Alijagic and Pinsino, 2017). NP–biomolecule
complexes in environmentally relevant model species can be
exploited to achieve a clearer image of NP ecotoxicology and
advance our understanding of their environmental impact, and
the use of sea urchins entails the potential to translate such
findings to more complex organisms. In this light, Alijagic et al.
(2020) depicted a comprehensive picture of the Mediterranean
Sea urchin Paracentrotus lividus immune system adaptation to

TiO2 NP exposure by downregulating genes involved in the
inflammatory immune response and increasing immune cell
antioxidant capacity (Alijagic et al., 2020). Focusing on bio−nano
interactions, Marques-Santos et al. (2018) described the effect
of a calcium-binding, transferrin-like protein, adsorbed onto
PS-NH2 NPs incubated in coelomic fluid, on its immune system.
Specifically, the toposome, with known cell adhesion functions,
seemed to facilitate cell interactions and PS-NH2 NP clearance
from the coelomic fluid by phagocytic coelomocytes, which,
in turn, sustained related cytotoxic effects. The biomolecular
corona of positively and negatively charged PS NPs (PS-NH2,
50 nm and PS-COOH, 62 nm) in P. lividus coelomic fluid was
thoroughly assessed by a classical proteomic approach revealing a
strikingly similar corona composition between the two particles.
The abundance of cytoskeletal proteins and species involved in
cell adhesion processes strengthened the hypothesis of an active
role of the protein corona in the association with sea urchin
immune cells and phagosome formation, as evidenced by the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis, suggesting a similar internalization pathway of NP
with different surface charges (Grassi et al., 2019). In a following
similar study, the same protein species were recovered from
the surface of P25 TiO2 NPs incubated in P. lividus coelomic
fluid (Alijagic et al., 2019). In particular, toposome, nectin and
different actin isoforms were common constituents of both PS
NPs, as previously identified, and TiO2 NPs corona, suggesting
a non-discriminative adsorption of P. lividus extracellular
proteins on inherently different NPs, and postulating the
same cell adhesion and internalization mechanisms toward
by immune cells.

NP Bio-Interactions in Marine Waters:
Introduction to the Eco-Corona Concept
Nanoscale particles entering aquatic ecosystems will likely be
received by different environmental compartments prior to
contacting biota. For instance, NPs entering natural water
compartments will undergo substantial modifications as dictated
by the characteristics of the receiving media. Along with the well-
documented effects on colloidal stability with different outcomes
on behavior and fate, increased emphasis has recently been
placed on the processes occurring at the interface between NPs
and the environment. Biomolecule-rich abiotic environmental
compartments, such as marine water bodies, represent dynamic
environments where NPs interact with biological entities. The
organic component of natural waters is composed of a highly
heterogeneous group of biomolecules which can be categorized
as allochthonous and autochthonous compounds (Docter et al.,
2015). The degradation byproducts of organic material of plant
origin, mainly composed of high molecular weight HA and
FA, belong to the former category. In contrast, autochthonous
NOM is the ensemble of biomolecules produced in situ by living
organisms, such as bacterial and microalgal communities, which
are huge contributors to the organic macromolecule pool of
natural waters (Gutierrez et al., 2018). Their exudates, collectively
termed EPS (extracellular polymeric substances), mainly consist
of a variety of high molecular weight polysaccharides, and
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to a lesser extent of glycoproteins, lipids, and nucleic acids.
The composition of the organic fractions encountered in
seawater spans across a wide spectrum of molecular weights,
taking shape in a continuum of sizes from amino acids to
peptides and polysaccharides, encompassing truly dissolved
and colloidal/macromolecular species (Verdugo et al., 2004;
Wilkinson and Lead, 2007).

Additionally, due to the different contributions to the
NOM pool, the chemical makeup of organic biomolecules is
exceptionally heterogeneous, with tens of thousands of unique
chemical species, contributing to the overall complexity of the
marine water matrix (Mopper et al., 2007; Ortega-Morales
et al., 2007). The interactions of NPs in natural waters with
the totality of NOM can lead to the formation of diverse
biomolecular coatings, collectively termed the “eco-corona,”
analogous to the bio-corona previously described in purely
biological fluids (Lynch et al., 2014). For instance, the interaction
of organic molecules with NPs dispersed in seawater can result
in their inclusion into biomolecular matrices, occurring either
as composite organic networks embedding single particles or
aggregates into microgel-like structures (Figures 2b,e) or as
tightly adsorbed layers at the surface (Figures 2c,f), as shown for
TiO2 and PS-COOH NPs.

Dispersion in natural waters usually confers some degree
of polydispersity, complicating the interaction with natural
biomolecules. Aggregation phenomena often occur, and
NP aggregates/agglomerates will be present, together with
monomers, giving rise to multifaceted interactions with the
NOM matrix. In general, NOM molecules can either promote
the aggregation of stable NP suspensions in natural waters
or limiting the aggregation phenomena by providing steric
stabilization (Nason et al., 2012; Surette and Nason, 2016, 2019;
Danielsson et al., 2018). Therefore, aggregation and biomolecule
adsorption can represent competing phenomena in seawater,
where high salinity can induce aggregation, while eco-corona
formation may disrupt such phenomena. Under such conditions,
the result of NOM–NP interaction cannot be viewed simply
as the formation of a uniform molecular layer at the particle
surface, but rather a more complex organization of NPs in the
NOMmatrix can be expected.

The importance of an acquired eco-corona in shaping
the nanotoxicity of different NP types has recently been
acknowledged (He et al., 2018, 2015). In fact, the acquisition of
an eco-corona from the surrounding environment is expected to
modify key NP parameters, possibly rebounding on nanotoxicity
(Ren et al., 2016), and the inclusion of such variables in the

FIGURE 2 | Transmission electron microscopy (TEM) showing interactions of 25-nm titanium dioxide (TiO2) P25 (a,b,c) and 60-nm carboxylate (PS-COOH) (d,e,f)

NPs with marine NOM leading to eco-corona formation. Bare particles in deionized water are reported in panels (a,d). (b,c) TiO2 NP interactions with biomolecules

form natural seawater. (e,f) PS-COOH NP interaction with EPS from the marine diatom Phaeodactylum tricornutum. Details of sample preparation are reported in the

Supplementary Material section.
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ecotoxicity testing of NP is strongly encouraged to gather
ecologically meaningful results (Holden et al., 2016). Recently,
proofs of concept were provided by supplementing ecotoxicity
test media with exogenous NOM surrogates (e.g., commercially
available humic/fulvic fractions and proteins), thus provoking
eco-corona formation. In particular, NOM and BSA mitigated
the toxicity induced by ZnO and MnO2 NPs toward oyster
(Crassostrea gigas) embryos by interfering with dissolution and
bandgap mechanisms (Noventa et al., 2018). Morelli et al. (2018)
isolated the EPS produced by the marine microalgae Dunaliella
tertiolecta, probing the selective adsorption of proteins on the
surface of P25 TiO2 NPs, shaping an eco-corona (2018). The EPS
from the marine bacterium Pseudomonas aeruginosa was able to
clearly mitigate the toxic effect of the same NP type mainly by
delaying the oxidative damage caused by reactive oxygen species
(ROS) produced in seawater (Hessler et al., 2012).

EFFECTS ON MARINE ORGANISMS

According to the vast number of ecotoxicity studies on TiO2
NP, oxidative stress is largely recognized as the main mechanism
of toxicity in marine species, although other biological effects
have been recorded (Figure 3A; Minetto et al., 2014, 2016; Xia
et al., 2015). Based on most recent studies in which TiO2NP
characterization have been included in order to address exposure
scenario in the observed toxicity, the largest efforts concentrated
on bothmarine plankton (42.1%) and benthos (44.7%) and only a
minority on marine fish (13.2%) (Figure 3A; see Supplementary

Material section for literature cited).
The first record on TiO2 ecotoxicity has been provided on

marine phytoplanktonic species as cyanobacteria and green algae
in which the role of light and consequently photoactivation has
been linked to membrane damage, oxidative stress, genotoxicity,
and inhibition of growth. According to Miller et al. (2010), no
effect is observed in marine diatoms in the range between 10–
1,000 µg L−1 unless UV is inducting TiO2 NP photoactivation
(Miller et al., 2012). UV-A light is able to energize TiO2 NP
and to photoinduce the generation of reactive oxygen radicals
in exposed cells (Uchino et al., 2002; Sayes et al., 2006). UV-
A exposure (6 h per day), rather than visible light, is reported
to strongly affect sensitivity of the marine algae Phaeodactylum
tricornutum to TiO2 NP compared to bulk form due to increased
production of reactive oxygen species (ROS) (Sendra et al.,
2017a). Chloroplasts of the algae Karenia brevis have been
identified as the site of ROS induced by TiO2 exposure with
consequent increase in lipid peroxidation and cell damage
leading to inhibition of algal growth (Li et al., 2015). On
the other hand, according to Bhuvaneshwari et al. (2017), the
formation in seawater of large TiO2 agglomerates significantly
reduced the TiO2 phototoxicity under UV-A irradiation in brine
shrimp Artemia salina. An increase in ROS generation and
antioxidant enzymes is supposed to drive TiO2 phototoxicity in
green algae Dunaliella salina and brine shrimp larvae A. salina
upon waterborne exposure (Bhuvaneshwari et al., 2018). Minetto
et al. (2017) further support the role of light, which significantly
affect TiO2 toxicity on marine algae. According to Pellegrino

et al. (2017), TiO2 aggregation and agglomeration significantly
reduce light adsorption by causing diffusion of the incoming
radiation. Sun et al. (2014) previously demonstrated that UV
irradiation of P25 TiO2 water suspensions enhances particle
aggregation by increasing surface concentration of hydroxyl
groups, which lower the isolectric point and reduce positive
charges of TiO2. More recently, Budarz et al. (2017) showed that
the photoreactivity and aggregation of TiO2 NPs are strongly
influenced by anionic species present in the water media with
carbonate and chloride having a strongest role in suppressing
hydroxyl radical generation by substituting hydroxyl ions. The
fast agglomeration/aggregation of TiO2 NPs in high ionic media
such as sea water is also having a significant role in TiO2
properties and therefore toxicity for marine species (Brunelli
et al., 2013). A physical interaction of TiO2 agglomerates by
entrapping green algae P. tricornutum is considered the main
driver of toxicity according to Deng et al. (2017); Wang et al.
(2017). An increase in oxidative stress and the inhibition
of the effective quantum yields are foreseen as a defense
mechanism used by algae toward physical damage caused by
TiO2 agglomerates (Hu et al., 2018). Surface adhesion of TiO2
agglomerates to the microalgae Nitzschia closterium is thought to
be responsible for TiO2 trophic transfer to the scallop Chlamys
farreri (Wang et al., 2017). Fast sinking of TiO2 agglomerates can
explain the absence of toxicity to the larvae of rotifer Brachionus
plicatilis and of the brine shrimp A. salina according to Nogueira
et al. (2015). Moreover, no effect on embryo development was
observed at concentrations above 1 mg L−1 in marine bivalve
M. galloprovincialis (Libralato et al., 2013; Balbi et al., 2014).
A time-dependent process of TiO2 agglomeration is reported by
Morelli et al. (2018) as well as the mitigation role played by algal
EPS in the fast TiO2 NP agglomeration. Other sources of NOM,
such as for instance themucus secreted by bivalve’s gills, can affect
the formation of TiO2 agglomerates, which are then translocated
to the digestive gland by hemolymph and then excreted with
pseudofeces (Wang et al., 2014; Canesi and Corsi, 2016). In this
regard, evidence of TiO2 NP localization in the cytoplasm and
vacuoles of bivalve’s immune cells raises further concern due to
their widely reported TiO2 NP immunomodulatory effects both
in vitro and in vivo (i.e., endo-lysosomal system and phagocytic
activity) (reviewed in Marisa et al., 2015; Canesi and Corsi, 2016;
Shi et al., 2017; Guan et al., 2018; Canesi et al., 2019).

High and fast body clearance (<90% within 12 h) of two
TiO2 NP formulations (Titan and P25) is reported in blue
mussel (M. edulis) and oyster (Crassostrea virginica) regardless
of the form of delivery (marine snow vs. suspensions) upon
waterborne exposure (6 h) (Doyle et al., 2015). In addition, less
than 10% of the nominal concentration of TiO2 is supposed to
be available to marine species due to particle sedimentation and
agglomeration/adsorption processes occurring in the presence
of organic matter produced by marine organisms (EPS,
mucus, pseudofeces).

Despite a certain number of studies that recognized TiO2
ecotoxicity for marine species, a few of them investigated
those TiO2 formulations, which are released from commercial
products, which also undergo such transformations (i.e.,
weathering and aging) able to affect their behavior and
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FIGURE 3 | Schematic representation of the distribution of taxa investigated in ecotoxicity studies [(A) TiO2 and (B) polystyrene (PS) NPs] and related documented

effects. Please refer to Supplementary Material section for details on literature used. Total number of studies was 37 for PS and 38 for TiO2.

interaction with marine biota (Labille et al., 2010; Nowack and
Mitrano, 2018). Gondikas et al. (2014) first showed the release
of TiO2 from sunscreen formulations in lake surface waters
raising concern regarding effects on aquatic species. TiO2-based
sunscreen products have been shown to be more toxic to marine
planktonic diatoms under direct sunlight exposure compared to
classical formulation (Sendra et al., 2017b). Oxidative damage

and hydrogen peroxide production have been recorded in
marine diatoms upon TiO2 exposure in association with organic
compounds present in sunscreen formulation (Tovar-Sánchez
et al., 2013). No effects of two TiO2-based sunscreen formulations
(Eusolex R© T2000 and OptisolTM) have been reported on
tropical stony Acropora coral and symbionthic algae (i.e.,
Symbiodinium sp.) by Corinaldesi et al. (2018), while TiO2
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exposure was considered responsible for zooxanthellae expulsion
in the Caribbean coral Montastraea faveolata (Jovanović and
Guzmán, 2014). Therefore, more studies are urgently needed
to disentangle the role of single nanoscale particle from the
entire commercial formulation by addressing first the behavior
of the particle, itself, in the natural media for defining real
exposure scenarios. With this aim, several studies have been
conducted for instance by evaluating the possible interactive
effects of TiO2 NPs with other existing marine pollutants.
Antagonistic and interactive effects have been reported both
in vitro and in vivo in marine bivalve M. galloprovincialis
(immune system, digestive gland and gills) exposed to TiO2
(Degussa P25) with cadmium and 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD), respectively (Canesi et al., 2014; Della
Torre et al., 2015b; Rocco et al., 2015; Banni et al., 2016).
Co-exposure seemed to mitigate, rather than exacerbate, the
adverse effect of single exposure with predominant antagonistic
effects depending on experimental condition, cell/tissue, or
type of measured response. Transcriptomic analysis in co-
exposure conditions revealed transcriptional changes common
to individual treatments (TiO2 and TCDD) and identified
newly generated processes and response to chemical stimulus
without increasing overall stressful conditions (Banni et al.,
2016). The negligible adsorption of Cd2+ to TiO2 agglomerates
reported upon incubation in artificial seawater probably explain
the observed preferential accumulation of Cd2+ in the bivalve
digestive gland and gills in the presence of n-TiO2 (Della Torre
et al., 2015b). In contrast, higher TCDD accumulation was
observed in whole mussel tissues in the presence of n-TiO2 but
not in the digestive gland. A lower benzo(a)pyrene accumulation
upon co-exposure to TiO2 is reported by Farkas et al. (2015) in
blue mussel M. edulis. Probably, B(a)P was less bioavailable to
mussels due to adsorption to TiO2 agglomerates. The presence
of TiO2 significantly increased the embryotoxicity of tributyltin
(TBT) to the abalone (Haliotis diversicolor) (Zhu et al., 2011),
and in the ark shell Scapharca subcrenata, enhanced uptake of
phenanthrene is observed in the presence of TiO2 (Tian et al.,
2014). On the contrary, TiO2 did not alter the bioaccumulation
of several PBDE congeners in the same species (Tian et al., 2015).
The few studies performed on marine fish species, underline
that more studies should focus on this trophic level in order
to better formulate risk assessment on marine biota. Sub-
lethal adverse effects on the early life stages of the brackish
Oryzias latipes as premature hatching, pericardial edema, and
abnormal development have been reported (Paterson et al.,
2011). Moreover, genotoxic and potentially cytotoxic effects were
reported in Trachinotus carolinus exposed to 1.5–3 g of TiO2 NP
for 24, 48, and 72 h (Vignardi et al., 2015). In European sea bass
Dicentrarchus labrax, higher levels of total Ti were found in liver
upon waterborne co-exposure with TCDD (46 pg L−1) and TiO2
(1 mg L−1) for 7 days (Della Torre et al., 2015b). At gene level,
any influence of TiO2 NP on TCDD ability to induce cyp1a and
related EROD activity was found, which was further confirmed
by similar levels of TCDD detected in the liver of fish upon single
and co-exposure (Della Torre et al., 2015b; Vannuccini et al.,
2015). On the opposite, exposure to the mixture caused a further
significant downregulation of ATP-binding cassette transporter

genes abcb1 and abcc2 compared to single exposure (n-TiO2 and
TCDD alone) suggesting an interactive effect on ABC, which
could be a potential target of TiO2 NP in liver of fish. Upon
co-exposure with CdCl2 in the same experimental conditions
(0.1 mg L−1 and TiO2 1 mg L−1 respectively), TiO2-induced
chromosomal damage and genome template instability in sea
bass erythrocytes seemed reduced by the presence of Cd, thus,
supporting the hypothesis of an interactive role in co-exposure
scenarios (Nigro et al., 2015).

Several laboratory studies have shown that nanoplastics
(below 1 µm following the classification from Hartmann et al.,
2019) may cause both chemical and physical impacts to marine
wildlife. In the last decade (2009–2019), PS NPs have been
adopted in 85% of the ecotoxicity studies (n = 41, listed
in Supplementary Material), alongside with other polymers,
mainly polymethyl methacrylate (PMMA) NPs (Bhargava et al.,
2018; Brandts et al., 2018) and polyethylene (PE) nano-sized
fragments (Baudrimont et al., 2019). Functionalized PS NPs, such
as PS-COOH and/or PS-NH2, have been used in 44% of them to
correlate the biological effects observed in the functionalization.
The most common nanoplastics in the marine environment
are expected to be negatively charged due to surface oxidation
and acquisition of functionalities, such us the carbonyl groups,
during the weathering (Fotopoulou and Karapanagioti, 2012;
Gigault et al., 2016; Andrady, 2017). However, it is important
to consider also positively charged nanoplastics as a counterpart
since the functionalization and surface charge derived from
plastic degradation products are yet to be fully determined. For
example, amino modification may result from the hydrolyzation
of polyamides (Merdas et al., 2003), although they are not
expected to be found in high quantities in seas and oceans
(Lehner et al., 2019).

The analysis of the species sensitivity to polymeric NPs,
reported by Venâncio et al. (2019), showed that nanoplastics
with a nominal size below 50 nm mainly affect marine model
organisms depending on surface charge (positive vs. negative)
and polymeric composition (PS vs. PMMA), suggesting that
PS NPs may be more harmful than other polymers for
the marine biota.

The main biological effects reported for marine model
organisms exposed to PS NP suspensions are summarized in
Figure 3B. Overall, a large effort has been made to study the
effects on marine plankton (67.5%), while 27% of the studies has
been carried out on benthic organisms and only 5.4% on marine
fish, different from microplastic studies in which these two latter
categories are far more represented (Chae and An, 2017).

Studies on PS NPs and phytoplankton have usually been
performed following available standardized toxicity test protocols
to determine the growth inhibition at 72 or 96 h of an algal
culture in an exponential phase exposed to a contaminant
(e.g., ISO, 2006; OECD 201, 2011). Interestingly, most of the
studies reported no or limited effect on microalgal growth
after exposure to increasing concentrations of plain PS and
PS-COOH NPs (Bergami et al., 2017; Yi et al., 2019) up to
250 µg ml−1 (Sjollema et al., 2016), while many sub-lethal
physiological alterations have been observed, such as a strong
adsorption of nanoplastic agglomerates on microalgal surface
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(Bergami et al., 2017; Sendra et al., 2019b; Yi et al., 2019), a
decrease in photosynthesis efficiency and lipid content, as well
as the production of reactive oxygen species (ROS) (González-
Fernández et al., 2019; Sendra et al., 2019b; Seoane et al., 2019).
Moreover, a significant increase in the DNA damage as well as
depolarization of mitochondrial and cell membrane were found
in the benthic diatom Phaeodactylum tricornutum exposed to
increasing concentrations (in the range 0.1–50 µg ml−1) of plain
PS NPs, although toxicity was not affected by their nominal sizes
of 50 and 100 nm (Sendra et al., 2019b). Recent findings also
underline how PS-COOH (50 nm) adhesion onto a diatom’s
surface causes a reduction in their chain length with potential
ecological implications as, for instance, changes in diatom’s chain
buoyancy as well as the formation and sinking of aggregates
(Bellingeri et al., 2020).

Concerning PS-NH2 NPs, Bergami et al. (2017) reported a
significant growth inhibition in the unicellular green microalga
D. tertiolecta [EC50 (72 h) of 12.97 µg ml−1], while Seoane
et al. (2019) found no effect on growth of the marine diatom
Chaetoceros neogracile. This discrepancy can be explained by
the different sizes of PS-NH2 NPs (50 vs. 500 nm) used in
the two studies and their behavior in the algal media, whereas
50 nm of PS-NH2 NPs showed low aggregation and a positive
surface charge (Bergami et al., 2017), 500 nm of PS-NH2
NPs agglomerated (>3 µm) and resulted as negatively charged
(Seoane et al., 2019). Different results in standard algal growth
inhibition tests can also be related to the species sensitivity
of phytoplankton toward nanoplastics. While marine diatoms
are characterized by a silicified wall, green microalgae like
D. tertiolecta present a thin cellular membrane (Oren, 2005),
which may facilitate interactions with anthropogenic NPs with
respect to other species.

Ecotoxicity studies on zooplankton mainly investigated the
potential accumulation of PS NPs in the digestive tract of model
organisms, by the detection of fluorescently labeled NPs under
optical fluorescent or confocal microscopy through the thin
transparent body of copepods (Lee et al., 2013; Jeong et al.,
2017), anostracans (Bergami et al., 2016), rotifers (Snell and
Hicks, 2009; Jeong et al., 2016, 2018; Manfra et al., 2017), and
other planktonic larvae (Cole and Galloway, 2015; Della Torre
et al., 2015b; Gambardella et al., 2017, 2018). Although egestion
of large PS agglomerates, incorporated in fecal pellet structure,
has been observed in several planktonic species (Lee et al.,
2013; Bergami et al., 2016, 2017), some studies showed that
PS NPs were still retained in the digestive tract of the exposed
organisms after a 24-h recovery period (Bergami et al., 2016;
Jeong et al., 2017; Manfra et al., 2017) and were removed less
efficiently compared to micro-sized particles (Jeong et al., 2016).
Plain PS and negatively charged PS-COOH NPs normally did
not provoke mortality after acute (Della Torre et al., 2014; Cole
and Galloway, 2015; Bergami et al., 2016; Gambardella et al.,
2017; Manfra et al., 2017) or long-term (Bergami et al., 2017)
exposures, although several sub-lethal effects have been reported,
from the alteration in the swimming activity (Gambardella et al.,
2017) to the decrease in fecundity, reproduction efficiency, and
offspring fitness (Lee et al., 2013; Jeong et al., 2016, 2017).
A concentration-dependent toxicity on growth and reproduction

has been reported in the rotifer Brachionus spp., with a negative
correlation between toxicity and NP size (Snell and Hicks, 2009;
Jeong et al., 2016). In both studies, 50-nm PS NPs caused the
most deleterious effects compared to larger NPs (100–500 nm)
and microplastics (6 µm).

Some studies also reported the induction of oxidative stress
(Jeong et al., 2016; González-Fernández et al., 2018) as well
as mantle and shell malformations in the oyster C. gigas
D-larvae following exposure to plain PS and PS-COOH NPs
(Tallec et al., 2018).

In general, a higher toxicity in the marine zooplankton
was associated to positively charged PS-NH2 NPs, with average
EC50 values ranging from 0.14 µg ml−1 in the mussel
M. galloprovincialis (Balbi et al., 2017) and 0.15 µg ml−1 in
the oyster C. gigas D-larva (Tallec et al., 2018), to 2.61 µg
ml−1 in the sea urchin P. lividus pluteus (Della Torre et al.,
2014) and 6.62 µg ml−1 in the rotifer B. plicatilis larva (Manfra
et al., 2017). In Artemia spp. PS-NH2 NPs provoked significant
physiological alterations in the exposed larvae, includingmultiple
molting (Bergami et al., 2016, 2017) as well as oxidative
stress and neurotoxicity over short- and long-term exposure,
as indicated by the significant decrease in the cholinesterase
activity (Varó et al., 2019), leading to mortality after 14 days
(Bergami et al., 2017; Varó et al., 2019). Long-term endpoints
appeared thus more suitable to assess the toxicity of PS NPs
to marine zooplankton (Lee et al., 2013; Bergami et al., 2017;
Varó et al., 2019).

Marine mussels belonging to the Mytilus genus have been
largely adopted as model organisms to investigate the biological
effects of PS NPs through laboratory studies. Following short-
term in vivo experiments (up to 72 h), ingestion and egestion
of PS NP agglomerates have been confirmed in suspension-
feeding bivalves (Ward and Kach, 2009), with the organisms
starting to internalize NPs already in the first hour of exposure
(Farrell and Nelson, 2013). In the musselM. edulis, this has been
associated with the production of pseudofeces (Wegner et al.,
2012; Farrell and Nelson, 2013) and a reduced filtering activity,
following exposure to high concentrations (up to 300µgml−1) of
sulfate-functionalized PSNPs (Wegner et al., 2012). Furthermore,
trophic transfer of plain PS NPs of different sizes (30, 100, and
500 nm) from mussels to the crab Carcinus maenas has been
demonstrated under laboratory conditions (Farrell and Nelson,
2013). Some studies reported the ability of PS NPs to translocate
from the hemolymph to target tissues in benthic invertebrates
(Farrell and Nelson, 2013) in a size-dependent manner, with
50 nm of PS NPs more internalized by hemocytes than larger
particles (Sendra et al., 2019a), taken up in immune cells,
and cause oxidative stress, immunotoxicity, and genotoxicity
(Canesi et al., 2015; Brandts et al., 2018; Bergami et al., 2019;
Ciacci et al., 2019; Sendra et al., 2019a). In a recent study on
the benthic foraminifer Ammonia parkinsoniana, plain PS NPs
tested at a concentration of 1 µg ml−1 were internalized in
the single-cell marine eukaryotes within 24 h, enhancing free-
radical production and accumulation of intracellular neutral
lipids (Ciacci et al., 2019). Furthermore, one study available
on the Antarctic sea urchin Sterechinus neumayeri (Bergami
et al., 2019) reported the sensitivity of this polar benthic
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species to anthropogenic NPs, by investigating the effects of
two functionalized PS NPs (at 1 and 5 µg ml−1) on sea urchin
coelomocytes following in vitro short-term exposure. PS-COOH
NPs were able to induce an inflammatory response, with the
modulation of genes having a role against oxidative stress and
apoptosis, while a toxicity threshold was likely reached for PS-
NH2 NPs under the same experimental conditions.

For marine vertebrates, several studies have been conducted
on freshwater species, in particular, on the zebrafish Danio rerio
(as reviewed in Chae and An, 2017), while little information is
available on marine model organisms. Yin et al. (2019) evaluated
the alteration in behavior and metabolism of a marine demersal
fish (Sebastes schlegelii) exposed to 190 µg L−1 of PS NPs
(nominal size of 500 nm) for 14 days. A significant decrease in
protein and lipid content was observed, potentially associated
with reduced fish energy reserve and altered feeding behavior.
However, the negative impact appeared limited compared to the
effects of larger micro-sized PS (15 µm). Almeida et al. (2019)
reported that 100 nm of PS NPs was not cytotoxic to cell lines
of two marine fish (Sparus aurata and D. labrax) after in vitro
exposure (24 h), though they altered the lethality of human
pharmaceuticals.

CURRENT GAPS AND FUTURE
RECOMMENDATION

A comprehensive review of the major findings regarding the
behavior, interactions with biological surfaces, and effects of
TiO2 and PS NPs in the marine environment is reported.
Although several behavior patterns have been defined as well
as major impacts and toxicity mechanisms determined on key
marine species, some knowledge gaps remain and shape the
future studies on this growing research field. The detection
of anthropogenic NPs at trace levels in natural systems, such
as seawater and sediments, remains the greatest challenge
to monitor them in the marine environment and hone the
probabilistic NP flow modeling (Sun et al., 2016). Analytical
methods, such as stable isotope tracer and liquid chromatography
coupled to high-resolutionmass spectrometry, should be adapted
and further implemented for anthropogenic NPs.

Future laboratory experiments should be carried out at
environmentally realistic concentrations (i.e., <µg L−1), for
example using metal-doped nanoplastics (Koelmans, 2019;

Mitrano et al., 2019) or radio-labeled NPs (Bourgeault et al.,
2015; Al-Sid-Cheikh et al., 2018) that can be traced both in
complex matrices and the biota, allowing for a more reliable
environmental risk assessment. In an ecological perspective,
long-term and chronic endpoints should be preferred over
acute standard ecotoxicity tests, and multi-species studies are
encouraged to understand the impacts of anthropogenic NPs
over key ecological processes, such as algal bloom formation
and particulate organic carbon flux. “Omics” approaches are
promising tools to determine signaling cascade and toxicity
mechanisms triggered by anthropogenic NPs in biological
systems. Finally, gaining knowledge on the bio- and eco-
corona(s) formation will be crucial to unveil the complex nano-
bio interactions occurring in natural systems. Their study and
consideration in the framework of ecotoxicity studies is of
paramount importance to obtain meaningful outcomes and to
extend to them real environmental scenarios.
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